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Abstract In particular, we will use the COG database [20] where pre-
dicted proteins in 66 completely sequenced genomes are
Functionally related genes co-evolve, probably due to classified into 4873 families. Thus the problem of our in-
the strong selection pressure in evolution. Thus we expectterest in this paper is to mine sets of protein families that
that they are present in multiple genomes. Physical prox- occur in multiple genomes.
imity among genes, known as gene team, is a very useful
concept to discover functionally related genes in multiple 1.1. Related work: gene sets as patterns
genomes. However, there are also many gene sets that do
not preserve physical proximity. There has been a significant amount of research on this
In this paper, we generalized the gene team model, thatproblem. Predicting functionally correlated gene sets is
looks for gene clusters in a physically clustered form, to a very broad topic utilizing mutliple data sources, such
multiple genome cases with relaxed constraint. We pro- as gene expression data or literature, as well as sequence
pose a novel hybrid pattern model that combines the setdata. Since our goal is to generalize the gene team model
and the sequential pattern models. Our model searchespased on the sequence information, our survey is limited
for gene clusters with and/or without physical proximity to those utilizing sequence information. [5] and [11] stud-
constraint. This model is implemented and tested with jed gene fusion eventsA gene fusion event involves two
97 genomes (120 replicons). The result was analyzed,‘;,enomesg1 and G5, and at least three geneg,; € G;
to show the usefulness of our model. Especially, analy— anng.jngk € Gy A gene fusion event is an observation
sis of gene clusters that belong to B. subtilis and E. coli whereg, ; is homologous both tg, ; and g, x, the over-
demonstrated that our model predicted many experimen-|ap regions betweegy ; andg, ; and between, ; andg, ;.
tally verified operons and functionally related clusters. Our ith respect tay; ; are disjoint, and there is no observable
program is fast enough to provide a sevice on the web sequence similarity betwegn ; andgs ;. In other words,
at http://platcom.informatics.indiana.edu/platcom/. Users two distinct possible domains exist in a single gene,
can select any combination of 97 genomes to predict genewhich is calleda composite geneTwo genesj; ; andgs 1
teams. are calledcomponent geneis the fusion event. From a
gene fusion event, we may conjecture that two gepes
andg, ;. are functionally related based on the evidence of a
1. Introduction single geney; ; that has the two sequences as components.
Note that such a conclusion is only possible by comparing
As the number of completely sequenced genomes is in-two genomes. The work by [14] studied gene clusters to in-
creasing rapidly due to the recent advance in genome sefer functional coupling. Genes are matched between two
guencing technology, interpreting the content of genomesgenomes using two concepts, pairsabdse bidirectional
becomes more important. One of the most effective meth-best hits (PCBBHs) and pairs afosehomologs (PCHSs),
ods is to compare multiple genomes. Genomes can be comwhere the ternclose means the physical proximity, say
pared on either genome sequence or protein sequence levelyithin 300 bp. Then PCBBHs and PCHs are clustered to-
or both. In this paper, we assume a situation where genomegether to infer gene clusters. They successfully predicted
are compared on the protein level and their predicted pro-de novopurine biosynthesis and glycolysis metabolic path-
teins are already well classified into families of sequences.ways. There are also interesting approaches that do not con-



sider physical proximity. [15] compared 16 genomes and 1.2. Motivation: Proximity Constraint or Not
successfully predicted sets of functionally linked proteins

related to two structural complexes and a general amino If genomes are compared simply by counting genes com-
acid metabolism by comparing only protein phylogenetic mon in two genomes, it is not very meaningful. In genomes,
profiles. For each protein, a vector of 16 bits was created,especia”y prokaryote genomes, functionally related genes
each bit denoting the presence or absence of the protein iyre tend to be physically clustered. Thus finding out phys-
the corresponding genome. Then they clustered vectors tqca|ly clustered genes is an effective way to produce func-
predict functionally linked protein sets. The main underly- tionally related gene sets. For example, [9, 2] developed
ing hypothesis was that functionally linked proteins evolve zn efficient algorithm to enumerate all physically clustered
in a correlated fashion and they have homologs in the sameyene sets, termed gene teanin a “pair” of genomes. To
subset of organisms. Following these seminal works, thereproduce meaningful gene teams, the choice of genome pair
has been a significant research on methods and discoverys very important. For example, a well knoviac operon

of multiple genomes comparisons [2, 4, 22, 9]. Prediction of four genes, i.e., gene teatagl, lacz, lacY andlacA, in

of functionally linked gene sets are undoubtedly important gscherichia coli K12cannot be detected by comparing it
for biological applications. Furthermore, these techniquestg Yersinia pestis KIMsince these genes scatter around in
can lead to development of novel techniques to solve hardyersinia pestis KIMlacz is at base position 1995374, lacY
computational problems in biology. For example, [12] used at 2842618, andacl at 3562787. On the other hand, two
the three methods for predicting functionally linked genes genomesMycoplasma genitaliunand Mycoplasma pneu-

to predict regulons, a set of genes that are regulated by anonijae are very close so comparing them produces gene
single transcription mechanism, and their regulatory motifs teams, each with a large number of genes. This diffi-
in 22 prokaryotic genomes using the motif-discovery pro- cylty might be alleviated if we compare a large number
gram AlignACE. Note that motif (promoter site) discovery of genomes, say 100, simultaneously, since different gene
in a genome scale is far from being solved and their succesgeams may appear in different genome pairs. There are two

was pOSSib|e by restricting motif search in a small fraction Cha”enges in Comparing many genomes Simultaneous'y:
of the genome, the upstream regions of predicted gene sets.

e Challenge 1: Itis not trivial to extend the gene team

The problem of discovering sequential and set motifs
(patterns) has been studied in the field of data mining. In
[1], the authors investigated the problem of finding a set
of items whose number of occurrences is larger than some
threshold in a set of sequences or transactions. One of the
most important properties of frequent set in this work is the
Apriori property. The occurrences of a given set of items
(e.g., a set of genes) is less than or equal to the occur-
rences of any of its subsets. Due to this property, the au-
thors proposed a level-wise search algorithm. First shorter
(smaller) patterns are search. If the number of occurrences
of a shorter pattern does not satisfy the occurrence thresh-
old, then it is not necessary to consider the super-patterns of
the shorter pattern. We only need to consider it pattern if all
its sub-patterns satisfy the occurrence threshold.

The field of sequential pattern/motif is also very active
in the data mining community. Unlike the set patterns, a
sequential pattern takes into account of the relative position
of the elements (e.g., genes) in a pattern. Much work, e.g.,
asynchronous patterns [23], periodical patterns [8], etc., are
proposed to discover the sequential patterns (with different
constraints) whose occurrences exceed a threshold. Thes

model to multiple genome cases since strictly enforc-
ing the physical proximity constraint in “all” genomes
may result in the failure of detecting gean teams. Thus
we need a new model for multiple genome compari-
son in search of gene teams. In this paper, we propose
a hybrid pattern modethat combines the sequential
pattern model (gene team model) and the set pattern
model (gene team without proximity constraint).

Challenge 2: Since we cannot enforce a constraint
— whatever it is — on “all” genomes due to the abnor-
mality in the nature, we need to consider subsets of
the input genome sets. For example, suppose that we
compare 100 genomes and we enforce a constraint, say
based on the hybrid model, to a set of three genomes.
Then we have to consider 161,700 three genome sub-
sets (=('9")). How can we systematically enumerate
these? We need an efficient algorithm for this. We
had developed an algorithm based on the level-wise
search techniques, which have been used to investigate
the market basket data in the data mining community.

approaches all utilize the Apriori property. There are previ- 2. Parameters

ous work on set pattern and distance constrained set pattern

(i.e., run). However, to the best of our knowledge, our hy-

To study co-occurrences of functionally related genes

brid model in Section 3 is the first one to combine both type with or without the proximity constraint, there are four im-

of patterns.

portant parameters.



1. How many genes should co-occur to be biologically ©r andd; = distance(g;,g;41) for 1 < i < m where
meaningful? We will call thighe gene set size con- f; = X(g;). Thus, each genome can be transformed into a
straint. Let 7, be the threshold value for the gene set gene-family sequence via the mapping functidonA 4-run
size constraint. is the subsequentef a gene-family sequence, where dis-

2 Whatis the dist betw i di ¢ i tances between every adjacent genes are withive will
' atis the distance between two adjacent genes It We, i comma and distance in family sequences for short, i.e.,

enforce the physical proximity constraint? We will call }
. . A . -+ f,n such thatf; = X (g;), dist iy i <4
this the physical proximity distance constraiot dis- %{;II 1 J; i<m / (9:), distance(gi, gi+1) <

te}nce constraintITet Ts be the threshold value for the We consider the following example. A genome consists
distance constraint. of 6 genesgy, g2, g3, 94, g5, andgg, and distance between
3. How many genomes should the set of genes be phys-adjacent genes are 100, 200, 300, 400, and 100 base respec-
ically clustered in? We will call thiglistance con-  tively. Assume that geng, g» are mapped into family,
straint set pattern constrairdr dset pattern constraint ~ 9enegs, gs into family f5, g4 into f3, andge into fs. The
in short (see Section 3). L&t, be the threshold value ~ genome can be represented as the following gene-family se-
for the dset pattern constraint. quencel’ =< fi, 100, f1, 200, f2, 300, f3, 400, fa, 100,
) _ fa >. Wheno = 401, there are two runsi; = f1fif2f3
4. Given a set of genes, in how many genomes shouldand,, = £, f,. In this paper, we are interested in discover-
they_O(_:cur as a \{vhole, Wlth. or without the physical jng patterns in the gene-family sequences.
proximity constraint? We will count _thg number Qf A set pattern of a gene-family sequenc is a set of
genomes with and without the proximity constraint famjjies inF, i.e., Poet(F) = {p1,...,pn} Wherep; € Op
separately. We will call thishe set pattern constraint  for | < ; < n andp; # p; fori # j. We call F supports
(see Section 3). L€, be the threshold value for the  the set patterfip, ,. .., pi } if Vi € [1, k], 3f; € F such that
set pattern constraint. fj = pi, i.e., any subset pattern &t...(F). We also callF
Although there has been a significant development on pre-SUPPOIts thel-set pattern Pyse; = {6, p1,. .., pr}, which
dicting functionally linked genes by comparing multiple Stands for a distance constrained set pattern, if there exists a
genomes, these four issues have not been seriously studie@n” Of I such thatse; (1) — Puser = 0, Paset — Peet (r) =
in a combined form. This paper will explore this issue by {0} If a gene-family sequence meets distance constrain,
formulating a formal problenthe hybrid gene pattern min-  1-€-, & run, thenPy,¢,(F') is the set pattern of families in
ing problem in the next section we present an algorithm for £ @nd Paset(F) = Pset(F) exceptd. In other words, the
the problem. We call gene teams with relaxed proximity d-Set pattern can be viewed as a specialization of the set

constraint agiene clustersvhere the context is clear. pattern. Each element in a set pattern may occur at dif-
ferent portion of a gene-family sequence. On the other

hand, the elements in a d-set pattern should occur nearby.
The distance threshold is used for this purpose. Let

) Piset = {0,p1,p2,...,pm} be a d-set pattern. Then the
In most of the previous research, there are two commony, . pattern of Py is the set patterdpi,pa, ..., pm}-

models of genome patterns. One is the distance constrainecl.he twin patten of a d-set pattemy.; is a set pattern and

sgquentlal patterns Wh.".e the other is set patterns.. B_eforeit is generated by removing the distance constraint threshold
giving the formal definitions of the patterns, we will first

describe some common terminology. L@t be a set of ' For th : | )

genes an@® - be a set of gene families. There exists a func- |, o(rrt)e r):reVI({)z()sl e;c(ar?p ;Piet( z):m_d {)7;1, fz(vjs), f4i

tion X such thatX maps a gene (i) into a gene family {Zsff f; 1} And. Fl, SQLjpSO;’tS (71 f2 ‘jfit} Zbut "

(in ©F). Inthis paper, we will use COG that classifies genes does not suppor{fi, fa, s, f5}. Similarly, F' supports

in 66 genome into 4873 families. d-set patter{401, f2, f3, f4}, but does not supports d-set
A geneg; in a ggnc_;meG can be repregented _b_y two pattern{401, f1, f5, f4} since the shortest distance between

numbers, its transcription starting and ending positions de-f1 and 5 is more than 401.

not_e d. bySt.m't(.gi) an.d em,i(gi) respectiyely. _Thetran— Given a support threshofdand a set of gene-family se-

;crlpnon direction, direction(g;), of 9i 1S deflned_ aso guencesD, a d-set patteri® is called &requent d-set pat-

it start(g;) < end(g;) and aso otherwise. The dls'tance tern if the support ofP in D is at leas where thesupport

between two geneg andg;, distance(g;, g;), is defined ¢ pattern (either set pattern or d-set pattgPnin D is

asstart(g;) — end(g;) (assumingstart(g;) < start(g;)) the number of sequences ihthat supports. P is called

If direction(g;) = direction(g;) or asco otherwise. amaximal frequent d-set patternif P is a frequent d-set
A gene-family sequenceF is a sequence of gene-

families, i.e.,F' =< f1,d1, fo, da, ..., fmn > Wheref; € 1in this paper, substring and subsequence are interchangeable.

3. Model of Hybrid Patterns
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Figure 1. The levelwise enumeration tree of four genomes.

pattern and any of super-pattern Bfis not a frequent se-

quential pattern. In the previous examplé01, fa, f3, fa}

is a maximal d-set pattern whifel01, f2, f3} is not.
Problem Statement:

HybridGenePatternMining(1s, T, 1%, Ts, G):

For a set of genomes, discover all maximal frequent d-set

patternsP,,., for a pre-specified distance threshldsuch

that|Pyse¢| > T, and the support aPy,., is at least;, and

the support of the twin pattern &, is at leastl’; where

T, andT are two support thresholds.

generates a set ¢k + 1)—tuples, i.e,(r1,...,7%x) A s =
{RFFY = (r{,...,7},8") | s’ andr’ are substrings of and
r; for 1 < ¢ < k, respectively, andPz:(r]) = ---
Pdset(T;C) = Pdset(Sl)}-

The hybrid pattern mining algorithm is a two-step
generate-and-refinalgorithm that (1) first generates a set
R of run matches such that for &l € R, R is aT,-tuple,
| Pyset (R)| is not less than a threshold, andvr; € Ris a
Ts-run, and then (2) refin® to ensure that for alR € R,
the support of the twin patten d?;.:(R) in the comple-

There are algorithms that compute clusters of COG fam- ment of a set of genomes is at least a thresfigld

ilies for apair of genomes [9, 2] and the problem is termed
asCOG teams Thus our problem is a generalized version

The algorithm for distance constrained pattern mining
dSetPatternMining(Ts, Tp,, 1., G = {G1,...,G,}) is

of the COG team problem in search of hybrid patterns in explained using Example 1 with the description of related

unknown subsets of genomes.

4. Mining Hybrid Gene Patterns

Our algorithm recursively refinedistance constrained
family sequencear runsin the literature [9, 2, 14] that de-

functions. A complete description of the algorithm is in
supplementary material 1 on [18].

Example 1 There are four genomegG1, Gs, Gs, G4 }.
Suppose that we are looking fét;,.; with support 3 and
of size 2 or greater, i.€1;, = 3,7, = 2. Given the support
constraintl,, = 3, we need to examine all 3 combinations

fined as follows. These definitions are needed for the im- Of 4 genomes. To do that, we will begin levelwise enumer-

plementation of the hybrid model.

o-runs will be denoted using eithet, s, ort. A run
match R* is ak-tuple (ry,...,7%) such thatPye.(r1) =
oo = Pyer(r), and Pyee(RF) is the same a®ysqq(r;)
for anyr; € R*. We simplify the notation inR* by omit-
ting commas whenever the context is cle&riryrs) in-
stead of(rq,r2,73). See Table 1 for examples ofand
Rk. R denotes a set of-tuples (run matches),R*}. A
run match is computed iteratively using an operatroax-
imal dset match denoted ag\. The maximal dset match
of a pair of runs,r A t, generates a set of 2-tuples, i.e.,
{R? = (v, ') | »" andt’ are substrings of andt, respec-
tively, and Pyset (r') = Pyser(t')}. While computingr A ¢,
r andt are split into families,f; € Pyset(r) — Piset(t)
and f; € Pyset(t) — Paset(r), respectively. The maxi-
mal dset match of a run matck* and a runs, R* A s,

ation of genomes. The levelwise enumeration of genomes
are illustrated in Figure 1.

For the level one, we just need to compute runs, i.e., dis-
tance constrained gene-family sequences, in each genome.
Let us assume runs in four genomes as shown Table 1.

We begin level 2 enumeration of genont®$. There
are six pairs of four genomeg,): (G1,Gz), (G1,G3),

(Gl, G4), (GQ, Gg), (Gg, G4), and (Gg, G4) To distin-
guish which genome pairs, we will use?(G;,G;). The
dset matches of the first pair is computed by Eq. 1.

R2(G1, GQ) = (’1”1 N 7'3) U (’1”1 N 7'4)
U(Tg/\Tg)U(Tg/\T4). (1)

Note that we do not computg A ry since they are from
the same genom@, . ; Ar; results in a set of 2-tuple®?,



Table 1. The gene teams at each level where

? denotes a gene of unknown family.

Level Clusters

1 RYG1) ={(r1 = fofsfafafs[sfef7), (r2 = f5f6)},
RYG2) = {(rs = fofofsfrfefr): (ra = fafs)},
RYGs) ={(rs = fafs/27fsfo)},
RY(Ga) = {(re = fofsfr)}-

2 R3(G1,G2) = {(r1.1,73.1), (r1.2,73.2), (r1.3,74) }

= {(fofsfo, fofafs), (fefr, frfefr), (fafs, faf5)}

R*(G1,G3) = {(r14,75.1), (r15,75.2)} = {(fofafafafs, fafsfa? f3fo), (fafs, fafs)},
R?(G1,Ga) = {(r1.6,761)} = {(fe 7. fof7)},
R*(Go,G3) = {(r3.3,75.3), (14, 75.4) } = {(fofaf3, f22 f3 o), (fafs, fafs)}s
R*(Go,Ga) = {(r3.4,76.2)} = {(frfo Sz, fe f7)},
RQ(Gg,G4) = @

3 R3(01,G2,G3) {(fofafs, fofafas f27 fafo), (fafs, fafs, fafs)}
R3(G1, G2, Ga) = {(fofr, fe S, fef7) }
R3(G1,G3,G4) =0,
R3(Ga,G3,Gy) = 0.

which will be computed by callinglSetMatch(Z?, r;, r;),

see the algorithm in the supplementary material on [18].

Note also thadSetMatch(T,r;, ;) is recursively called
inline 9 if Pyge(r;) # Paser(r;). Computing(ry A r3) in
Eq. 1 starts breaking up, where families are not present
in 3, i.e,Pdset(T'l) — Pds@t(rg) = {f4, f5, fg}, thusr, be-
coming(ry.1 = fofsfe) and(rio = fsf7)%. Then we need
to computer; 1 A rs andrigo Ars. 111 ATg = {(rl.l =
fgf3f2,7“3_1 = fgfgfg)} after rs is Sp'lt where families
are not present iny 1, i.€., Piset(13) — Piset(71.1)
{f7, fﬁ, f7} Slmllarly, r1o2 N3 = {(T‘l.g = f6f77’l"3.2
fifefr)}. So (ri Ars) = {(rin = fofsfa,73.1
fofafs), (112 = fefr,rs2 = frfefr)}. The compu-
tation procedure for; A r3) is illustrated in Figure 2.
Note that the result is a set of 2-tuples. Similarly, com-
puting (r; A r4) in Eg. 1 starts breaking up, and then
{(r1.3 = fafs,ma = faf5)}. The dset matches ¢f; A r3)
and of(r; A ry) in Eq. 1 are discarded since the number of
families in runs after splittingfs, is only one and’, = 2
(see line 5 ofdSetMatch(Z?,r;,r;)). Table 1 shows the
dset matches of the remain pairs of genomes.

We begin level 3 enumeration of genonf@s by adding

a new genome to the result from the level 2 enumeration.

There are 4 =(;) combination of 3 genomes out of 4
genomes, i.e.R3(G1, GQ, Gg), Rg(Gl, GQ, G4), RS(G1,
Gs, Gy), andR3(G,, Gz, G4). This can be enumerated
by adding a genomé&, to R*(G;,G,), @ < j, only for
j < k, by calling Compute_DMSET;(T., R? ,G}) for
R? € R? (see lines 10 and 11 afSetPatternMining(7;,
Ty, To, G = {G1,...,G,})). Let us computR®(G1, Ga,

2We use notations; . to explain the computation procedure temporar-
ily.

G's) which will be computed by Eq. 1.

R3(Gy,Ga, G3) R%(G1,Ga) A RYGs)

(riasraa) Ars U (r1.2,73.2) ATs

U(T1,3,T4)/\7“5. (2)

The first term(ry.1,73.1) A 75 In EQ. 1 is computed by
calling ComputeMdsetMatch(T, (r1.1,75.1), r5). Since
Puset((11.1,73.1)) # Puaset(r5), we need to compute 1 A
r5) A rs.1, which will be computed in two steps. Firstly,
r1a Ars ={(r11,75.5)} = {(fofafs, f27f3f0)} by calling
dSetMatch(T, r1.1, 75) (line 2). Secondly{(r1.1,75.5)} A
rs1 = (r11,755) A 731 IS computed by callingCom-
puteMdsetMatch(7T,, (r1.1,75.5), 73.1) (line 5). Since
Pyset(r1.1,755)) = Puset(r3.1), the result is a set of 3-
tuples{(r1.1,73.1,75.5) }. Note that splitting did not occur
for this case. In other wordgyy.1,75.1) Ars = (r11 A
r5) Arsa = {(r1.1,755) Arsa = {(r1.1,73.1,755)} =
{(fofafs, fofsfo, f27f3fo)}. Similarly, we can calculate
the second and the third termsin Eq. 1, i(€4,4, 74) A5 =
{(7"1.4,7‘477"5.6)} {(f4f5,f4f57f4fo)} and(ry.2,73.2) A
rs = 0 sincerio Ars = (. Finally, R3(G1, G2, G3)
={(fof2f3, fofsf2, f27f3f0), (fafs, fafs, faf5)}. Table 1

shows the dset matches of the remain pairs of genoniés.

The algorithm for set pattern miningvinPatternMin-
ing(R™»,T,,Ts,G = {G1,...,G,}) is explained with Ex-
ample 2 with the description of related functions. A com-
plete description of the algorithm is in supplementary ma-
terial 1 on [18].

Example 2 Let us assume another genonigs =<
fo, 2k, fo, 1k, fs, 2k, f3,3k, fy > in addition to four
genomes{G;,G2,G3,G4} in Example 1. There were



‘ r = fofsfofafstfsfofz ‘

rs = fofofsfrfef7 ‘

Split r2 Whe@e in r2 does not occur in r3.

| ru=ffsf |

| n2=rofi |

Cro=Johts |

ria Ara1 = {(fofafo, fofaf3)} ‘

Split r3 where gene in r3
does not occurin re.1, r2.2

| raArss={(fofr fifsf)} |

ri Ars = {(fofafo, fofafs), (fofr, frfefa)} ‘

Figure 2. lllustration of how to compute
not presentin rs, i.e., f41, f5 and fs. Each of the resulti

r1 A rz. rp is split into

r1.1 and r; o where families in  r; do
ng two substrings, r1.1 and rq o, is tried to dset

matched with r3. To compute r3 Arq.1, r3issplitinto r3; and then the result becomes a set of 2-tuple
{(r11,73.1)}. To compute r3 A rya, rsis splitinto r;o and then the result becomes a set of 2-tuple
{(7‘1.2, 7“3.2)}. The final result is then {(7“1_1, ’I“3_1), (7“1,2, 7“3_2)}.

three dset matches with proximity constraint = 3 from strained pattern.
the four genomes in Example 1, whose dset pattern are

Pdset1 = {5a f9a f2a f3}1 Pdset2 = {5a f4a f5}1 andeset3
{4, fs, f7}. Mining a hybrid pattern is done by callingin-
PatternMining(Pdset,,a Tpi Ts; G= {GE') }) for eaCthseti .
Assume the set constraii} = 1. No family in Py, OC-
curs inG’, so second dset match cannot be a hybrid pattern
(by calling twinOccurrence(Pys.t,, {G5}) and checking
line 2 of twinPatternMining()). Pgset, OCcurs as a whole

in Gs, so the set patter®s.., = {fs, fz} becomes a twin
pattern ofP;ses, . Pset, aNd Py, become a hybrid pattern.

For Pyset,, some families inPys.;, do not occur inGs.
So we need to shrink,,.;, by one (callingshrinkPDSET-
byOne(Pyuset,, T, = 3)). Each run of a 3-tuplek?
(fofafs, fofsf2, f27 f3f9) will be shrunk by one and tested
for their co-occurrences i6¥;, Go, andGs. Let us try the
first run fo f2 f3. Its left end is shrunk, i.ef> f5, and tested
for its co-occurrence 75 (see line 5 ofshrinkPDSET-
byOne()). Since is returned, the right end of the run
fof2f3 will be shrunk by one andl f> is tested for its co-
occurrence inG; (see line 8 ofshrinkPDSETbyOne()).
fof2 occurs as a whole id/s. However, it does not oc-
cur as a whole with distance constraintGh and G, so
we need to try each of the two remaining ruffigfs fo and
f27f3fe. None of the two generates sub-patterns that sup-
portG1, G2 andGs. So there is no twin patterns éf;..¢, -
Note that a sub-patterfs fo of f37 f3 fg does supports as
a set pattern, but it fails to suppaft, as a distance con-

5. Experiment

The hybrid model is implemented in C++ using STL. It
inputsptt files from NCBI and produces family patterns or
conserved gene clustérsaAll experiments are performed on
a dual Pentium IV 2.0 Ghz machine with 4GB main mem-
ory. We used 97 genomes (120 replicons) whose genes are
classified with COG assignment. The 97 genome data were
downloaded from NCBI. See [18] for genome list used to
experiment.

5.1. Analysis of 97 genomes

Our algorithm was able to perform correlated gene
set mining with 97 genomes (120 replicons) with
Ts = 200,7, = 2,7, = 2,Ts = 1. Our algorithm
exhaustively searched for gene clusters up to a support
value 120, i.e., all power set enumeration of 120 replicons.
However, this comprehensive analysis took only 5 hours
and 40 minutes due to th&priori property [1] described
below.

Genome Apriori property : If a family sequence does not
appear in a set of genomés thens or its super sequence

3We will usegene clusterandfamily patternsnterchangeably.



cannot appear irg’ whereGg C G'.

There were 20345 gene clusters with two families or
more at different support leveld){ andT;). There are
36 clusters that are present in 60 replicons or m@je>
60. Among these are 30 ribosomal protein clusters, 5
RNA polymerase subunit clusters, and 1 transporter clus-
ter. There are 5578 clusters that are present in 3 replicons
or more. The largest clusters with 20 or more families,
T, > 20, are all ribosomal protein clusters (40 clusters).
The data is summarized in Figure 3 and available on [18].

5.2. Parameter settings for7,, and 7

The main point of this paper is that the hybrid model
is effective in mining correlated gene sets. Suppose that
we mine gene clusters in genomes. Then the ques-
tion is in how many genomes gene clusters should oc-
cur with or without the proximity contrainti.e., 75 and
T,. To explore this question, we used operonsBinsub-
tilis and Escherichia coli K110, 13] since they are well
studied organisms. We selected 12 genomes incluBing
subtilisin Gramplusgroup and 10 genomes includirts-
cherichia coli K12in Gammagroup, and then mined gene
sets in 5 genomes. To explore the effect of the prox-
imity contraint, various combinations df, and T, were
used. Note thafl,, + 7, = 5. Note also that the gene
sets for7, = ¢ andT, = k—i contain those fotl,, =
jandT, = k—jif T, + T, = k andi < j, ie.,
HybridGenePatternMining(Ts, T,=3,1,,Ts=2,G) C
HybridGenePatternMining(Ts, T,=2,T,,Ts = 3,G).

Table 2 (a) and (b) show the number of operons detected
by the gene sets, the number of genes occurring in operons,
and the number of genes occurring outside operorB.in
subtilis and Escherichia coli K12respectively. For th&.
subtilisdata, the number of detected operons decreased for
higherT}, values. This is intuitive since the proximity con-
traint became enforced stronger for higiigvalues. How-
ever, the number of detected operons were relatively stable
for the Escherichia coli K12data up to7,, = 4. This is
beacuse thEscherichia coli K12lata contained four differ-
ent strains oEscherichia coli K12vhile all genomes were
diferent for the theB. subtilisdata. Thus it shows that the
characteristics of the input data is important for mining cor-
related gene sets. Note that the = 1 constraint requires
gene clusters only in one genome with the proximity con-
straint, which is probably too weak to produce meaningful
gene clusters. However, tiig = 1 constraint together with
T, = 4 detected 158 genes in 40 experimentally verified
operons inB. subtiliswith only 80 genes outside the oper-
ons? Thus our hybrid model may detect gene clusters even

4We cannot rule out the possibility of some of the 80 genes being in
true operons since there might be unclassfied operons.
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Figure 3. Summary of gene clusters in 120
replicons. The dset support values ( 7}) vs.
the number of clusters (plot a), the set sup-
port values ( Ts) for a fixed T, = 3 vs. the
number of clusters (plot b), and and the size
of clusters ( 7,) vs. the number of clusters

(plot c).



Table 2. The number of operons detected by Table 3. The number of genes in clusters, the

predicted gene sets number of clusters, and the coverage ratio of
genes in clusters to the total number of genes
T, | Ts | #Operons| #Genes | #Genes out- in B. subtilis
detected | in operons| side operons
5 0 18 63 3 T, Ts # genes| # clusters| coverage
4|1 22 85 13 with | with
3| 2 25 110 20 L=1%h=1
2 3 33 134 45 2 5 2679 557 0.65
1 4 40 158 30 2 10 2465 531 0.60
= 2 15 2353 510 0.57
(a) B. subtilisamongGramplus 3 = 5405 61 .60
T, | T, | #Operons| #Genes | #Genes out- 3 10 2048 529 0:49
detected | in operons| side operons 3 15 2121 497 0.52
5/ 0 29 104 37 4 5 2394 570 0.58
4 1 40 141 58 4 10 2048 528 0.50
3 2 43 153 78 4 15 1881 490 0.46
2| 3 45 160 83 5 5 2322 567 0.56
1 4 47 167 92 5 10 1941 515 0.47
(b) Escherichia coli KIzmongGamma 5 15 1746 470 0.42

when relatively distant genomes are available. i )
not contain operons can be functionally related. We were

5.3. Post-processing for Operon Prediction not able to verify these clusters since many of them are not
characterized. However, there are clusters that we were able

A simple post-processing of predicted gene clusters pro-t© verify in th(—_} literature. For example,_ a gene cluster that
duced quite accurate operon predictions: many gene clusdid not contain known operons had six genssuA ssuB
ters matched in entirety or included experimentally verified SSUC ssuD ygaN yhzAmong these, the first five genes
operons. Note that these predictions were made without(SSUA SSUB ssuC ssuD ygedie known to have operon-like
performing any testing for regulation promoters or termi- structure that utilizes sulfur from aliphatic sulfonate [21]

nators, yet matched many experimentally verified operons.  This method can be used for predicting putative operon
Table 3 summarizes the number of genes, the number ofof any bacterial genome and is available on [18].
clusters, and the coverage ratio of genes in clusters to the to-
tal number of genes iB. subtilis The predicted gene clus-
ters cover 42% to 65% of the entire protein coding genesing 4 Comparison with results in the literature
B. subtilisfor different support values.

Operons detected by gene clusters with€ 4, T, = 1)
and (, = 1,7, = 15) in Table 4. Among 48 experi-
mentally verified operons with gene clusters, 26 operons o i e oo
are Wit|’)]/ their exactp boundaries?q Many extra genespin the Che_”Ch'a COI_' KlZgndB. subﬂhsm [9]. Our pairwise pre-
clusters, those outside known operons, are indeed function—d'Ct'on algorithm is simply to _SPI't recursively two rums
ally related. For example, a predicted gene cluster containg?Nds (seedSetMatch(T:, r, s) in supplementary material

16D alpE aloK aloPwherealbE aloK are an operon known 0N the web [18]). This simple algorithm can produce the re-
gspg|§|:ﬁ)(_ %’vr\)/o gsSrroundi(ar?gpprgtzinsglpD ar?d glpP are sult consistent with those in [9] without the time and space

leader and antiterminator proteins [7]. Another predicted problem; it only took 3 seconds with 2.5MB memory usage.

gene cluster contaimdacF spollAA spollAB sigF spoVAA We also compared gene clusters from our algorithm with
spoVAB spoVAC spoVAD spoVAE spoViMRerespoVAA gene order conservation study in [19]. Our gene clusters
spoVAB spoVAC spoVAD spoVAEe known as an operon.  with respect taescherichia coli K12vere quite consistent
However, it was shown thatacF and spollAoperons are  with those in [19]; in a total of 18 groups, predicted gene
autoregulated [16]. In addition, there were predicted genesets exactly matched group 1, 3, 6, 9, 10, 12, 13, 14, 15,
clusters that did not contain any of known operons in [13]. and 16 and partially matched group 4, 5, 7, 8, and 11. Our
Note that functionally related gene cluster is a more gen- method were able to detect the longest groups of 14 and 28
eral concept than operon, thus many gene clusters that dgenes.

We compared pairwise gene cluster prediction Vit



yjbA appC appB appA appF appDyjaZ fabF fabHA

purD purH purN purM purF purL purQ purS purC purB purK purE yebG yebE yebD yebC
ndk hepT menH hepS mtrB mtrfbs spolVA yphF yphE gpsA yphC seaA yphA
pyrR pyrP pyrB pyrC pyrAA pyrAB pyrK pyrD pyrF pyrE

ypkPdfrA thyB ypjQ ypjP

comC folC valS ysxE spoVibiemL hemB hemD hemC hemX hemA

comGA comGB comGC comGD comGE comGF comG&qzE

pstS pstC pstA pstBA pstBB

acuA acuB acuC

qcrC gcrB gcrA ypiF ypiB ypiA aroE tyrA hisCtrpA trpB trpF trpC trpD trpE
spoVAF spoVAE spoVAD spoVAC spoVAB spoVAAsigF spollAB spollAA dacF
acpsS ydcC alr ydcD ydcEsbR rsbS rsbT rsbU rsbV rsbW sigB rsbX ydcF ydcG
ywtB ywtA ywsC rbsR rbsK rbsD rbsA rbsC rbsB

minD minC mreD mreC mreB radC maf spollB

lonA lonB clpX tig ysoAleuD leuC leuB leuA ilvC ilvH ilvB

atpC atpD atpG atpA atpH atpF atpE atpB atpl

argC argJ argB argD carA carB argF yjzC oppA oppB oppC oppD oppFyjbB yjbC yjbD

gevT gevPA gevPB gbsA gbsByuaD

ginA gInR ynbB ynbA feuA feuB feuC

kapB kinB patB sdhC sdhA sdhBysmA gerE
pbpE racX yveF yveG mutL mutS cotE ymcA ymcB
ureA ureB ureC cgeC cgeD cgeE

glgP glgA glgD glgC gigB glpD glpF glpK glpP

yfkQ treP treA treR OopuBA opuBB opuBC opuBD
goxA qoxB goxC qoxD ecsA ecsB ecsC

glnH ginM gInP gInQ hemE hemH hemY

nrgA nrgB ywoA dnaG sigA

adaA adaB spolVFA spolVFB

motA motB glpQ glpT

phoP phoR sacX sacY

ftsA ftsZ pbuX xpt

tagG tagH alsD alsS

Table 4. Operons detected by gene clusters with (7, = 4,7, = 1) and (7}, = 1,75 = 15). Genes in bold
font are those in known operons. Among 48 experimentally verified operons with gene clusters, 26
operons are with their excat boundaries. Many extra genes, those outside known operons, in other
clusters are indeed functionally related (see the main text).



5.5. Phylogenetic relationship using conserved gene
clusters

Traditionally, species phylogenies have been acquired by
comparisons of a specific geneg., 16S rRNAHowever,
they are rarely consistent with each other, due to horizontal
gene transfer and highly variable rates of evolution. [17]
have developed a creative distance-based phylogeny con-
structed on the basis of gene content of 13 completely se-
guence genomes. The evolutionaligtancebetween two
genomes is defined as (4 similarity), and thesimilarity
is the fraction of the number of their common genes to the
number of genes in smallest genome. The common genes
between two genomes are considered only when the score
of two genes is above cutoff value (sd@y,= 0.01) accord-
ing to Smith-Waterman compatrison.

We show that common gene clusters predicted by
our method can produce accurate phylogenetic relation-
ship among different organisms. Note that our method
do not have to align sequences using the pairwise and
multiple sequence alignment methods. We collected 13
genomes used in [17]H.influenzae M.genitalium Syne-
chocystis M.jannaschij E.coli, M.thermoautotrophicum
H.pylori, A.fulgidus B.subtilis B.burgdorferj S.cerevisiag
A.aeolicus andHP.horikoshii(Figure 4). Gene teams were
computed withl,, = 2 andT,; = 2. The evolutionary dis-
tance between two genomes is defined in the same way as in
[17]. The only difference between our approach and the one
by [17] is how to count common genes between genomes.
Common genes in our approach is those in predicted gene
clusters.

Figure 4 compares three phylogenetic trees generated us-
ing 16S rRNAcommon genes, and common gene clusters.
Plot (a) and (b) come from [17], and plot (c) is constructed
using the neighborhood joining methodphylip  pack-
age [6] and visualized usinghyloDRAW [3]. It is inter-
esting that all trees are the same excemhechocystiand
S.cerevisiae As shown in the figure, predicted gene clus-
ters can be used to produce an accurate phylogenetic tree
without aligning sequences.

6. Conclusion

In this paper, we proposed a novel hybrid pattern min-
ing model and showed that this model can generate biolog-
ically meaningful gene clusters in 97 genomes (120 repli-
cons) based on COG classification. The hybrid pattern min-
ing model is new in that it combines two widely used pattern
models, sequential pattern model and set pattern model.

The hybrid model was successful in predicting 20,345
possibly functionally related gene clusters on a wide range
of genome combinations in 5 hours and 40 minutes on a
Pentium 2.0 Ghz machine. Analysis of gene clusterB.in

H. pylori
M. genitalium
B. subrilis,

Synechocystis

A, fulgidus

M. thermoautotrophicum
M. jannaschii

S. cerevisiae P. horikoshii

10%

(b)

H.influenzae

Figure 4. Comparison of phylogenetic trees
for 13 genomes used in [17]. Plot (a) is gen-
erated using 16S rRNAplot (b) using common
genes [17], and plot (c) using common genes

in clusters predicted by our method. See
main text for more detail. All plots are the
same except Synechocystiand S.cerevisiaeThe
predicted gene clusters using our method
can be used to produce an accurate phylo-
genetic tree without aligning sequences.
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