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Abstract

We present a novel unsupervised method for extract-
ing meaningful motifs from biological sequence data. This
de novo motif extraction (MEX) algorithm is data driven,
finding motifs that are not necessarily over-represented in
the data. Applying MEX to the oxidoreductases class of en-
zymes, containing approximately 7000 enzyme sequences,
a relatively small set of motifs is obtained. This set spans
a motif-space that is used for functional classification of
the enzymes by an SVM classifier. The classification based
on MEX motifs surpasses that of two other SVM based
methods: SVMProt, a method based on the analysis of
physical-chemical properties of a protein generated from
its sequence of amino acids, and SVM applied to a Smith-
Waterman distances matrix. Our findings demonstrate that
the MEX algorithm extracts relevant motifs, supporting a
successful sequence-to-function classification.
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Introduction

It is commonly accepted that high sequence similarity
guarantees functional similarity of proteins. A contempo-
rary analysis of enzyme function conservation by Tian and
Skolnick [14] suggests that 40% pairwise sequence identity
can be used as a threshold to certify functional similarity,
i.e. the first three digits of the Enzyme Commission (EC)
number are identical1. Using pairwise sequence similarity,

1The function of an enzyme is specified by a name and a number given
to it by the Enzyme Commission (EC). The EC number consists of four

and combining it with the Support Vector Machine (SVM)
classification method [15, 10], Liao and Noble [7] have ar-
gued that they obtain a significantly improved remote ho-
mology detection relative to existing state-of-the-art algo-
rithms.

There are alternative sequence-based approaches to the
task of protein classification. One is based on general char-
acteristics of the sequence, such as the number of specific
amino-acids within it, as suggested in [6]. A recent vari-
ation of this approach represents the amino-acid sequence
as a sequence of physical-chemical features [3, 4], such as
hydrophobicity, normalized Van der Waals volume, polar-
ity, polarizability, charge, surface tension, secondary struc-
ture and solvent accessibility. Caiet al. [3, 4] have applied
SVM to these feature vectors and reported that the SVM-
Prot technique reaches a high degree of accuracy, at a level
of two digits of the EC number hierarchy, on various en-
zyme subclasses.

An alternative to the straightforward sequence similarity
approach is the usage of motifs. Appropriately chosen se-
quence motifs may be expected to reduce noise in the data
and indicate active regions of the protein, hence improv-
ing predictability of its function. A protein can then be
represented as a ‘bag of motifs’ [1] (i.e. neglecting their
particular order on the linear sequence), or a vector in a
space spanned by these motifs. A recent work by Ben-Hur
and Brutlag [2], based on the eMOTIF approach [9, 8], led
to very good results. Starting out with 5911 enzyme se-

numbers, n1:n2:n3:n4, corresponding to four levels of classification. The
oxidoreductases class discussed in this paper correspondsto n1=1, one
of the six main divisions. For this class, n2 (subclass) specifies electron
donors, n3 (sub-subclass) specifies electron acceptors andn4 indicates the
exact enzymatic activity.



quences of the oxidoreductases class, which consisted 129
EC subclasses, they based their analysis on 59783 regular-
expression eMOTIFs. By using an appropriate feature se-
lection method they obtained success rates well over 90%
for a variety of classifiers.

The approach presented in this work is motif based.
Its novelty is the employed motif extraction algorithm
(MEX). Conventional approaches [5] construct motifs in
terms of position specific weight matrices, or else use hid-
den Markov models and Bayesian networks, hence are su-
pervised to some extent. MEX extracts motifs from proteins
sequential data in anunsupervisedmanner, without requir-
ing over-representation of its amino-acid motifs in the data
set. MEX motifs are explicit strings in contradistinction to
position-specific weight matrices or regular expressions.In
the application described below, 3165 MEX motifs are ex-
tracted. This is a low number of motifs in comparison with
the 59783 regular-expression eMOTIFs used by Ben-Hur
and Brutlag [2].

In what follows, we demonstrate that an SVM analysis of
oxidoreductases enzymes based on MEX motifs leads to re-
sults that are better than those obtained by an SVM based on
pairwise sequence similarity. Furthermore, it outperforms
SVMProt on the class of oxidoreductases enzymes, even
though the latter is based on physical and chemical prop-
erties of the amino-acid sequence. Moreover, our algorithm
is highly predictive of function, down to the third level (sub-
subclass) of the EC hierarchy.

The Motif Extraction Algorithm (MEX)

MEX is a motif extraction algorithm that serves as the
basic unit of ADIOS [12, 13], an unsupervised method for
extraction of syntax from linguistic corpora. We apply it to
the task of finding sequence-motifs within biological data.
Consider a data set of sequences of variable length, each
such sequence expressed in terms of an alphabet of finite
size N (e.g. N=20 amino-acids in proteins). The N letters
form vertices of a graph on which the sequences are placed
as ordered paths. Each sequence defines such a path over the
graph. In terms of allp(ej |ei) the graph defines a Markov
model. Moreover, using any path on the graph, to be called
henceforth a search-path, we find a particular instantiation
of a variable order Markov model up to order k, where k
is the length of the search-path. For each such search-path
(e1; ek) = e1e2 · · · ek we define a right-moving probability
function, whose value ati, j ≤ k is

PR(ei; ej) = p(ej |eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)
(1)

wherel(ei; ej) is the number of occurrences of sub-paths
(ei; ej) in the graph. Starting from the other end of the path

we define a left-moving probability function

PL(ej ; ei) = p(ei|ei+1ei+2...ej−1ej) =
l(ej ; ei)

l(ej ; ei+1)
. (2)

Fig. 1 demonstrates the type of structures that we ex-
pect to find in our graph - an assimilation of paths over a
subsequence of the search-path. Such a subsequence is a
candidate motif. The criteria for motif selection are defined
by local maxima ofPL andPR signifying, respectively, the
beginning and ending of a motif.

Figure 1. The definition of a motif within the
MEX algorithm. Note that the maxima of PL

and PR defines the beginning and ending of
the motif, respectively. Descents in PL and
PR following the maxima signify divergence
of paths.

Let us define the drop in probability functions as:

DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1) (3)

DL(ej ; ei) = PL(ej ; ei)/PL(ej ; ei+1) (4)

A threshold parameterη is introduced. The locationej−1

is declared as the ending of the motif ifDR(ei; ej) < η.
Analogously,ei+1 is declared as the beginning of the mo-
tif if DL(ej ; ei) < η. Since the experimental probabilities,
PR(ei; ej) and PL(ej ; ei), are determined by finite num-
bers of paths, a statistical measure is introduced in order
to avoid erroneous results. Hence, we calculate the signif-
icance values of bothDR(ei; ej) < η andDL(ej ; ei) < η
and require that their maximum be smaller than a parameter
α < 1. In the following application we have setη = 0.9



andα = 0.01. Once the algorithm reaches the stop crite-
ria (e.g. ceases to locate new patterns) they are sorted in
a length-significance descending order, by which their loci
are identified on the original data.

SVM functional classification based on MEX
motifs

We have concentrated our analysis on the oxidoreduc-
tases class of enzymes. 7095 protein sequences and their
EC number annotations were extracted from the SwissProt
database Release 40.0. These proteins served as the data-set
to which MEX was applied. The algorithm identified 3165
motifs of various lengths.

Classification was tested on levels 2 (subclass) and
level 3 (sub-subclass) of the EC number. Subclasses
were required to have a sufficient number of ele-
ments to ensure reasonable statistics. Protein sequences
were represented as ‘bags of MEX-motifs’. A linear
SVM classifier (SVM-Light package, available online at
http://svmlight.joachims.org/) was trained on each subclass
separately, taking the protein sequences of the subclass as
positive examples and the protein sequences of other sub-
classes as negative examples. 75% of the examples were
used for training and the remaining examples for testing.
The train-test procedure was repeated on six different ran-
dom choices of train-test sets in order to accumulate sta-
tistics. We have tested various subsets of MEX motifs
and discovered that the subset of motifs longer than five
amino-acids leads to optimal results in the classification
task. There are 1222 such motifs, spanning the space in
which we represent all enzymes. The enzymes are classi-
fied into 16 subclasses of level 2 and 39 sub-subclasses of
level 3.

Our results are compared to those of two other ap-
proaches. The first, SVMProt [3, 4], uses a performance
measurement parameter defined as

Q =
TP + TN

TP + TN + FP + FN
, (5)

where TP, TN, FP and FN denote the number of true pos-
itive, true negative, false positive, and false negative out-
comes respectively. The SVMProt results presented below
are obtained from their published results. However, since
the large negative set used in each classification task quickly
yields a high Q value, we have chosen to use the Jaccard
score

J =
TP

TP + FP + FN
(6)

instead. Not taking into account TN, this performance mea-
surement is more discriminative than Q.

The second approach, the Smith-Waterman algorithm
[11], is based on a one-versus-all sequence similarity ap-

proach. This algorithm has been applied to the same set
of 7095 oxidoreductases sequences analyzed by MEX. The
ariadne tool has been used (written by R. Mott, available on-
line at http://www.well.ox.ac.uk/ariadne) in order to obtain
the p-values distances matrix,MSW , defining the feature
space of the SVM classifier. A minimal p-value threshold of
10−6 was imposed in order to allow usage of p-values log-
arithm, defining a normalized distances matrixDSW . This
procedure is similar to the approach described in [7], how-
ever, the entire vector ofDSW has been used in our analysis
for specifying an enzyme. The classification task has been
performed with the same SVM classifier (linear kernel) em-
ployed to the data driven by MEX. The dataset has been
preprocessed in order to produce an appropriate input file
for the learning task. A random75% : 25% partition of the
data into a training set and a testing set, respectively, has
been used for each learning task. The train-test procedure
was repeated on three different random choices of data sets
in order to accumulate statistics.

Fig. 2 shows a comparison of the Jaccard score obtained
by MEX, Smith-Waterman analysis and SVMProt (error de-
viations are not presented for the latter as they were not in-
cluded in their published results). The scores obtained by
MEX are clearly higher than those obtained by the other
methods. The average J-scores are0.89 ± 0.06 for MEX,
0.74 ± 0.13 for SVMProt and0.79 ± 0.12 for the Smith-
Waterman method. Noticeably, there is no correlation be-
tween the size of the subclass and the J-scores obtained by
the various methods. Clearly, if the size of the subclass
is too small, i.e. the number of the positive examples is
small, a large variance in the train/test different divisions
may exist, resulting in large error deviations. However, in
most cases, the average J-scores are high, independent of
the tested subclass.

Third level classification results were not compared to
SVMProt as none were included in their published results.
Table 1 presents a comparison of the Jaccard scores ob-
tained by MEX and Smith-Waterman analysis. The scores
obtained by MEX are clearly higher. The average J-scores
are 0.89 ± 0.08 for MEX and 0.78 ± 0.15 for Smith-
Waterman. These findings attest to the meaningful infor-
mation embodied in MEX selected motifs, facilitating a fine
tuned classification of these proteins.

Motif selection

Motifs of various lengths were extracted by applying the
MEX algorithm. The enzyme function classification ca-
pabilities of the motifs were tested using various length-
dependent subsets of motifs. The results attest that the clas-
sification task performed by the subset of 601 motifs of
length 6 obtain remarkable J-scores, comparable to those
achieved by using the entire set of motifs longer than 5. In
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Figure 2. Jaccard scores for second-level EC subclasses obt ained by MEX (upper panel), Smith-
Waterman (second panel) and SVMProt (third panel). The bott om panel depicts the size of each
subclass. The subclasses are labeled according to their EC n umber and are ordered according to
size.

order to gain additional insights regarding the predictiveca-
pabilities of motifs of length 6, we analyzed which of these
motifs are unique of a single subclass. Statistics are pre-
sented in Fig. 3.

Evidently, motifs of length 6 are both abundant and, con-
comitantly, comprise a large fraction of motifs unique to a
single subclass. Out of the 601 motifs of length 6, 493 are
unique (e.g., belong to a single EC subclass at the second
level). This group of 493 motifs are not sufficient for the
classification task as their coverage of all proteins within
their EC subclass is limited.

The 125 unique motifs of length 6 of the relatively large
sub-subclass 1.1.1 (comprised of 1699 proteins) span only
63% of the protein sequences. Nonetheless, a classification
task based on the entire set of motifs of length 6 obtains a

Jaccard score of0.91± 0.03, hence the additional 108 non-
unique MEX motifs span the rest of the protein sequences.

A level 3 classification task performed solely with mo-
tifs of length 6 yielded a J-score of0.89 ± 0.08, which is
lower than the J-score quoted in the previous section. Ap-
parently, the space spanned by the 601 motifs of length 6 is
not as comprehensive for this refined classification task, as
the space spanned by the 1222 motifs of length 5 and longer.

Fig. 3 introduces an additional interesting insight, clari-
fying the reason an SVM analysis based on the set of MEX
motifs longer than 4 results in relatively lower J-scores (Av-
erage J-scores are0.83±0.09 for a level 2 classification task
and0.83±0.14 for a level 3 classification task). Apparently,
the large fraction of non-unique motifs of length 5 impairs
the predictive power of the unique motifs.



class # of elements MEX J SW J
1.1.1 1699 0.91± 0.03 0.85± 0.04
1.1.99 59 0.92± 0.2 0.80± 0.11
1.10.2 69 0.94± 0.14 0.52± 0.00
1.10.3 38 0.78± 0.17 0.77± 0.11
1.11.1 310 0.98± 0.02 0.89± 0.01
1.12.99 26 0.92± 0.09 0.83± 0.00
1.13.11 112 0.90± 0.06 0.62± 0.08
1.14.11 47 0.87± 0.14 0.69± 0.10
1.14.13 101 0.82± 0.12 0.71± 0.12
1.14.14 233 0.93± 0.02 0.91± 0.07
1.14.15 38 0.91± 0.12 0.85± 0.13
1.14.16 28 0.93± 0.1 0.80± 0.08
1.14.19 26 0.89± 0.14 0.94± 0.10
1.14.99 72 0.89± 0.07 0.85± 0.09
1.15.1 233 0.92± 0.06 0.96± 0.00
1.16.1 21 1 0.60± 0.20
1.17.4 113 0.86± 0.04 0.90± 0.02
1.18.1 47 0.77± 0.31 0.69± 0.14
1.18.16 123 0.88± 0.08 0.93± 0.03
1.2.1 512 0.88± 0.03 0.89± 0.03
1.2.4 66 0.83± 0.06 0.91± 0.03
1.3.1 156 0.84± 0.1 0.68± 0.03
1.3.3 139 0.96± 0.04 0.88± 0.05
1.3.5 18 1 1
1.3.99 73 0.76± 0.09 0.61± 0.09
1.4.1 83 0.86± 0.07 0.82± 0.03
1.4.3 89 0.93± 0.11 0.68± 0.07
1.4.99 31 0.92± 0.13 0.80± 0.08
1.5.1 167 0.67± 0.19 0.68± 0.10
1.6.1 21 1 0.87± 0.12
1.6.2 20 0.81± 0.16 0.67± 0.12
1.6.5 814 0.87± 0.02 0.84± 0.01
1.6.99 177 0.70± 0.09 0.63± 0.04
1.7.1 58 0.91± 0.08 0.76± 0.15
1.7.2 26 1 0.72± 0.10
1.7.99 43 1 0.40± 0.20
1.8.1 138 0.91± 0.03 0.86± 0.04
1.8.4 137 0.93± 0.05 0.88± 0.13
1.9.3 552 0.94± 0.02 0.90± 0.03

Table 1. J-values derived from MEX and
Smith-Waterman analysis, corresponding to
level 3 classification tasks.

Discussion

Applying the MEX algorithm on a group of 7095 en-
zymes, it has been shown that the extracted motifs form
an excellent basis for classifying these enzymes into small
classes known to have different functional roles. In partic-
ular, the classification from sequence to function based on
these motifs of this enzymes class was demonstrated to out-
perform any of the alternative methods.
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Figure 3. distribution of MEX motifs of lengths
5-10 according to their length. The three sets
correspond to (left) entire set of MEX motifs,
(middle) set of MEX motifs unique to a single
level 2 subclasses and (right) set of MEX mo-
tifs unique to a single level 3 sub-subclass.

Our results are compared with two approaches: (i) Clas-
sification based on pairwise sequence similarity, analogous
to the one employed by [7], using the same SVM proce-
dure that was employed for MEX. As demonstrated, MEX
derived motifs form a better basis for classification, indicat-
ing that MEX selected motifs improve the signal to noise
ratio inherent in the original sequences. (ii) The SVMProt
method introduced by [3, 4] on level 2 data (using their pub-
lished results). Although their method is based on semantic
information, i.e. physical and chemical properties of the
sequence of amino-acids, the results obtained by MEX are
better, again indicating that the MEX selected motifs carry
relevant information.

It should be noted that the MEX based classification is
accomplished by using only 1222 motifs of length 6 or
longer. Moreover, similar results were obtained by using
only the 601 motifs of length 6. Considering the 55 clas-
sification tasks for about 7000 proteins, the number of fea-
tures allowing a successful classification by the MEX algo-
rithm is surprisingly small. Furthermore, as opposed to the
regular-expression motifs used by other methods, MEX mo-
tifs are all deterministic consecutive amino-acid sequences.

Such regular-expression motifs approach was presented



by [2]. They have used regular-expression motifs of average
length of 21 amino-acids (termed eMOTIFs) derived in a
supervised manner. Applying a feature-selection procedure
to select approximately 1000 eMOTIFs out of their original
very large set of eMOTIFs, they have achieved impressive
classification results. However, while the small number of
selected eMOTIFs is comparable to the 1222 motifs used
by our approach, it should be noted that the determinis-
tic, consecutive motif sequences extracted by MEX spans
a much smaller sequence space than the one spanned by the
eMOTIFs, yet, achieving successful classification. Unfor-
tunately, a direct comparison with this work could not be
made due to insufficient data.

The application of the MEX algorithm studied here ap-
plies only a single level of feature extraction. Higher level
patterns may be extracted by iteratively applying MEX,
where each MEX iteration uses the observed sequence-
motifs as vertices in the MEX graph. Moreover, utilizing
the full extent of the ADIOS approach [13] may further re-
veal higher syntactic structures in biological sequence data.
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