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Abstract

Motivation: The availability of genome-wide location

analyses based on chromatin immunoprecipitation (ChIP)

data gives a new insight for in silico analysis of transcrip-

tional regulations.

Results: We propose a novel discriminative discovery

framework for precisely identifying transcriptional regula-

tory motifs from both positive and negative samples (sets

of upstream sequences of both bound and unbound genes

by a transcription factor (TF)) based on the genome-wide

location data. In this framework, our goal is to find such

discriminative motifs that best explain the location data in

the sense that the motifs precisely discriminate the posi-

tive samples from the negative ones. First, in order to dis-

cover an initial set of discriminative substrings between

positive and negative samples, we apply a decision tree

learning method which produces a text-classification tree.

We extract several clusters consisting of similar substrings

from the internal nodes of the learned tree. Second, we

start with initial profile-HMMs constructed from each clus-

ter for representing putative motifs and iteratively refine

the profile-HMMs to improve the discrimination accuracies.

Our genome-wide experimental results on yeast show that

our method successfully identifies the consensus sequences

for known TFs in the literature and further presents signifi-

cant performances for discriminating between positive and

negative samples in all the TFs, while most other motif de-

tecting methods show very poor performances on the prob-

lem of discriminations. Our learned profile-HMMs also im-

prove false negative predictions of ChIP data.

1. Introduction

In genomic sequences, a motif is a set of cis-regulatory

elements that preserve a certain nucleotide composition,

playing a key role in transcriptional regulations. A large

number of algorithms for finding motifs have been pro-

posed previously [4], and most of them search for statis-

tically over-represented patterns in the upstream sequences

of co-regulated genes. On the other hand, genome-wide lo-

cation data recently elucidated the in vivo physical interac-

tions between transcription factors and their chromosomal

targets on the genome [2, 3]. The ChIP data provide us the

explicit and reliable interaction information about not only

TF-DNA ”binding” but also TF-DNA ”unbinding”.

Our fundamental idea for motifs is that the true motif

appears only in the upstream sequences of the target genes

controlled and bound by the TF and does NOT appear in

those of the unbound ones. This idea leads us to a discrimi-

native approach to find true motifs that correctly distinguish

the upstream sequences between bound and unbound genes

from positive and negative samples. We employ two ma-

chine learning techniques, decision tree learning for extract-

ing most discriminative substrings and iterative reconstruc-

tions of hidden Markov models (HMMs) for improving the

discrimination accuracies of motifs, where we use profile-

HMMs to represent motifs.

Our genome-wide experimental results on yeast show

that the discriminatively learned profile-HMMs agree with

almost all the consensus sequences for well-known TFs in

the literature and further present significant performances

for discriminating upstream sequences between positive and

negative samples, while most of the motifs discovered by

other existing methods perform poorly on the problem of

discriminations. The learned profile-HMMs also improve

the false negative predictions of ChIP data that could not be

predicted as bound genes by the location data in spite of the

biological evidences in the literature.

2. Methods

Our algorithm consists of two steps: (i) build a text-

classification tree by decision tree learning, extract relevant

substrings, and create initial profile-HMMs; and (ii) itera-
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Figure 1. A schematic flow diagram of our proposed method (left), an illustration of text-classification

tree construction (middle), and a flow diagram of iterative refinement of profile-HMMs (right).

tively refine the profile-HMMs to improve the discrimina-

tion accuracies (Figure 1. left). Our method takes both lo-

cation and genome data as input, and outputs a motif in the

form of a profile-HMM for each TF.

In the preprocessing step, we select highly ChIP-array-

enriched genes (p-value ≤ 0.001) as positive samples and

least ChIP-array-enriched genes (p-value ≥ 0.99) as nega-

tive ones. Since we assume that true motifs only appear in

the upstream sequences of positive samples and do not ap-

pear in those of negative ones, the use of a high confidence

p-value threshold assures our assumption.

To build a text-classification tree, we then begins by col-

lecting every nonredundant w-mer (6 ≤ w ≤ 13) in both

strands of the top t (10 ∼ 20) positive samples and recur-

sively splits both positive and negative samples by the pres-

ence of a specific substring (Figure 1. middle). By using

the minimum entropy criterion, we search for the longest

substring that best minimizes the Loss function defined in

Equation (1) from the collection of substrings. We denote

a sequence by w, a substring by v, a class label (’positive’

or ’negative’) by l, samples by S, and by S0, S1, Occur()
as follows; Sv

0
= {(w, l) ∈ S | w doesn’t contain v},

Sv

1
= {(w, l) ∈ S | w contains v}, Occur(S, li) =

|{(w, l) | l = li}|.

I(S) = −

2∑

i=1

Occur(S, li)

|S|
log

2

Occur(S, li)

|S|

Loss(v, S) =
|Sv

0
|

|S|
I(Sv

0
) +

|Sv

1
|

|S|
I(Sv

1
) (1)

Loss function indicates a weighted sum of the entropies of

two sets that are divided by the presence of some specific

substring and we use pair-HMMs for local alignment to de-

cide whether an upstream sequence contains each substring.

As a result of learning, substrings that are important for

discrimination are extracted and are assigned to each inter-

nal node of the learned tree. Extracted substrings and their

reverse complements are then clustered via k-medoids algo-

rithms using each normalized pairwise similarity, a global-

alignment score divided by the length of the longer sub-

string, as the distance metric. Note that, in this case, the dis-

tance indicates not dissimilarity but similarity between sub-

strings. The k-medoids clustering was performed 500 times

to find a clustering with a maximal sum of intra-cluster dis-

tances. To find the optimal number of clusters, this process

was performed with different number of clusters (from half

of the total number of substrings to two), and the number

with the minimal inter-cluster distance is adopted. Mem-

bers of each cluster are multiple aligned by ClustalW, and a

profile-HMM representing a putative motif is created from

each multiple alignment.

The iterative strategy for refining initial profile-HMMs

is similar to the one adopted by PSI-BLAST. It runs a lo-

cal search for finding similar substrings with the current

profile-HMM on the positive samples, selects the ”best” hit

substring in the sense that a new profile-HMM constructed

by adding this substring to the current training set most sig-

nificantly improves the discrimination accuracy, and it runs

a next search. Similarly, the ”best” substring constituting

the current training set is removed. The discrimination ac-

curacy of a profile-HMM means the capability of separating

two hit-score distributions for positive and negative samples

respectively assigned by the profile-HMM. These steps are

iterated until convergence is achieved, that is, when there

exists no such substring that improves the discrimination

accuracy, the iteration stops (Figure 1. right). Each ”iter-

ation” refines the profile-HMM and, finally, we adopt the

most discriminative one as a motif.



Table 1. Examples of the discovered motifs.

TF name
discriminative learned published

substrings profile-HMMs consensus
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Figure 2. Improvements of discrimination accu-

racies.

To quantify the separation capabilities of profile-HMMs,

we use two metrics, ROC AUC [1] and the Fisher criterion.

These metrics indicate the degree of separation between two

distributions and a higher value means a greater separation.

The main reason to use different metrics is to obtain a

better (local) optimum since no general methods exist for

obtaining the global optimum. Two metrics are used in turn,

and only when the convergence is achieved with both met-

rics, the iteration stops. We also try using six more met-

rics (e.g. entropy, MNCP [1], ICV, discriminant function),

but the combination of those two metrics mentioned above

turned out to perform best.

3. Results and discussion

We collect the sequences of 1000 bp upstream of the

translation start sites of 6270 genes on yeast from SGD and

SCPD, and two published genome-wide location data [2, 3].

To compare the discrimination accuracies of motifs ob-

tained by our method with others, we also collect all the

experimentally verified binding sites that are included in

TRANSFAC (release 8.1) [5] and SCPD, and computation-

ally discovered motifs of Harbison et al [2].

Since the number of overlapping TFs that are included

in both TRANSFAC and two location data is 62, we ap-

plied our method to those 62 TFs. The total numbers of

positive and negative samples of them are 3447 and 6906

respectively. As the transcriptional regulatory network is

known to form a scale-free network, the number of posi-

tive samples ranges from 5 to 267 and that of negative ones

ranges from 18 to 262, with an average of 56 positive sam-

ples and 105 negative ones per TF. Due to the page limita-

tion, we will only show some typical results for several TFs

using the location data of Harbison et al [2]. The full re-

sults for all the 62 TFs are available at our web site (http:

//www.dna.bio.keio.ac.jp/disc_motifs).

To compare the consensus sequences with our learned

profile-HMMs, we collect all the positional weight matri-

ces (PWMs) from TRANSFAC. Since these PWMs have

been constructed from experimental data taken from dif-

ferent binding studies of TFs and their cognate DNA se-

quences, the consensus sequences of them are thought to

be quite reliable. There are 20 PWMs whose TFs are in-

cluded in our study and 18 consensus sequences of them

agree with our learned profile-HMMs. We also collect the

consensus sequences of other 25 TFs that are described in

at least two papers, and 21 of them agree with our discov-

ered motifs. Table 1 shows the discriminative substrings

extracted from the text-classification trees, learned profile-

HMMs, and the published consensus for four TFs. The

learned profile-HMMs are shown in HMM motif Logo. Our

method correctly identifies the cis-regulatory patterns that

agree with the published consensus, although they are tend

to be longer than the published consensus since our decision

tree learning method searches for the longest substrings that

best minimize the objective function.

Figure 2 shows the improvements of discrimination ac-

curacies, that is, the hit-score distributions for positive and

negative samples assigned by initial and final profile-HMMs

for CBF1 and GCN4. As shown in Figure 2, discrimination

accuracies of profile-HMMs are significantly improved by

our iterative refinement method.

Due to the inherent variability of consensus sequences,

it is difficult to evaluate the obtained motifs quantitatively.

Thus, we use the discrimination accuracies of profile-

HMMs measured by ROC AUC to assess the reliabilities of

obtained motifs in addition to the similarities between the

consensus sequences and our discovered motifs. To com-

pare the motif-detecting performance of our method with

those of other existing methods, we use three different ini-

tial profile-HMMs. They are constructed from the bind-

ing sites of TRANSFAC and SCPD, discovered motifs of
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Figure 3. Histograms of ROC scores of 62 TFs

with different initial profile-HMMs.

Table 2. 10-fold cross validation results.

Our method MDScan AlignACE

TF name Test set Test set Test set

ABF1 0.967 0.841 0.827

CAD1 0.924 0.774 0.738

FKH2 0.891 0.826 0.819

SWI6 0.896 0.835 0.829

Table 3. Improvement of false negative predic-

tions of location data.

TF name False Negatives Correctly Identified

ABF1 13 10

GCN4 6 3

MCM1 7 7

RAP1 11 10

Harbison et al [2], and those of MDScan [4] respectively.

Figure 3 shows the histograms of ROC scores (x-axis de-

notes ROC scores and y-axis denote percentages against the

whole) with different initial profile-HMMs and the subse-

quent final profile-HMMs of all the 62 TFs.

From Figure 3, while our decision tree learning method

itself shows a comparable performance to others, our itera-

tive refinement method shows the significant improvement

of discrimination accuracies. Hence, our text-classification

tree is thought to identify a good starting point for our

greedy iterative refinement. In other words, we think that

by our decision tree learning method we can correctly iden-

tify the discriminative properties that are underlaid in the

sequences of positive samples instead of numerous spuri-

ous similarities among them.

To compare the robustness of our method with other

well-known methods, AlignACE and MDScan [4], we run

10-fold cross validation tests for nine TFs. We classify

genes into bound or unbound ones depending on the score

threshold at which the misclassification rate is the lowest.

The results of four TFs shown in Table 2 demonstrate the

effectiveness of our method. Our proposed method, the de-

cision tree learning combined with the iterative refinement,

is thought to be less dependent on the training data and dis-

cover more reliable motifs.

Although there exists no gold standard for evaluating the

sensitivity of motif detecting methods, we assessed the sen-

sitivity of our method by evaluating how our learned profile-

HMMs improve the false negative predictions of location

data. We collect from TRANSFAC all the genes that are

experimentally verified to be bound but cannot be predicted

by the location data [2]. There are 95 false negative genes

for 32 TFs in total. Table 3 shows the number of false

negative genes of the location data [2] as well as that of

correctly identified ones by our method for four TFs. Our

learned profile-HMMs correctly identify 66 genes among

them (69.5% improvements).

In conclusion, we present a novel discriminative motif

discovery method based on the location data. The results in-

dicate that our decision tree learning method correctly iden-

tifies the published consensus sequences for known TFs and

the discrimination accuracies of obtained motifs in the form

of profile HMMs are significantly improved by our itera-

tive refinement method. Moreover, our iterative refinement

method can be combined with any other motif detecting

methods. With the progress of genome-wide location anal-

yses, we hope that our method can provide more detailed

view of motifs and hence present more reliable relationships

between TFs and their target genes.

References

[1] N. Clarke and G. Joshua. Rank order metrics for quantify-

ing the association of sequence features with gene regulation.

Bioinformatics, 19(2):212–218, 2003.
[2] C. Harbison, D. Gordon, T. Lee, N. Rinaldi, K. Macisaac,

N. H. T. Danford, J. Tagne, D. Reynolds, J. Yoo, E. Jennings,

et al. Transcriptional regulatory code of a eukaryotic genome.

Nature, 431:99–104, 2004.
[3] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph,

G. Gerber, N. Hannett, C. Harbison, C. Thompson, I. Simon,

et al. Transcriptional regulatory networks in saccharomyces

cerevisiae. Science, 298:799–804, 2002.
[4] X. Liu, D. Brutlag, and J. Liu. An algorithm for find-

ing protein-dna binding sites with applications to chromatin-

immunoprecipitation microarray experiments. Nature

Biotechnology, 20(8):835–839, 2002.
[5] E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl,

I. Liebich, M. Krull, V. Matys, H. Michael, R. Ohnhauser,

et al. The transfac system on gene expression regulation. Nu-

cleic Acids Research, 29(1):281–283, 2001.


