
Islands of Tractability for Parsimony Haplotyping

Roded Sharan∗

School of Computer Science, Tel-Aviv University
Tel-Aviv 69978, Israel
roded@tau.ac.il

Bjarni V. Halldórsson∗
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Abstract

We study the parsimony approach to haplotype inference,
which calls for finding a set of haplotypes of minimum car-
dinality that explains an input set of genotypes. We prove
that the problem is APX-hard even in very restricted cases.
On the positive side, we identify islands of tractability for
the problem, by focusing on instances with specific struc-
ture of haplotype sharing among the input genotypes. We
exploit the structure of those instance to give polynomial
and constant-approximation algorithms to the problem. We
also show that the general parsimony haplotyping problem
is fixed parameter tractable.

Keywords: Haplotype inference, parsimony, genotype,
complexity, approximation algorithm, fixed parameter
tractability.

1. Introduction

Single nucleotide polymorphisms (SNPs) are differences
in a single base, across the population, within an otherwise
conserved genomic sequence. SNPs are the most common
form of variation of DNA sequences among individuals. Es-
pecially when occurring in coding or otherwise functional
regions, variations in SNP content are linked to medical
condition or may affect drug response.

A SNP commonly has two variants, or alleles, in the
population, corresponding to two of the four genomic let-
ters A, C, G, and T . The sequence of alleles in contiguous
SNP positions along a chromosomal region is called a hap-
lotype. For diploid organisms, the genotype specifies for ev-
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ery SNP position the particular alleles that are present at this
site in the two chromosomes. Genotype data contains infor-
mation only on the combination of alleles at a given site,
and does not reveal the association of each allele with one
of the two chromosomes. Current technologies, suitable for
large-scale polymorphism screening, obtain only the geno-
type information at each SNP site. The actual haplotypes
in the typed region can be obtained at a considerably higher
cost [19]. Due to the importance of haplotype information
for inferring population history and for disease association,
it is desirable to develop efficient methods for inferring hap-
lotypes from genotype information.

Numerous approaches have been suggested in the lit-
erature to resolve haplotypes from genotype data. These
methods include the seminal approach of Clark [3] and re-
lated parsimony approaches [8, 9, 10]; maximum likeli-
hood methods [4, 5, 14, 17]; Bayesian methods such as
PHASE [21], HAPLOTYPER [18] and HaploBlock [7];
and perfect-phylogeny-based approaches [1, 12]. The
reader is referred to [11] for a survey on the different for-
mulations of the haplotyping problem.

Here we focus on the parsimony haplotyping (PH) prob-
lem, where the input is a set of genotypes and the goal is to
find a minimum set of haplotypes that explains them (a for-
mal definition of PH is deferred to Section 2). Parsimony
is a natural criterion for choosing a solution in many do-
mains. This is particularly true for haplotyping, since the
number of distinct haplotypes observed in a population is
much smaller than the number of possible haplotypes, due
to population bottleneck effects and genetic drift. For ex-
ample, Patil et al. report that within short genomic regions,
typically, some 70-90% of the haplotypes belong to very
few (2-5) common haplotypes [19].

There has been extensive research on the parsimony hap-
lotyping problem. Hubbell has shown that the problem is



NP-complete [15]. A practical integer programming ap-
proach for it was devised by Gusfield [10]. Recently, Lan-
cia et al. [16] have shown that the problem is APX-hard and
have given a 2k−1-approximation algorithm for the prob-
lem, for data sets in which each genotype has at most k
ambiguous positions.

In this paper we study the complexity and approxima-
bility of parsimony haplotyping and its restrictions. We
characterize instances of the problem by the number of
ambiguous sites they contain and the structure of a Clark-
consistency graph whose vertices correspond to genotypes
and whose edges represent sharing of haplotypes. On the
negative side, we show that parsimony haplotyping is APX-
hard even when the input instances have small numbers
of ambiguous sites per genotype or SNP; when the cor-
responding Clark-consistency graph is a clique; or when
the Clark-consistency graph is bipartite. On the positive
side, we show that the problem is fixed parameter tractable,
and give polynomial algorithms and approximation algo-
rithms for some of its restrictions. Specifically, we give a
polynomial algorithm for PH on cliques when each SNP
has at most two genotypes in which it is ambiguous. We
also give a polynomial algorithm for PH when the Clark-
consistency graph has bounded treewidth. Finally, we give
a 1.5-approximation algorithm for PH when the input in-
stance induces a bipartite Clark-consistency graph.

The paper is organized as follows: Section 2 provides
background on the problem. The complexity of parsimony
haplotyping is analyzed in Section 3. Restrictions of the
problem are studied in Sections 4-6. For lack of space, some
proofs are shortened or omitted.

2. Preliminaries

A haplotype is a row vector with binary entries. Each
position of the vector indicates the state (0 or 1) of a cer-
tain SNP in this haplotype. For a haplotype h, let h[i]
denote the ith position of h. A genotype is a row vector
with entries in {0, 1, 2}, each corresponding to a SNP site.
A genotype matrix is a matrix whose rows are genotypes.
Two haplotypes h1 and h2 explain a genotype g, denoted
by h1 ⊕ h2 = g, if for each position i the following holds:
g[i] ∈ {0, 1} implies h1[i] = h2[i] = g[i]; and g[i] = 2
implies h1[i] �= h2[i]. If h[i] = g[i] whenever g[i] ∈ {0, 1}
then h is said to be consistent with g.

A haplotype that is consistent with two genotypes is said
to be shared by them. Given a set G of genotypes, the graph
containing the genotypes as nodes and an edge between two
genotypes iff they share a haplotype is called the Clark-
consistency graph. This definition is inspired by Clark’s
rule for haplotype inference [3] as is explained below. A
(k, l)-bounded instance is an input genotype matrix with at
most k 2-entries per row and at most l 2-entries per col-

umn, where an asterisk instead of k or l indicates no con-
straint. An enumerable instance is an input genotype matrix
with a polynomial number of haplotypes that are consistent
with any of its genotypes or, equivalently, an (O(log n),*)-
bounded instance.

The parsimony haplotyping problem is formally defined
as follows:

Problem 1 (Parsimony Haplotyping (PH)) Given a set of
genotypes, find a minimum set of haplotypes H such that
each genotype can be explained by two haplotypes from H .

A related problem concerns identifying haplotypes that
are consistent with the input set of genotypes:

Problem 2 (Minimum Haplotype Consistency (MHC))
Given a set of genotypes, find a minimum set of haplotypes
H such that each genotype is consistent with some element
of H .

A useful algorithmic concept, introduced by Clark [3], is
that of an inference path in the Clark-consistency graph. For
a haplotype h and a genotype g that is consistent with it, an
inference path is a path in the Clark-consistency graph that
starts at g and is created as follows: (1) let g = h ⊕ h̄; (2)
move to a genotype g′ that is consistent with h̄ if such exists
and was not visited already; (3) set g = g′, h = h̄ and go to
step (1). The path terminates when we reach a haplotype h
whose complement is consistent with genotypes in the path
only. Its length is defined to be its number of edges.

3. Complexity of Parsimony Haplotyping

The general parsimony haplotyping problem is known to
be NP-complete [15] and APX-hard [16]. In the following
we prove that it is NP-hard even for (4, 3)-bounded (and, in
particular, enumerable) instances. Moreover, our reduction
also shows that the problem is APX-hard and, hence, un-
likely to admit a polynomial time approximation scheme.

Theorem 1 Parsimony haplotyping is NP-hard for (4, 3)-
bounded instances.

Proof: The problem is clearly in NP. We give a reduction
from 3-Dimensional Matching with each element occurring
in at most 3 triples (3DM3) [6]: given disjoint sets X, Y, Z
containing ν elements each, and a set C = {c1, . . . , cµ} of
µ triples in X × Y × Z such that each element occurs in
at most three triples of C, find a maximum cardinality set
C′ ⊆ C of disjoint triples (a 3-dimensional matching).

We build a genotype matrix with 3ν + 3µ rows and
6ν+4µ columns. The first 3ν rows are called element geno-
types and represent the elements of the 3DM3 instance. The
other 3µ rows are called matching genotypes and represent
the triples. The first 3ν columns are used to ensure that for
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xi 2 0 0 1 0 0 2 0 0 0
yi 0 2 0 0 1 0 2 0 0 0
zi 0 0 2 0 0 1 2 0 0 0
cx 0 0 0 2 0 0 1 2 0 0
cy 0 0 0 0 2 0 1 0 2 0
cz 0 0 0 0 0 2 1 0 0 2

Figure 1. Gadget for the reduction in Theo-
rem 1.

each element genotype, at most one of its haplotypes can be
shared. The next 3ν columns ensure that element genotypes
do not share haplotypes with each other; they can only share
haplotypes with genotypes corresponding to triples they oc-
cur in. The next 4µ columns represent the triples and restrict
the sharing of haplotypes among the matching genotypes, as
described below.

The construction of the genotype matrix is based on the
gadget shown in Figure 1. For each element xi ∈ X , yi ∈
Y , or zi ∈ Z we construct one genotype. In the following
we specify for each genotype its non-zero entries only.

• xi[i] = 2; xi[3ν + i] = 1; xi[6ν + 4j] = 2 for all j
such that xi ∈ cj .

• yi[ν + i] = 2; yi[4ν + i] = 1; yi[6ν + 4j] = 2 for all
j such that yi ∈ cj .

• zi[2ν + i] = 2; zi[5ν + i] = 1; zi[6ν + 4j] = 2 for all
j such that zi ∈ cj .

For each triple cj ∈ C we create 3 genotypes, whose
non-zero entries are:

• cx
j [3ν+i] = 2 for all i such that xi ∈ cj ; cx

j [6ν+4j] =
1; cx

j [6ν + 4j + 1] = 2.

• cy
j [4ν+i] = 2 for all i such that yi ∈ cj ; cy

j [6ν+4j] =
1; cy

j [6ν + 4j + 2] = 2.

• cz
j [5ν + i] = 2 for all i such that zi ∈ cj; cz

j [6ν +4j] =
1; cz

j [6ν + 4j + 3] = 2.

The resulting genotype matrix A is (4, 3)-bounded. In-
deed, each element genotype contains exactly one 2-entry in
one of the first 3ν columns and at most three other 2-entries
representing the triples in which the element occurs. Each
matching genotype has exactly two 2-entries. For the bound
on the columns, observe that the first 3ν columns contain
one 2-entry; the next 3ν columns have at most three 2-
entries, since their corresponding elements occur in at most
three triples. The only other column containing 2-entries is
the first column out of the four that represent each triple;
this column has exactly three 2-entries.

We now claim that A has a parsimony solution of cardi-
nality 6ν + 4µ − ω iff C has a matching of size ω. First,
observe that every set of three matching genotypes can be
phased using four haplotypes, none of which can be shared
with the element genotypes, or using 6 genotypes, 3 of
which (left column) can be shared with element genotypes,
as depicted in Figure 2.

For the ’if’ part, suppose that C has a matching of size ω.
For each c ∈ C we phase the corresponding matching geno-
types using the template P6, as shown in Figure 2. Three of
those six haplotypes can also be used to phase the corre-
sponding element genotypes, where each element genotype
requires one additional haplotype to complete its phasing.
Overall, the phasing uses 9ω haplotypes for this class. The
remaining element genotypes can be phased arbitrarily us-
ing two haplotypes each. The remaining matching geno-
types can be phased using the P4 template by 4 haplotypes
each, as shown in Figure 2. In total, the phasing includes
9ω + 2 · 3(ν − ω) + 4(µ − ω) = 6ν + 4µ − ω haplotypes.

Conversely, given a phasing of A using 6ν +4µ−ω hap-
lotypes, we can construct a matching of size ω, by letting
our matching be those triples whose corresponding match-
ing genotypes share haplotypes with all three of their ele-
ment genotypes. By construction, element genotypes can-
not share haplotypes among themselves, so their phasing
requires 6ν haplotypes. Consider any triple t of matching
genotypes. These genotypes can only share haplotypes with
each other or with the corresponding element genotypes.
Furthermore, t can share at most 3 haplotypes with its el-
ement genotypes. If t shares exactly 3 haplotypes with its
element genotypes (in the given phasing) then, by construc-
tion, it is phased using 6 haplotypes in total. If t shares
less than 3 haplotypes with its element genotypes, it must
be phased using 4 additional haplotypes that are not shared
with the element genotypes. Hence, the resulting matching
has size at least ω.

Corollary 1 Parsimony haplotyping is APX-hard for
(4, 3)-bounded instances.

Proof: Petrank [20] has shown that it is NP-hard to de-
termine whether a maximum matching of a 3DM3 instance
is perfect or misses a constant fraction ε of the elements.
In the first case, our genotype instance admits a solution of
cardinality 5ν + 4µ; in the second case, it admits a solution
of cardinality at most 5ν + 4µ + εν. The claim follows.

We now show that the related problem of ’covering’ the
input genotypes is hard as well.

Theorem 2 MHC is NP-complete.

Proof: The problem is clearly in NP. We reduce from
CLIQUE COVER [6]. Given an instance of CLIQUE COVER,
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{
(0001001100) ⊕ (0000001000)
(0000101010) ⊕ (0000001000)
(0000011001) ⊕ (0000001000)

}
P4
⇐=

{
(0002001200)
(0000201020)
(0000021002)

}
P6
=⇒

{
(0001001000) ⊕ (0000001100)
(0000101000) ⊕ (0000001010)
(0000011000) ⊕ (0000001001)

}

Figure 2. The three matching genotypes corresponding to a triple and alternative phasings of these
genotypes. P4 show a minimal phasing with 4 haplotypes, none of which can be shared with the
element genotypes. P6 shows a phasing using 6 haplotypes, 3 of which can be shared with the
element genotypes.

consisting of a graph G = ({1, . . . , n}, E) and an integer
k, we build an n × n genotype matrix as follows: For each
vertex i we have a corresponding row ri. We set ri

i = 1.
For all vertices j that are adjacent to i we set ri

j = 2. All
other entries of ri are set to 0. It is easy to see that a hap-
lotype is consistent with a set of genotypes (rows) iff the
corresponding vertices form a clique in G. Hence, there is
a 1-1 correspondence between solutions to CLIQUE COVER

and to MHC.

We note that a similar reduction from CLIQUE shows
that even the problem of identifying a haplotype that is con-
sistent with a maximum number of genotypes is NP-hard.
Moreover, these reductions also show that both problems
are NP-hard to approximate to within a factor of |A|1−ε,
unless NP=ZPP [13].

On the positive side, we now show that PH is fixed pa-
rameter tractable w.r.t. the cardinality of the solution set of
haplotypes.

Theorem 3 Parsimony haplotyping is fixed parameter
tractable w.r.t. to the number of haplotypes in the solution
set.

Proof: Fixing the number of allowed haplotypes to k im-
plies that the maximum number of distinct genotypes pos-
sible is k(k+1)

2 . Let m be the length of the input genotypes.
Denote the unknown haplotypes in an optimal solution by
h1, . . . , hk. For each genotype, we can enumerate the pair
of indices of the solution haplotypes that explain it. The
problem is then reduced to solving m sets of linear equa-
tions over GF(2). Each set of equations involves two vari-
ables per equation and can be viewed as a 2-SAT instance.
Hence, resolving the haplotypes given their assignment to
genotypes can be done in O(mk2) time, and the overall
complexity of the algorithm is O(mk2k2

).

The rest of the paper concerns identifying islands of
tractability for parsimony haplotyping. We show positive
results for instances in which the Clark-consistency graph
is a (∗, 2)-bounded clique or has bounded treewidth, as well
as approximation algorithms for several variants, including
instances for which the Clark-consistency graph is bipartite.

4. Parsimony on Cliques

In this section we study complete Clark-consistency
graphs (cliques), corresponding to instances in which every
two genotypes share a haplotype. We call such an instance
a clique instance. For a clique instance, every column in
the genotype matrix can contain at most two values (out of
{0, 1, 2}), one of which is 2. W.l.o.g., we shall consider ma-
trices with only 0-s and 2-s. In particular, the all-zero hap-
lotype is shared by all the genotypes and is called trivial.
For ease of presentation, we assume that the input instance
does not contain the all-0 genotype.

Using a reduction similar to that in Theorem 1, one can
show that PH is NP-complete on clique instances (we omit
the details).

Theorem 4 Parsimony haplotyping is NP-hard on cliques.

Thus, our main focus in this section is on identifying
clique sub-instances for which PH is tractable. We start
with several observations on the constraints imposed by a
clique instance on the sharing among its genotypes.

Lemma 5 In a (∗, k)-bounded clique instance every non-
trivial haplotype is shared by at most k genotypes.

Proof: Consider a non-trivial haplotype. By definition,
such a haplotype must have a 1-entry in some position, and
that is consistent with at most k genotypes.

Lemma 6 Any solution to a (∗, k)-bounded clique instance
has cardinality at least 2n

k+1 + 1. Moreover, if the optimal
solution does not contain the trivial haplotype then its car-
dinality is at least 2n

k .

Proof: Each non-trivial haplotype is consistent with at
most k genotypes. Hence, any solution that does not con-
tain the trivial haplotype has cardinality at least 2n

k . Con-
sider now a solution with l non-trivial haplotypes. Since
all n genotypes in the input instance are distinct, the trivial
haplotype participates in the phasing of at most l of them in
this solution. Hence, the solution explains at most (l+lk)/2
genotypes, implying that l ≥ 2n

k+1 . The claim follows.
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Corollary 2 For (∗, k)-bounded clique instances, any hap-
lotyping solution is a (k +1)-approximation for parsimony.

We now present a polynomial algorithm for (∗, 2)-
bounded clique instances. Clearly, an upper bound of n + 1
is easy to achieve. By Lemma 6, 2n

3 +1 is a lower bound on
the cardinality of any solution. We shall use the following
auxiliary lemma.

Lemma 7 Let G be a (∗, 2)-bounded clique instance and
let g, g′, g′′ be three genotypes of G such that g and g′ share
h and g and g′′ share h̄, where g = h ⊕ h̄. Then h has 1 in
every position in which both g and g′ have 2.

Proof: Suppose to the contrary that h has 0 in some po-
sition in which both g and g′ have 2. Hence, h̄ has 1 in
that position and, thus, cannot be consistent with g′′, since
this would imply that the instance is not (∗, 2)-bounded, a
contradiction.

Note that for a (∗, 2)-bounded clique instance, an infer-
ence path that starts from a given genotype and a given hap-
lotype is uniquely defined if we terminate its construction
upon encountering the trivial haplotype. An inference path
that is constructed in this manner is said to avoid the triv-
ial haplotype. Now, for a (∗, 2)-bounded clique instance
and a haplotype h, we define a clique inference path as fol-
lows. If h is consistent with a single genotype g then its
clique inference path is the inference path that starts at g
and avoids the trivial haplotype. If h is consistent with two
genotypes g1 and g2, its clique inference path is created by:
(1) computing an inference path with respect to each of the
two genotypes that avoids the trivial haplotype; (2) merging
these paths by adding an edge between g1 and g2; and (3)
adding an edge between the two other ends of the paths if
both paths were terminated at the trivial haplotype. Note
that the resulting clique inference path may form a cycle.

Lemma 8 In a (∗, 2)-bounded clique instance, any non-
trivial genotype belongs to at most one clique inference cy-
cle.

Proof: Since all genotypes are distinct, a clique inference
cycle contains at least three genotypes. Let g be a non-
trivial genotype and suppose to the contrary that g occurs in
two distinct cycles. Let ga, gb and gc, gd be its neighbors on
each of cycles, respectively. Then there are four haplotypes
ha, hb, hc, hd such that g = ha ⊕ hb = hc ⊕ hd, ga =
ha ⊕ h̄a, gb = hb ⊕ h̄b, gc = hc ⊕ h̄c and gd = hd ⊕ h̄d.

Let s be a non-zero position in g. Then w.l.o.g. we can
assume that ha[s] �= 0 and hc[s] �= 0, implying that g, ga

and gc are all non-zero at position s. Since the instance
is (∗, 2)-bounded, and since by construction g �= ga and
g �= gc, we must have ga = gc. We further claim that
ha = hc. Suppose to the contrary that ha �= hc. Let i

be some position at which the two haplotypes differ and
w.l.o.g. ha[i] = 1. Then hd[i] = 1, implying that g, ga and
gd have a 2-entry at position i. However, ga �= gd since
ga = gc, a contradiction. We conclude that both cycles
correspond to the clique inference path of ha, proving the
claim.

Lemma 9 The most parsimonious solution for a (∗, 2)-
bounded clique instance that contains no clique inference
cycles is of cardinality n + 1.

Proof: The existence of such a solution is immediate.
Suppose to the contrary that there exists a solution of
smaller cardinality. Construct a graph G on the input geno-
types with edges connecting genotypes that share a haplo-
type in that solution. If the trivial haplotype is not used,
then every vertex in the graph has degree 2, so G must con-
tain a clique inference cycle, a contradiction. If the trivial
haplotype is used, there must be a connected component of
G in which the number of genotypes exceeds the number of
non-trivial haplotypes that are used to phase them. Hence,
this connected component contains a clique inference cycle,
a contradiction.

Theorem 10 Parsimony can be solved in polynomial time
on a (∗, 2)-bounded clique instance.

Proof: First, observe that in a (∗, 2)-bounded clique in-
stance, the genotypes comprising a clique inference cycle
of length k can be optimally phased using k haplotypes.
The algorithm finds all clique inference cycles in the Clark-
consistency graph; phases them optimally; and then phases
the remaining genotypes using the trivial haplotype and one
additional haplotype for each remaining genotype. The cor-
rectness of the algorithm follows from Lemmas 7-9.

The identification of clique inference cycles is done by
iterating the following steps until all genotype pairs that
share some haplotype have been processed:
(a) Choose two genotypes g1, g2 that share some haplotype.
(b) Let h be the haplotype with 1 in position i iff g1[i] =
g2[i] = 2.
(c) Construct the clique inference path of h.
(d) If this is a cycle, add the haplotypes found to the optimal
solution and remove the genotypes found from considera-
tion.

5. Bounded Treewidth Graphs

A graph G is said to have treewidth k (cf. [2]) if G admits
a cover {Xi}i∈I of its vertices such that: (a) |Xi| ≤ k + 1
for all i; (b) for every edge (g, g′) of G, some Xi contains
both g and g′; and (c) the sets Xi can be assigned to nodes i
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of a rooted binary tree T = (I, F ) such that if j is on a path
between i and k in T then Xi ∩ Xk ⊆ Xj .

In this section we consider the case when the input in-
stance gives rise to a Clark-consistency graph with bounded
treewidth. We shall present a polynomial dynamic-
programming algorithm for such graphs on enumerable in-
put instances. In the following we assume that the Clark-
consistency graph is connected, as otherwise we can operate
on each connected component independently.

Theorem 11 There is a polynomial algorithm to parsimony
on enumerable instances when the Clark-consistency graph
has bounded treewidth.

Proof: Let G be a Clark-consistency graph of bounded
treewidth for the input instance. Thus, G admits a cover
{Xi}i∈I of its vertices such that a tree T on the sets Xi has
the properties described above. We give a dynamic pro-
gramming algorithm for PH on G. Let r be the root of
T . For a node v, let v1 and v2 be its two children, and
let Xv denote the set of genotypes assigned to this node.
We say that a multi-set of haplotypes H resolves a node v
if H = {h1, . . . , h|Xv |} and genotype i in Xv is consistent
with hi.

Denote the optimum solution for the sub-instance in-
duced by the genotypes in the subtree rooted at v by
D(v). Denote by D(v, H) the optimum solution to this sub-
instance for a multi-set H that resolves v.

Clearly, D(r) = minH D(r, H) where H ranges over all
O(nk+1) multi-sets of haplotypes of cardinality |Xr| that
resolve r. The following recursive formula can be used to
compute D(r, H):

D(r, H) = min
H1,H2

{D(r1, H1)+D(r2, H2)+∆(r, r1, r2, H, H1, H2)}

where Hi, i = 1, 2 resolves ri and agrees with H on
the haplotypes explaining each genotype in Xr ∩ Xri .
∆(r, r1, r2, H, H1, H2) is a correction factor for the case
that Xr1 and Xr2 have a non-empty intersection X . Let x
be the number of haplotypes that are used in phasing X ac-
cording to H1 (or H2). Let y be the number of haplotypes
that are used to phase Xr \ (Xr1 ∪ Xr2) according to H .
Then ∆(r, r1, r2, H, H1, H2) = y − x.

For a leaf v at the base of the recursion, D(v, H) is de-
fined as the number of distinct haplotypes in the set com-
posed of the haplotypes in H and their mates (w.r.t. Xv).
Thus, D(r) can be computed using a bottom-up traversal of
the tree T in polynomial time.

Lemma 12 Let G be the Clark-consistency graph of an
enumerable input instance. Any k edges whose removal
makes G of bounded treewidth can be used to approximate
parsimony to within an additive factor of k.

Proof: Suppose we are given a set of k edges, whose re-
moval makes G of bounded treewidth. By removing those
edges we can apply the above dynamic programming algo-
rithm to the resulting graph. Since each additional pair of
genotypes that share a haplotype can reduce the number of
required haplotypes by at most 1, we obtain a solution with
at most opt + k haplotypes, where opt is the size of an op-
timum solution.

6. Bipartite Graphs

In this section we study the parsimony problem when
the Clark-consistency graph is bipartite. We note that this
implies that each haplotype can be shared by at most two
genotypes. Hence, the lower bound on the cardinality of
any solution is the number of genotypes n. In the following
we prove that parsimony haplotyping on bipartite graphs is
hard to approximate even in the case that the longest in-
ference path is of length 2. We complement this result by
giving a polynomial algorithm for the case that the longest
inference path is of length 1, and an approximation algo-
rithm for paths of length greater than 1.

Theorem 13 Parsimony haplotyping is NP-hard when the
Clark-consistency graph is bipartite and the longest infer-
ence path is of length 2.

Proof: We reduce from 3DM3. Consider a 3DM3 in-
stance with disjoint sets X, Y, Z containing ν elements
each, and a set C = {c1, . . . , cµ} of µ triples in X×Y ×Z .
We construct a PH instance with n = 3ν + 3µ genotypes
and m = 6ν + 5µ SNPs.

For each element xi ∈ X , yi ∈ Y , or zi ∈ Z we con-
struct one genotype, whose non-zero entries are (see Fig-
ure 3):

• xi[i] = 2; xi[3ν + i] = 1; xi[6ν + 5j] = 2 for every j
such that xi ∈ cj .

• yi[ν + i] = 2; yi[4ν + i] = 1; yi[6ν + 5j + 1] = 2 for
every j such that yi ∈ cj .

• zi[2ν + i] = 2; zi[5ν + i] = 1; zi[6ν +5j +2] = 2 for
every j such that zi ∈ cj .

For each triple cj ∈ C we create 3 genotypes, whose
non-zero entries are:

• cx
j [3ν + i] = 2 for every i such that xi ∈ cj ; cx

j [6ν +
5j] = 1; cx

j [6ν + 5j + 2] = cx
j [6ν + 5j + 3] = 2.

• cy
j [4ν + i] = 2 for every i such that yi ∈ cj ; cy

j [5ν +
i] = 2 for every i such that zi ∈ cj ; cy

j [6ν+5j+1] = 1;
cy
j [6ν + 5j + 2] = cy

j [6ν + 5j + 4] = 2.
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xi 2 0 0 1 0 0 2 0 0 0 0
yi 0 2 0 0 1 0 0 2 0 0 0
zi 0 0 2 0 0 1 0 0 2 0 0
cx 0 0 0 2 0 0 1 0 2 2 0
cy 0 0 0 0 2 2 0 1 2 0 2
cz 0 0 0 0 0 2 2 2 1 0 0

Figure 3. Gadget for the reduction of Theo-
rem 13.

• cz
j [5ν + i] = 2 for every i such that zi ∈ cj ; cz

j [6ν +
5j + 2] = 1; cz

j [6ν + 5j] = cz
j [6ν + 5j + 1] = 2.

We note that, by construction of columns 6ν + 5j and
6ν + 5j + 1, if cz

j shares a haplotype with z, it cannot share
its complement with cx

j or cy
j . Furthermore, x, y and z can

share at most one haplotype with their corresponding cx, cy

and cz genotypes. Thus, the longest haplotype inference
path has length 2. The graph is bipartite as the genotypes
cz
j ,xi,yi can be assigned to one side of the bipartition, and

the genotypes zi, c
x
j , cy

j can be assigned to the other side.
Let A be the resulting genotype matrix. We claim that A

admits a phasing of size 6ν + 4µ − ω iff C has a matching
of size ω. The proof is similar to that in Theorem 1 using
the phasing templates given in Figure 4.

Corollary 3 Parsimony haplotyping is APX-hard when the
Clark-consistency graph is bipartite and the longest infer-
ence path is of length 2.

We note that since a haplotype can be shared by at most
two genotypes, any phasing will give a 2-approximation to
PH. In the following we improve on this trivial ratio. When
the longest inference path is of length 1, one can reduce PH
to a matching problem, giving rise to the following result:

Lemma 14 If the length of the longest inference path is
1 then parsimony haplotyping can be optimally solved in
polynomial time.

For general bipartite graphs we can use this fact to de-
vise a 1.5-approximation algorithm: (1) Find a maximum
matching in the Clark-consistency graph; (2) phase each
genotype pair in the matching using a shared haplotype; and
(3) arbitrarily phase the remaining genotypes.

Lemma 15 The above algorithm gives a 1.5-
approximation for PH on instances that induce a bipartite
Clark-consistency graph.

Proof: Consider an instance of PH with a bipartite Clark-
consistency graph G. Let m be the size of a maximum

matching in G and let n be the number of genotypes. By
definition, the solution returned by the approximation algo-
rithm will have size 2n − m. Let H be an optimum solu-
tion to the PH instance and let e be the number of genotype
pairs that share a haplotype in this solution. (Note that e
is the maximum number of edges in a packing of inference
paths and cycles in G.) Then |H | = 2n − e, and the ap-
proximation guarantee is 2n−m

2n−e ≤ 2n−m
2n−2m ≤ 3

2 . The first
inequality follows from the fact that each vertex has degree
at most 2 in the optimal solution, and the second inequality
follows from the fact that 2m ≤ n, and that the worst bound
is obtained for n = m/2.

7. Conclusions

In this paper we have studied the complexity and ap-
proximability of parsimony haplotyping. We have shown
that the problem is APX-hard even in very restricted cases.
On the positive side, we have introduced a characterization
of input instances by the Clark-consistency graphs they in-
duce, and identified classes of these graphs with specific
structure of haplotype sharing, which admit polynomial or
constant-approximation algorithms.

Given that the method of choice for solving parsimony
haplotyping is via integer programming [10], these results
may be of use when incorporated in an integer programming
solver. If, for instance, the integer program is solved via a
branch and bound procedure, it may be terminated when the
examined subinstance has the characteristics of one of the
problems studied here. The subinstance can then be solved
efficiently using the algorithms we have described.
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