
An Efficient Algorithm for Perfect Phylogeny Haplotyping

Ravi VijayaSatya and Amar Mukherjee
{rvijaya,amar}@cs.ucf.edu

School of Computer Science, University of Central Florida 32816-2362

Abstract

The Perfect Phylogeny Haplotyping (PPH) problem is
one of the many computational approaches to the Haplotype
Inference (HI) problem. Though there are many O(nm2)
solutions to the PPH problem, the complexity of the PPH
problem itself has remained an open question. In this paper,
We introduce the FlexTree data structure that represents all
the solutions for a PPH instance. We also introduce row-
ordering that arranges the genotypes in a more manageable
fashion. The column ordering, the FlexTree data structure
and the row ordering together make the O(nm) OPPH al-
gorithm possible. We also present some results on simulated
data which demonstrate that the OPPH algorithm performs
quiet impressively when compared to the earlier O(nm2)
algorithms.

1. Introduction

Loci in the human genome in which a considerable per-
centage of the population varies from the rest are called
SNPs(Single Nucleotide Polymorphisms). As the human
genome is diploid, an SNP in an individual can be homozy-
gous or heterozygous, depending on whether the two copies
of the chromosome have the same allele or not. The se-
quence of alleles on a single copy of the chromosome is
called a haplotype. Obtaining the haplotypes present in the
population is essential in disease association studies. How-
ever, the haplotype information is expensive to obtain ex-
perimentally. Hence, the genotype information, which gives
the unordered pair of alleles at each SNP site, is obtained
experimentally.

Given a set of n genotypes over m SNP sites, the Hap-
lotype Inference (HI) problem is to find a set of haplotypes
such that each input genotype can be expressed as a com-
bination of a pair of haplotypes. If k SNP sites are het-
erozygous in a given genotype, 2k−1 distinct pairs of haplo-
types are possible that result in the same genotype. In other
words, the genotype can have 2k−1 possible explanations.
The HI problem deals with finding the most ‘accurate’ ex-

planation out of all these possible explanations. Initial ap-
proaches [3] to the HI problem were based on parsimony.
However, the formulation presented in [3] was proven to be
NP-hard by Gusfield [7]. Studies have shown that the ac-
tual observed diversity within any region of a chromosome
is much lower than what we can expect from the number
of SNPs covered by that region. Specifically, Daly et. al.
[4] have shown that the human genome can be divided into
blocks within which no recombinations are possible. This,
together with the standard infinite sites assumption, implies
that each block can be explained by a coalescent, or a phy-
logenetic tree. The coalescent model assumes that the evo-
lutionary history of all the haplotypes in the population can
be explained by a rooted tree, where each haplotype labels
a vertex in the tree. This formulation of the haplotype in-
ference problem is called as the PPH (Perfect Phylogeny
Haplotyping) problem. Several O(nm2) algorithms have
been presented for the PPH problem [8, 1, 6, 11].

1.1. The Perfect Phylogeny Haplotyping Problem

An n×m matrix A over the alphabet {0, 1, 2} is given,
in which the rows represent the genotype vectors, and the
columns represent the SNP sites. The two alleles are indi-
cated by 0 and 1. A 0(1) in a genotype vector indicates that
the SNP site is homozygous with the 0-allele(1-allele). A 2
in the genotype vector indicates that the corresponding SNP
site is heterozygous. The problem is to find a 2n×m binary
matrix B which has the following properties (1) Every row
in the matrix A is explained by a pair of rows in the matrix
B. (2) There is a perfect phylogeny T for the matrix B.
Each row in the matrix B represents a haplotype. Since all
the rows in B label the nodes in T , the evolutionary history
of the haplotypes is a perfect phylogeny.

In any perfect phylogeny for the matrix A, let hi and ki

be the vertices representing the two haplotypes for a row i in
A. Gusfield[8] made the following important observations
- (1)All the columns that are ‘1’ in the row i of the matrix
A must be in the path from the root to the LCA (lowest
common ancestor) of hi and ki. (2) All the columns that
are ‘2’ in row i must be in the path from the LCA to one of

the vertices hi or ki. (3) All the columns that are ‘0’ must
not be in the path to hi or ki. The importance of column
sums is also noted in [8]. The column sum ηi of a column i
in A is the number of ‘1’s in column i in any binary matrix
B that is a explanation of A. ηi is given by the following
expression:

ηi = (# of 1’s inA[∗, i]× 2) + (# of 2’s inA[∗, i]) (1)

The column sum gives the exact number of haplotypes that
must be in the subtree under the edge labeled with i in any
perfect phylogeny for the matrix A. The column sums im-
pose an order on the columns in any perfect phylogeny for
A - no column with smaller column sum than column i can
label an edge in the path from the root to the edge labeled
with the column i. Though the significance of the column
sums was noted in [8], the algorithm itself does not make
complete use of the ordering imposed by the column sums.
The other O(nm2) solutions for the PPH problem [1, 6, 11]
have mainly ignored this property and failed to take advan-
tage of it. In [8], the PPH problem is solved by mapping the
problem to a graph realization problem. A simpler, more
direct solution was presented in [1]. The approach makes
use of the standard four-gamete test:
The four-gamete test: In any binary matrix B, if a sub-
matrix formed by a pair of columns consists of all the rows
from the set {00, 01, 11, 10}, then the matrix B cannot be
realized by a perfect phylogeny.

However, the complexity of the algorithm presented in
[1] is still O(nm2), as the approach is based on explicitly
building all pairwise relationships between columns. Wiuf
[11] attempted to improve upon the approach taken in [1],
and made some interesting observations. Eskin et. al. [6]
have taken a completely different approach to the problem.
The complexity of the algorithms in [11, 6] is O(nm2).
Two very recent, independent papers [9, 5] have reported
O(nm) complexity. However, the algorithm we present in
this paper is fundamentally different and independent from
the algorithms in [9] or [5]. In addition, the FlexTree data
structure presented in this paper provides a simple and in-
tuitive representation of the all possible PPH trees for the
given matrix.

2. Motivation for O(nm) algorithm

As mentioned in [8], the column sums induce an order
on the columns. This ordering was mostly ignored in all the
algorithms cited above. Hence there is some scope for im-
provement. In order to take advantage of this ordering, we
sort the columns in A according to non-increasing column
sums, producing the column-sorted genotype matrixAc. i.e,
in the matrixAc, for any two columns i and j, i < j implies
that ηi ≥ ηj . The column ordering, along with the fact that

root is an all-zero vector, allows us to reduce the 4-gamete
test into a 2-gamete test:
2-gamete test: In any column-sorted binary matrix Bc, if
any sub-matrix formed by a pair of ordered columns con-
sists of both the rows 01 and 11, then the matrix Bc cannot
be realized by a perfect phylogeny..

It was established in [2] that a binary matrix B is realiz-
able by a perfect phylogeny with an all zero root iff every
sub matrix formed by a pair of columns has two or fewer
rows from the set {01,10,11}. Extending this property to
the column-sorted matrix Bc implies that the matrix Bc is
realizable by a perfect phylogeny iff the sub-matrix formed
by any ordered pair of columns does not contain more than
one row from the set {01,11}. Each column in Bc has at
least one ’1’, and hence the sub-matrix formed by each pair
of columns in Bc has at least a 01 row or a 11 row. A pair
of columns (x,y), x < y in Bc are said to be in-phase if
Bc[∗, xy] has a 11 row. The columns x and y are said to
be out-of-phase if Bc[∗, xy] has a 01 row. For any binary
matrix Bc that has a perfect phylogeny, these phase rela-
tionships can be represented by a m×m phase matrix PBc ,
in which PBc [x, y] gives the phase relationship between the
columns x and y. PBc [x, y] = 0 if x and y are in-phase and
PBc [x, y] = 1 if x and y are out of phase. If the matrix Bc

is not realizable by a perfect phylogeny, Bc[∗, xy] can have
both rows 01 and 11, in which case the PBc [x, y] = ψ. As
the columns x and y have to be ordered, PBc [x, y] is de-
fined only if x < y, and hence only the upper triangle of the
matrix Bc is defined.

In order to use the 2-gamete test to determine the realiz-
ability of the column-sorted genotype matrix Ac, we need
to be able to interpret the ‘2’s in each column. Every row
except a 22 row in a sub-matrix Ac[∗, ij] of Ac forces cer-
tain rows in the sub-matrix Bc[∗, ij] of any matrix Bc that
is an explanation of Ac. A 00, 01, 10 or 11 row in Ac[∗, ij]
duplicates itself in Bc[∗, ij], where as a 02, 20, 12 or 21
row in Ac[∗, ij] forces the rows {00,01}, {00,10}, {11,10},
or {01,11} in Bc[∗, ij], respectively. If the matrix Ac is
to be realizable, both 01 and 11 rows should not be forced
in sub-matrix Bc[∗, ij]. A phase matrix PAc for Ac can
be defined based on these forced rows. For the matrix Ac,
PAc [i, j] = 0 if a 11 row is forced inAc[∗, ij], PAc [i, j] = 1
if a 01 row is forced in Ac[∗, ij] and PAc [i, j] = ψ if both
01 and 11 rows are forced in Ac[∗, ij]. However, if a sub-
matrix Ac[∗, ij] of Ac has only 00, 22 and 20 rows, the
columns i and j are neither forced in-phase nor forced out-
of-phase, and PAc [i, j] is then designated as φ. Extend-
ing the 2-gamete test to a column-sorted genotype matrix
Ac, we can now state the 2-gamete test for a column sorted
genotype matrix Ac as follows:
Extended 2-gamete test: The column sorted genotype ma-
trix Ac is not realizable by a perfect phylogeny if there are
two columns i and j, i < j, such that PAc [i, j] = ψ.

An interesting result from the extended 2-gamete test is
that in some situations, we can deduce that the matrix Ac is
not realizable just by looking at a single row in Ac. A 21
row in any sub-matrix of Ac forces both 01 and 11 rows in
the corresponding sub-matrix in Bc, and hence:

Property 1 The matrix Ac is not realizable if a ‘2’ occurs
to the left of a ’1’ in any row.

2.1. Implied relationships

Apart from the phase relationships directly forced by a
pair of columns inAc, additional phase relationships can be
forced by rows in the matrix Ac that have at least three ‘2’s.
These implied relationships are summarized in the follow-
ing theorem, first presented (using different terminology) in
[1]:

Theorem 1 In any realizable matrix Ac, given three
columns x, y and z, if PAc [x, y]ε{0, 1}, PAc [x, z]ε{0, 1},
and if Ac[r, x] = Ac[r, y] = Ac[r, z] = 2 in any row r, then
PAc [y, z] = PAc [x, y]⊕PAc [x, z], where⊕ is the exclusive-
or operator.

Therefore, some of the φ entries in the phase matrix PAc can
be assigned a value (of 0 or 1) using these implied relation-
ships. Because of these implied relation ships, the following
theorem applies:

Theorem 2 In any realizable matrix Ac, given three
columns x, y and z, x < y < z, if there is a row r in
which Ac[r, x] = Ac[r, y] = Ac[r, z] = 2, then PAc [x, y]
will be in {0,1} if PAc [x, z] is in {0,1}.

If we know all the directly forced and implied phase re-
lationships, the following theorem can be used to determine
if the matrix Ac is realizable:

Theorem 3 (The Realizability Theorem) A column-
sorted genotype matrix Ac is realizable by a perfect
phylogeny iff PAc [x, y] �= ψ for every pair of columns x
and y, x < y, in Ac.

In order to determine if Ac is realizable and to represent
all possible PPH trees for the matrix Ac, we need all pair-
wise relationships between the columns. The FlexTree data
structure presented in [10] allows us efficiently manage
these pair-wise relationships.

3. The FlexTree Data Structure

3.1. Motivation

The initial motivation for the FlexTree data structure is to
maintain the pairwise relationships efficiently, so that most

of the pairwise relationships are stored implicitly, rather
than explicitly. This can be achieved by taking advantage of
the ordering between the columns and the limitations on the
pairwise relationships imposed by any realizable matrixAc.
The in-phase and out-of-phase relationships directly trans-
late to relative positions in the PPH tree. If two columns
x and y, x < y, are forced in-phase, then the edge labeled
with column x must be in the path from the root to the edge
labeled with column y in any PPH tree for the matrix Ac.
Similarly, if the columns x and y are forced out-of-phase,
then the edge labeled with column x can not be in the path
to the edge labeled with column y in any perfect phylogeny
for the matrix Ac. This observation leads to the following
theorem:

Theorem 4 In any realizable matrix Ac, given two sites y
and z such that y < z and PAc [y, z] = 0, PAc [x, z] =
PAc [x, y] for any site x < y.

In any PPH tree, a site j is said to follow a site i if the
site i is the first site in the path from site j to the root. In the
matrix Ac, for each column, we define the following terms:
Parent: The parent of any column j is the column i such
that i < j, PAc [i, j] = 0 and PAc [x, j] = 1 for every col-
umn x such that i < x < j. In every PPH tree possible
for the matrix Ac, the site j must follow the site i, as every
column between i and j is forced out of phase with j. The
parent of a column i is not defined (null) if there is no such
column j for column i.
f-parent0: For a column j for which the parent is not de-
fined, f-parent0 is a column i such that i < j, PAc [i, j] = φ
and PAc [x, j] = 1 for every column x such that i < x < j.
i.e., f-parent0 of a column j is the column with the highest
index that the column j can follow in any PPH tree for Ac.

Introducing a dummy all-1 column with index 0 to the
matrix Ac, PAc [0, z] will be 0 for every column z, 1 ≤ z ≤
m. This will ensure that either the parent or f-parent0 are
defined for every column z > 0. The added column will not
violate the column ordering since it has the highest possible
column sum.
f-parent1: For a column j for which f-parent0 is defined,
f-parent1 is:
(a) The highest column i such that i < f-parent0,
PAc [i, j] = φ and PAc [i, f-parent0] = 1, or if there is no
such column y:
(b) null, if at least one column x such that x < f-parent0
and PAc [x, f-parent0] = φ, or, if there is no such column x:
(c) The highest column i such that PAc [i, j] = 0.

For a site that can follow different sites in different PPH
trees, f-parent0 and f-parent1 give us the different possibil-
ities for the site. When both f-parent0 and f-parent1 are
defined (not null) for a site i, it means that the site i has to
follow either the site f-parent0 or the site f-parent1 in any

PPH-tree for the matrix M . i.e, there are only two possibil-
ities for the site i. On the other hand, if f-parent1 of a site is
null it means that there are more than two possibilities for
the site i. Out of these, the one with the highest index is
f-parent0.

Theorem 4 leads to drastic implications - it tells us that
only a part of the phase matrix PAc needs to be stored ex-
plicitly. The rest of PAc can be inferred by just knowing a
small portion of PAc . Theorem 5 tells us exactly what in-
formation in PAc is necessary in order to deduce the rest of
PAc .

Theorem 5 In any realizable matrix Ac, the phase matrix
PAc can be constructed if we know the parent, f-parent0 and
f-parent1 of each column.

3.2. The FlexTree

The FlexTree data structure is a special kind of weakly
connected directed acyclic graph. For each column, the
FlexTree data structure stores the parent, f-parent0 and f-
parent1 information. Some additional information is also
stored in order to account for the restrictions imposed by
the rows in the matrix having more than two ‘2’s. The Flex-
Tree has a tree-like structure. In fact, if the matrix Ac has a
unique perfect phylogeny, the underlying undirected graph
of the FlexTree for Ac will be a rooted tree. The basic idea
behind the FlexTree data structure is to correctly represent
all the possibilities for each site j in any perfect phylogeny
for the matrix Ac. For any site i such that i < j, one
of the following three scenarios apply, based on the value
of PAc [i, j]: (1) If PAc [i, j] = 0, the the site i must be
in the path from the site j to the root in any perfect phy-
logeny for the matrix Ac. i.e., in the FlexTree, all possi-
ble paths from the site j to the root must include the site i.
(2) If PAc [i, j] = φ, then the site i may or may not be in
the path from the root to the site j in a given perfect phy-
logeny for the matrix Ac. For each such site i, there must
be at least one path from the site j to the root that includes
site i and there must at least one path that does not. (3) If
PAc [i, j] = 1, then the site i will not be in the path from
the root to the site j in any perfect phylogeny for the ma-
trix Ac. i.e, in the FlexTree, any path form the site j to the
root must not include the site i. In the FlexTree, each site is
represented by a directed edge labeled with the site (There
are many reasons for selecting directed edges - these will
be apparent shortly). Figure 1 shows a matrix Ac, the phase
matrix PAc of Ac, and the flex tree T for the matrix Ac.

If a column j has a parent i, the relationship is repre-
sented by the edge labeled with site i being adjacent to edge
labeled with site j. If a site i is the f-parent0 or f-parent1
of a site is j, the relationship is represented by a directed
unlabeled glue edge connecting the edge labeled with the

Figure 1. (a) A genotype matrix Ac; (b) The
Phase matrix for Ac; (c) The FlexTree T for Ac

- the broken edges represent the glue edges.

site j to the edge labeled with site i. The phase relation-
ships reduce to reachability in the FlexTree. For any site
j, if PAc [i, j] = 1 for any site i, i < j, then the edge la-
beled with site i is not reachable from the edge labeled with
site j. If PAc [i, j] = 0, every path from edge labeled with
site j to the root will include the edge labeled with i. If
PAc [i, j] = φ, then there will at least one glue edge in the
path from the edge labeled with site j to the edge labeled
with site i. As the FlexTree represents all the phase rela-
tionships given by the phase matrix PAc , any PPH tree for
Ac can be built from the FlexTree by removing some glue
edges and contracting the others.

3.3. Partitions

Though every PPH tree for Ac can be obtained from the
FlexTree described above, we need to refer back to Ac to
do this. For example, consider the matrix Ac and the phase
matrix PAc shown in Figure 2. In order to build a PPH-tree
(or a binary matrixBc), we need to be able to assign a value
of 0 or 1 to every φ in the phase matrix PAc . Let us assume
we start doing this by scanning PAc bottom-to-top and left-
to-right, and arbitrarily setting every φ to 0 or 1. The first
φ we will encounter is PAc [2, 3]. As PAc [3, 4] = 1 and
columns 2,3 and 4 are all ‘2’ in the last row of the matrixAc,
Theorem 1 will be applicable on columns 2, 3 and 4 as soon
as we set PAc [2, 3] to 0 or 1, and PAc [2, 3] will be equal
to PAc [2, 3]⊕ PAc [3, 4]. In any binary matrix Bc that is an
explanation ofAc, if columns 2 and 3 are in-phase, columns
2 and 4 must be out of phase. Similarly, if columns 2 and 4
are resolved in-phase, then columns 3 and 4 must be out of
phase. In other words, if u and v are the vertices in which
columns 3 and 4 are incident, the requirement is that u and
v must always be distinct vertices. Therefore, whenever we

set a φ in PAc to 0 or 1, we need to refer back to Ac and
check every row in Ac to see if there are other φ’s in PAc

which can be set to 0 or 1 based on Theorem 1. Clearly,
there can be O(m2) such φ entries in PAc , and checking
Ac will take O(nm2) time for each one of them. Because
of this, building a PPH tree from the FlexTree might take
O(nm3) time.

Figure 2. (a) A genotype matrix Ac; (b) The
Phase matrix for Ac; (c) The FlexTree T for Ac,
without partitions; (d) The general structure
of a partition; (e) The FlexTree T for Ac with
partitions; (f) and (g) The two PPH trees T1

and T2 represented by T

Therefore, we need to store some more information
about Ac in the FlexTree in order to be able to construct
a PPH tree from the FlexTree without having to refer to Ac,
and to enable an O(nm) algorithm. For this, we introduce
a special system of vertices called a partition. A partition
consists of four vertices in total, as shown in Figure 2-(d).
Two of these vertices are the in-vertices of the partition -
their indegree is at least 1 and outdegree is 0. The other
two are out-vertices - their indegree is 0, but outdegree is
1. In other words, two of the vertices are sinks for two sets
of labeled edges, and each of the other two act as a source
of an unlabeled glue edge. The four vertices represent two
vertices in any PPH tree. In any PPH tree, one of the two
in-vertices merges with one of the two out-vertices, and the
second in-vertex merges with the second out-vertex. As the
two in-vertices have to be distinct, they cannot both merge
with the same out-vertex. Therefore, there are two possible
ways to resolve a partition. However, in the FlexTree, all
the edges that are incident on any of the in-vertices are in-
terpreted as being connected to both the glue edges coming
out of the partition. This is because of the fact that any edge
i incident on one of the in-vertices has two possibilities as

given by the two glue edges. It is only in a PPH tree that the
edge i has to ‘choose’ one of these glue edges.

3.4. Representation of the FlexTree

Because of the partitions, the FlexTree is not exactly a
DAG. As is evident from the description of a partition, all
the columns involved in a partition have the same set of f-
parents (f-parent0 and f-parent1). Each partition involves
two groups of sites, each group representing the sites that
are incident on one of the two in-vertices of the partition.
The two groups are arbitrarily numbered as group-0 and
group-1. Therefore, for each partition, we need to store
the information about the f-parents and the two groups of
sites involved in the partition. For each site that is not in a
partition, we need to know the parent, f-parent1, f-parent0
of the site. If the site is involved in a partition, we need to
store a pointer to the partition. In order to optimize the per-
formance of the algorithm, each site involved in a partition
also needs to store which group of the partition it is in. The
FlexTree is stored as two tables, the column-table and the
partition-table, which give information about the sites and
partitions, respectively. The partition field in the column-
table stores a pointer to the partition that the column is in-
volved. The group field gives the group number of the col-
umn within the partition. For each column, we need a con-
stant amount of space in the column-table. Hence the total
space required by the column-table is O(m). The partition
table stores the index of each partition, the two f-parents,
and the list of sites in each group of the partition. The size
of a partition is defined as the total number of columns in-
volved in the partition. The size of a partition is equal to
the sum of the in-degrees of the two in-vertices. As each
column can be involved in only one partition at any given
time, the combined size of all the partitions in the FlexTree
is O(m). The total number of partitions in the partition ta-
ble can be up to O(m/2).

4. The OPPH Algorithm

An underlying assumption in the above discussion is that
root of the phylogenetic tree is an all-zero vector. If the
number of ‘1’s in every column is less than or equal to the
number of ‘0’s, then if the matrix has a perfect phylogeny,
the root for the phylogeny will be an all-zero vector. Though
every column in the input matrixAmight not always satisfy
this condition, there is a simple transformation that guaran-
tees that the root is an all-zero vector. The transformation is
to invert all columns with column sums greater than m - the
‘1’s in the column are changed to ‘0’s, the ‘0’s are changed
to ‘1’s, and the ‘2’s are left unchanged. The OPPH algo-
rithm requires the rows in Ac to be sorted using the lexico-
graphic order 1 < 0 < 2. We denote this row-sorted matrix

Figure 3. (a) A matrix M (b), (c), (d) and (e):
The FlexTree after processing rows 1,2,3 and
4, respectively

with M . As the phase relationships and the column order-
ing in M are no different from those is Ac, we continue to
refer to the phase matrix as PAc in the rest of the paper. An
extra, all-1 column with index 0 is added toM , as explained
in the previous section. For the algorithm to be O(nm) it
should not take more than O(m) time at each row. To give
the reader an idea of how the algorithm works, the FlexTree
after processing each row is shown in Figure 3. The OPPH
algorithm first builds the FlexTree to accommodate all the
pairwise relationships in the first row of the matrix M . It
then processes each of the remaining rows, modifying the
FlexTree to accommodate the pairwise relationships (both
direct and implied) introduced by each additional row.

We define the following terms. A column is said to be
fixed if it has a (non-null) parent. A column is said to be
flexible if it has at least one (non-null) f-parent. A column
is said to be in the FlexTree if it is either a flexible or a
fixed column. The FlexEnd of a fixed column i is the first
flexible column in the path from the edge labeled with i to
the root in the FlexTree. By convention, a flexible column
is the FlexEnd for itself.

A partial genotype vector is a prefix of a row in M , to
which a string if 0’s have been appended so that the length
of resulting vector is exactly m + 1. The vector needs to
be of length m+ 1 so that it remains to be a valid genotype
vector even when the columns are re-arranged to represent
the original order of the sites in matrix A. The ith partial
genotype vector of a row r, denoted by M [r, 0...i], is the
prefix of row r of length i + 1, to which m − i zeros have
been appended at the end. The mth partial genotype vector
of a row is the row itself. A haplotype vector (or a genotype
vector) h is said to end in a site j if j is the non-zero column
with the highest index in h. We denote the two haplotypes
of M [r, 0...i] using hi

r and ki
r. By convention, hi

r is the
haplotype vector that ends in the column with the higher
index among the two haplotypes hi

r and ki
r. For simplicity

of notation we denote the site in which hi
r ends by hi

r itself,
and the site in which ki

r ends by ki
r itself. From the context,

it will be clear whether it is the haplotype hi
r or the site hi

r

that is being referred to.
A partial genotype vector is said to be split if both the

sites hi
r and ki

r are defined (not null). Because of the con-
vention, the site hi

r is always defined. The site ki
r will be

defined if there is only one possible column in which the
haplotype ki

r can end. If there are multiple sites in which
the haplotype ki

r can end, then site ki
r is not defined. Dur-

ing the construction of the FlexTree, the algorithm main-
tains two additional arrays h[] and k[], each of size m + 1.
When the algorithm is processing row r, the fields h[i] and
k[i] represent the sites hi

r−1 and ki
r−1.

For any row r in the matrix M such that r ≥ 1, the
EntryPoint (denoted by er) is the column i with the lowest
index such that M [r − 1, i] �= M [r, i]. i.e, the entry point
is the first column from the left in which the rows r− 1 and
r differ. The SplitPoint (denoted by sr) of a row r is the
column with the highest index before er at which the row
r−1 is split. i.e., sr is the highest column i such that i < er

and the site k[i] (i.e, the site ki
r−1) is defined.

Algorithm 1: The OPPH algorithm
inputs: Ac, n, m
Result: The FlexTree T for Ac

Sort the rows in Ac and add an all-1 column with1

index 0 to produce the matrix M
Initialize every entry in the column table and2

partition table to null
h[0]← 0, k[0]← 0, FlexEnd[0]← 03

ProcessNewRow(1, 1)4

for ri = 2 to n do5

(er, sr)← ScanForward(M , T , ri)6

if M [ri − 1, er] = 1 AND M [ri, er] = 0 then7

ProcessNewRow(ri,er)8

else9

TraceUpRow(ri, er, sr)10

TraceDown(ri)11

As none of the pairwise relationships are known before
we start with the first row, the row will have a FlexTree as
long as it does not violate Property 1. i.e., if there are no
‘2’s to the left of a ‘1’. The column with index 0 is the
dummy all-1 column, hence Parent[0] is initialized to 0, by
convention. All other values in the column table are set
to null, except for h[0] and k[0], which are set to 0. The
ProcessNewRow procedure for building the FlexTree T for
the first row directly follows from the observations made in
Section 1.1.

The algorithm processes the rows in M in lexicographic
order and makes modifications to the FlexTree to accommo-

date the pairwise relationships induced by the rows. Hence,
when the algorithm is at a row r, all the pairwise relation-
ships induced by the first r − 1 rows are correctly repre-
sented in T . At each row, the algorithm consists of three
steps - ScanForward, TraceUp and TraceDown. We de-
scribe each one of the steps in detail in the following sec-
tions. A high-level description of the OPPH algorithm is
presented in Algorithm 1.

4.1. The Scan Forward procedure

In the scan forward step, the algorithm mainly finds er

and sr, the EntryPoint and SplitPoint for the row r. The
partial genotype vector M [r, 0...(er − 1)] is exactly iden-
tical to the partial genotype vector M [r − 1, 0...(er − 1)],
from the definition of er. Hence, there can be no new pair-
wise relation ships induced by the partial genotype vec-
tor M [r, 0...(er − 1)], as all the pairwise relationships in
M [r − 1, 0...(er − 1)] are already represented in T . The
scan forward procedure also finds sr. As both h[sr] and
k[sr] are defined, one of them must be in the path to hm

r

and the other must be in the path to km
r .

4.2. Trace Up

The actual modifications to the FlexTree are done in the
TraceUp step. In this step, the algorithm first tries to find
the site p0 in T with the highest index such that M [r, p0] =
2 and p0 ≥ er. Then it tries to find a site p1 such that
M [r, p1] = 2, k[sr] ≤ p1 ≤ p0, and p1 is not reachable
from p0. The pairwise relationships of all other columns
are inferred w.r.t. the sites p0 and p1.

The significance of the sites p0 and p1 is that they pro-
vide ‘anchor’s for the row in the FlexTree T . The trace up
procedure traces the ancestry of these two sites, defining
many phase relationships in the process. Since we know
that PAc [p0, p1] = 1, for any site i < p1, if the site i is ‘2’
in row r and if we know that any one of the phase relation-
ships PAc [i, p0] or PAc [i, p1] are ‘1’ or ‘0’, we can infer the
other by applying Theorem 1.

The significance of er is that it indicates some change
in the pairwise relationships involving p0 or p1. Because
of the column sorting, if er ≤ m, it means that the partial
genotype vector M [r, 0...er] is being encountered for the
first time. As p0 and p1 are already in T , for each of them,
there will at least be one row before r in which they were
non-zero. Let r0 < r be a row in which p0 was non-zero.
Since the row r0 precedes the row r, there must be at least
one column x0 ≤ er so that the pair (M [r0, x0],M [r, x0])
is (1,0), (1,2) or (0,2). In all three cases, it will be possible
either to declare the matrix M unrealizable, or to assign a
0 or 1 to PAc [y, p0] for every column y in the range x0 <
y < p0.

The trace up procedure starts by scanning the row from
right to left, and tries to find p0. If the procedure reaches
er without finding p0, then the row r does not involve any
non-zero columns after er that are already in the tree, and
the algorithm moves to the TraceDown procedure directly.
In fact, if M [r − 1, er] = 1 and M [r, er] = 0, then there
should be no non-zero column with higher index that er

that is already in T if matrix M is to be realizable, and the
algorithm invokes the ProcessNewRow procedure instead
of the TraceUp procedure.

The site k[sr] is the site with the lowest index that the
TraceUp procedure can reach. Since both k[sr] and h[sr]
are defined, one of the two haplotypes for the partial geno-
type vector M [r, 0...i] must end in h[sr] and the other must
end k[sr], in any PPH tree for the matrix M . Therefore,
either one of the two sites (k[sr], h[sr]) must be reachable
from p0, and the other must be reachable from p1, or both
must be reachable from both p0 and p1. The TraceUp proce-
dure can terminate as soon as it can ensure this reachability
criteria.

Assigning a parent to a flexible a site effectively sets a
phi entry in PAc to 0 and hence may effect other sites in the
FlexTree, as per Theorem 1. The following things have to
be taken care of when assigning a parent to a site:
Orphan sites: Fixing a flexible site i might result in some
orphan sites, sites for which only one f-parent is defined,
but have only one path to the root. This situation can be
handled by using a separate array L[] that stores in L[i] the
f-parent f of site i to which i is not fixed. For any site
for which i is the only f-parent, L[i] must be the other f-
parent after processing the current row, and the trace down
procedure carries out this assignment, thus correcting the
orphan sites.
Dealing with partitions: When a flexible site i that is in-
volved in a partition needs to be fixed, all the other sites
involved in the partition also get effected. All the sites that
are on the same side of the partition as i must get fixed to
the same site as i. If both the f-parents of the partition are
defined, then the sites on the opposite side must get fixed to
the other f-parent of the partition. If only one f-parent of the
partition is defined, then the sites on the opposite side of the
partition must enter into a partition with the FlexEnd of the
site i.

4.3. Trace Down

Trace down procedure mainly does four things: (1) Up-
date the FlexEnd of every site (2) Correct orphan sites (3)
Update h[] and k[] arrays (4) Add the non-zero columns
with index greater than p0 to the FlexTree. The trace down
procedure is simple and very straight forward. At each flex-
ible site i at which f-parent1[i] is not defined, f-parent1[i]
is set to L[i]. At each fixed site, the FlexEnd is copied onto

itself.

4.4. Obtaining a PPH Tree from the FlexTree

The total number of PPH trees represented by the Flex-
Tree is given by the following expression:

γ = 2{[no. of partitions]+[no. of flexible sites not in a partition]}

(2)
Any one of these γ solutions can be computed in O(m)

time from the FlexTree. The procedure for obtaining the
PPH tree fixes each flexible site, starting from the site with
the lowest index and processing the sites in M from left to
right. There will be only two possibilities at any flexible
site, as all the sites with higher indices are already fixed.
Different criteria can be applied to choose between the two
choices, in order to obtain the deepest or the broadest tree.

5. Complexity

It takes O(nm) time to compute the column sums. Once
the column sums are computed, it takes mlog(m) time to
sort the columns (using quick sort) according to the column
sums. The lexicographic ordering of the rows takes O(nm)
time and space, using radix sort. The total time required for
the preprocessing step is O(nm). The ScanForward step
involves a simple scan of the row, and takes O(m) time.
As long as partitions are not involved, the Trace Up proce-
dure takes constant time at each site. However, the Trace
Up procedure might spend up to O(m) time at sites that
are involved in partitions. Merging two partitions into one,
or fixing one side or both sides of the partition, takes time
in the order of the size of the partition(s) involved. How-
ever, the total amortized cost for all the mergers and fix-
ings while processing any single row is O(m). The detailed
proof for this complexity is not presented here due to space
constraints. The trace down procedure involves a constant
number of operations at each site, and therefore takesO(m)
time for each row.

6. Results

A OPPH algorithm has been implemented in C++. The
results indicate that the performance is as expected, indicat-
ing that there are no hidden constraints. Table 1 shows how
the OPPH algorithm performs in comparison to algorithms
gpph[8] and dpph[1]. The times for opph are averages over
one thousand test cases. The times for gpph and dpph are
averages over five cases. It is clear that the OPPH algorithm
outperforms both gpph and dpph algorithms. The tests were
carried on simulated data. A random PPH tree was gener-
ated, and the genotypes were obtained by selecting two ran-
dom haplotypes from the tree and combining them together.

The binaries for the implementation are available for down-
load from http://www.cs.ucf.edu/∼rvijaya/opph/.

Test case (n×m) gpph dpph opph
50× 50 0.11 0.01 0.007

100× 100 0.71 0.07 0.017
200× 200 4.49 0.53 0.06
500× 500 83.2 7.99 0.28

1000× 1000 662 66.5 0.43
1000× 2000 did not complete 302.78 0.97

Table 1. Performance results - all times are in
seconds on a P4 3GHz machine

.

References

[1] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyp-
ing as perfect phylogeny: A direct approach. Technical Re-
port CSE-2002-21, Department of Computer Science, The
University of California at Davis, july 2002.

[2] P. Bonizzoni, G. D. Vedova, R. Dondi, and J. Li. The hap-
lotyping problem: And overview of computational models
and solutions. Journal of Computer Scienc and Technology,
18(6):675–688, July 2003.

[3] A. G. Clark. Inference of haplotypes from pcr-amplified
samples of diploid populations. Mol. Biol. Evol., 7:111–122,
1990.

[4] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson1, and
E. S. Lander. High-resolution haplotype structure in the hu-
man genome. Nature Genetics, 29(2):229–32, Oct 2001.

[5] Z. Ding, V. Filkov, and D. Gusfield. A linear time algorithm
for the perfect phylogeny haplotyping (pph) problem. In
Proceedings of RECOMB, MIT, Cambridge, MA, 2005.

[6] E. Eskin, E. Halperin, and R. M. Karp. Large scale recon-
struction of haplotypes from genotype data. In Proceedings
of RECOMB, 2003.

[7] D. Gusfield. Inference of haplotypes from samples of
diploid populations: Complexity and algorithms. J Comput
Biol., 8(3):305–323, 2001.

[8] D. Gusfield. Haplotyping as perfect phylogeny: conceptual
framework and efficient solutions. In Proceedings of RE-
COMB, 2002.

[9] Y. Liu and C.-Q. Zhang. A linear solution for haplotype
perfect phylogeny problem. In International Conference
on Bioinformatics and its Applications (ICBA), Nova South-
eastern University, Fort Lauderdale, USA, 2004.

[10] R. VijayaSatya and A. Mukherjee. An optimal algorithm for
perfect phylogeny haplotyping. Technical Report CS-TR-
05-01, School of Computer Science, University of Central
Florida, Orlando, January 14, 2005.

[11] C. Wiuf. Inference on recombination and block structure
using unphased data. Genetics, 166(1):537–545, 2004.

