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Abstract 
 

We present TreeRefiner, a tool for refining 
multiple alignments of biological sequences. Given a 
multiple alignment, a phylogenetic tree, and scoring 
parameters as input, TreeRefiner optimizes the sum-
of-pairs function in a restricted three-dimensional 
space around the alignment. At each internal node of 
the unrooted tree, the multiple alignment is projected 
to the sub-alignments corresponding to the three 
neighboring nodes, and three-dimensional dynamic 
programming is performed within a user-specified 
radius r around the original alignment. We test 
TreeRefiner on simulated sequences aligned by 
several popular tools, and demonstrate substantial 
improvements in the percentage of correctly aligned 
positions. 
 
1. Introduction 
 

Multiple alignment is one of the main steps in 
the analysis of biological sequences. Comparative 
methods, which use sequence conservation as a 
signal to identify regions of functional importance, 
have been applied to gene identification [5, 7, 1, 25, 
43], regulatory motif finding [27, 24, 26, 42], 
noncoding RNA gene finding and structural 
determination [33], phylogenetic and evolutionary 
analysis [13, 35], identification of conserved domains 
and residues [4, 18], and characterization of protein 
families [36]. 

Because multiple alignment is an intractable 
computational problem [41], practical tools rely on 
heuristic methodologies such as progressive 
alignment [6, 38, 21, 40, 19] in which the multiple 
alignment is constructed by progressive application 
of a two-dimensional alignment procedure between 
two sequences or intermediate alignments, profile-
based alignment [16], or greedy assemblage of 

segment-to-segment comparisons [30]. Using these 
methods, protein aligners such as CLUSTALW [40], 
TCOFFEE [31], MUSCLE [17] and PROBCONS 
[15] have been successful in providing reasonable 
multiple alignments of large protein families, and 
genomic aligners such as MLAGAN [11], MAVID 
[8], and TBA [10] can handle whole mammalian 
genomes when combined with pre-existing genomic 
maps or with automated genomic alignment pipelines 
[34, 14, 12]. 

Heuristic procedures usually sacrifice accuracy 
in favor of computational efficiency. During 
progressive alignment, for instance, errors during 
early steps are propagated to the final output. 
Iterative refinement is a methodology for improving 
an existing multiple alignment by iterative 
application of a refinement procedure: during each 
refinement, a sequence is removed and realigned to 
the remaining multiple alignment [20, 9]. This 
procedure, which is guaranteed to maintain or 
improve the alignment score, is applied repeatedly 
with every sequence until the score converges. 
Variants of the method have been introduced for 
efficiency, such as requiring the new alignment not to 
deviate by more than a fixed distance from the 
original alignment [3]. 

Existing iterative refinement methods rely on 
realignment steps between pairs of sequences or 
partial alignments. In this paper, we introduce a tool 
based on three-dimensional alignment. Alignment 
between three (multi-)sequences is a natural step: 
usually, related biological sequences are connected 
into binary phylogenetic trees, whose internal nodes 
always have degree 3. Therefore, a promising way to 
align sequences is to integrate information at each 
internal node of the tree, taking into account the two 
daughter nodes and the outgroup node 
simultaneously. Progressive alignment in contrast, 
first fixes an alignment between the two daughter 
nodes, and then merges that alignment with the third 



Figure 1. Projection of a multiple alignment M into the three daughter alignments X, Y, and Z, with respect to 
an internal node of the phylogenetic tree. A. The marked internal (non-leaf) node divides the species’ tree into 
three subtrees. B. The subtrees correspond to projections of M into three subalignments X, Y, and Z. Note that 
in order to obtain a subalignment, gaps in M that are common to all sequences within the subset have to be 
removed. 

node—losing the opportunity to correct errors made 
during the first step. 

We tested the ability of TreeRefiner to improve 
multiple alignments produced by leading multiple 
alignment tools, on sets of nucleotide sequences that 
were generated by the Rose program [37] that 
simulates sequence evolution on a tree.  Based on 
standard measures of alignment accuracy in the case 
where the “true” alignment is known, we find that 
TreeRefiner improves the accuracy of most aligners 
significantly. 

 
 
2. Algorithms 
 

TreeRefiner takes the following four inputs: (1) a 
multiple alignment between K sequences; (2) an 
unrooted phylogenetic tree connecting the sequences; 
(3) scoring parameters, including a gap-open penalty 
d, a gap-extension penalty e, and a substitution 

matrix for nucleotides or amino acids; and (4) a 
radius r that limits the search space on which three-
dimensional dynamic programming will be 
performed. 

At each internal node of the phylogenetic tree, 
which is traversed bottom-up, TreeRefiner applies the 
following basic refinement procedure:  
 

1. The current multiple alignment M is 
projected into the sub-alignments X, Y, and 
Z, representing the three daughter nodes 
(Figure 1). M defines a path of points {(x1, 
y1, z1),…, (xm, ym, zm)}, where M contains m 
aligned columns, each xi is a column of the 
projected alignment X and x1 ≤ … ≤ xm, and 
similarly for each yi and zi (Figure 2a).  

2. A limited volume R on the three-
dimensional space X×Y×Z is defined by R = 
{(x, y, z) | ∃ (x’, y’, z’) ∈ M s.t. (x’ – r ≤  x ≤  
x’+r) & (y’– r ≤  x ≤  y’ + r) & (z’– r ≤  x ≤  



 
Figure 2. Limited area around the input alignment where refinement takes place. A. Given an initial alignment 
M, and three projections X, Y, and Z, M defines a path of points {(x1, y1, z1),…, (xm, ym, zm)}. B. A limited area 
R is defined to be all points that fall within a Manhattan distance r from the original alignment. The boundaries 
of R’s projection on the X-Z plane are shown. 
 

 
Table 1.  The symmetric pessimistic gap scoring function for estimating 
and penalizing the number of gap events.  In each axis we show the four 
possibilities of consecutive characters (gap vs. non-gap) in a given 
sequence.  In the table we show how many gaps are counted locally by 
(symmetric pessimistic, pessimistic, optimistic) where the latter two are 
given in (Kececioglu and Zhang 1998).  
 

 -- -x x- xx 

-- 0, 0, 0 ½, 1, 0  ½, 0, 0 0, 0, 0 
-x  0, 0, 0 1, 1, 1 ½, 0, 0 
x-   0, 0, 0 ½, 1, 1 
xx    0, 0, 0 

z’ + r)}. That is, the limited area R contains 
all points that fall within a Manhattan 
distance r from the original alignment 
(Figure 2b). It follows that R contains 
O(r2m) cells. 

3. Dynamic programming is performed on the 
Cartesian product R×S of volume R and set 
of column match/gap states S. The set S 
contains 7 states: one that emits three 

positions (x, y, z) from the three sub-
alignments, and 6 states corresponding to all 
possible gap patterns: { (x, y, –), (x, –, z), (–, 
y, z), (x, –, –), (–, y, –), (–, –, z) }. Each state 
is implemented as a dynamic programming 
matrix, to optimize the sum-of-pairs score 
between all original K sequences, under the 
user-specified scoring parameters. 

 
The sum-of-pairs score is defined 

as follows. In each column, substitution 
scores are added for each pair of 
nucleotides. In addition each gap is 
labeled as ‘O’ (gap open) or ‘G’ (gap 
extension), and each nucleotide is 
labeled as ‘C’ (gap-closing nucleotide) 
or ‘N’ (other nucleotide), Gaps are 
labeled ‘O’ when preceded by a 
nucleotide in the same sequence, and 
‘G’ otherwise. Nucleotides are labeled 
‘C’ when preceded by a gap in the same 
sequence, and ‘N’ otherwise. The 
column then receives a gap penalty 
defined by (d/2) × (#O) × (#N + #C +G) 
+ e × (#G) × (#N + #C) + (d/2) × (#C) × 
(#N + #O + #G). By attributing ½ the 



Table 2.  Performance of TreeRefiner on 15 kb-long alignments produced by CLUSTALW and DIALIGN.  Both 
tools were run with default parameters.  For each of the four parameter sets, the best SP or TC number before 
refinement is shown in bold; the best SP or TC number overall (including before and after refinement) is shown 
in bold and underlined.  We note that while both tools benefit from refinement, DIALIGN benefits significantly 
more.  One possible explanation is that DIALIGN produces alignments that are at least as good as those of 
CLUSTALW on the larger scale mapping of the sequences, but suffer on very local nucleotide-level accuracy. 
 

CLUSTALW DIALIGN Alignment 
TR radius SP TC TR radius SP TC 

((human 
baboon) (mouse 

rat)) 

none 
1 
2 
4 
8 

0.957 
0.960 
0.961 
0.965 
0.965 

0.883 
0.887 
0.891 
0.899 
0.899 

none 
1 
2 
4 
8 

0.902 
0.938 
0.954 
0.964 
0.965 

0.788 
0.847 
0.876 
0.896 
0.897 

((human 
baboon) (mouse 

rat)) + higher 
mutation rate 

none 
1 
2 
4 
8 

0.940 
0.942 
0.944 
0.945 
0.946 

0.838 
0.840 
0.847 
0.851 
0.854 

none 
1 
2 
4 
8 

0.838 
0.900 
0.903 
0.927 
0.934 

0.719 
0.801 
0.844 
0.873 
0.879 

(((pig cow) (dog 
cat)) ((human 

baboon) (mouse 
rat))) 

none 
1 
2 
4 
8 

0.888 
0.902 
0.909 
0.918 
0.921 

0.649 
0.673 
0.693 
0.716 
0.722 

none 
1 
2 
4 
8 

0.816 
0.881 
0.903 
0.927 
0.934 

0.538 
0.653 
0.701 
0.750 
0.766 

(((pig cow) (dog 
cat)) ((human 

baboon) (mouse 
rat))) + higher 
mutation rate 

none 
1 
2 
4 
8 

0.793 
0.813 
0.823 
0.832 
0.835 

0.446 
0.475 
0.491 
0.515 
0.525 

none 
1 
2 
4 
8 

0.732 
0.799 
0.835 
0.874 
0.882 

0.422 
0.509 
0.571 
0.640 
0.654 

gap-open penalty in the beginning of a gap, and ½ in 
the end, the function is symmetric with respect to 
initiation of dynamic programming in the top-left-
front corner or the bottom-right-back corner of the 
search space, and partially avoids artificial effects 
that sum-of-pairs exhibits when combined with affine 
gaps. 

Note that gaps are not penalized according to the 
transitions between states in S, but rather according 
to the gap patterns of the individual sequences. As an 
example, consider scoring the state transition (x5, y3, 
z8) → (x6, –, z9), where each xi, yj, zk is a column of an 
alignment X, Y, and Z, as follows: x5 = (A, A); x6 = 
(C, C); y3 = (A, A); z8 = (A, G); z9 = (C, –). Then, the 
transition is (A, A, A, A, A, –) → (C, C, –, –, C, –). 
The second column receives 3 C-C matches. 
Additionally, its gap pattern is labeled as (N, N, O, O, 
N, G) and receives gap penalty of (d/2) × 2 × (3 + 0 + 
1) + e × 1 × (3 + 0) + (d/2) × 0 × (3 + 2 + 1) = 4d + 
3e.  

Aligning two multiple alignments under the 
affine gap sum-of-pairs scoring function is NP-hard 
[28, 22], and therefore aligning three alignments, as 

in our case, is obviously intractable.  Several 
heuristic scoring functions for penalizing gaps have 
been defined, such as the quasi-natural function [2], 
the optimistic and the pessimistic gap functions [23].  
Our scoring function and optimization procedure is 
also necessarily heuristic, in that the number of gap 
events in the projected pairs of sequences cannot be 
estimated exactly.  In Table 1 we compare the 
number of gap-open penalties incurred according to 
our function to those estimated by pessimistic and 
optimistic gap counts.  Our method can be considered 
as symmetric pessimistic, in that it penalizes gap 
openings symmetrically with gap closings, while it 
overestimates the number of gap events in several 
situations. 
 
 
3. Results 
 
To test the performance of TreeRefiner, reference 
sequence alignments are created by using a 
probabilistic evolution simulator based on Rose. 



Table 3.  Performance of TreeRefiner on 100 kb-long alignments produced by MLAGAN, MAVID, and TBA.  All 
tools were run with default parameters.  For each of the four parameter sets, the best SP or TC number before 
refinement is shown in bold; the best SP or TC number overall (including before and after refinement) is shown in 
bold and underlined.  TBA did not return an alignment in the high-divergence 8-species input.  These results indicate 
that MLAGAN and MAVID alignments benefit considerably from TreeRefiner, while TBA is significantly more 
accurate to start with, and does not benefit from refinement.  
 

MLAGAN MAVID TBA 
Alignment TR 

radius SP TC TR 
radius SP TC TR 

radius SP TC 

((human 
baboon) (mouse 
rat)) 

none 
1 
2 
4 
8 

0.927 
0.956 
0.962 
0.965 
0.965 

0.847 
0.894 
0.906 
0.911 
0.912 

none 
1 
2 
4 
8 

0.941 
0.953 
0.958 
0.961 
0.963 

0.869 
0.890 
0.899 
0.903 
0.905 

none 
1 
2 
4 
8 

0.961 
0.961 
0.961 
0.961 
0.961 

0.900 
0.900 
0.900 
0.898 
0.898 

((human 
baboon) (mouse 
rat)) + higher 
mutation rate 

none 
1 
2 
4 
8 

0.913 
0.939 
0.944 
0.948 
0.948 

0.823 
0.866 
0.875 
0.883 
0.884 

none 
1 
2 
4 
8 

0.849 
0.860 
0.866 
0.872 
0.879 

0.745 
0.763 
0.772 
0.781 
0.791 

none 
1 
2 
4 
8 

0.952 
0.949 
0.947 
0.947 
0.947 

0.890 
0.883 
0.881 
0.880 
0.880 

(((pig cow) 
(dog cat)) 
((human 
baboon) (mouse 
rat))) 

none 
1 
2 
4 
8 

0.868 
0.914 
0.926 
0.932 
0.934 

0.684 
0.742 
0.757 
0.767 
0.769 

none 
1 
2 
4 
8 

0.848 
0.878 
0.892 
0.901 
0.907 

0.628 
0.669 
0.693 
0.708 
0.717 

none 
1 
2 
4 
8 

0.924 
0.927 
0.928 
0.929 
0.929 

0.769 
0.762 
0.760 
0.757 
0.757 

(((pig cow) 
(dog cat)) 
((human 
baboon) (mouse 
rat))) + higher 
mutation rate 

none 
1 
2 
4 
8 

0.792 
0.864 
0.884 
0.896 
0.901 

0.547 
0.641 
0.669 
0.687 
0.695 

none 
1 
2 
4 
8 

0.660 
0.682 
0.694 
0.706 
0.716 

0.359 
0.385 
0.398 
0.414 
0.423 

none 
1 
2 
4 
8 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 

Guided by an evolutionary tree, a family of related 
sequences is created starting with a random ancestral 
sequence under the HKY model with 
transition/transversion bias, substitution rate, and 
insertion/deletion rates set to mimic the sequence 
divergence properties of real sequences as estimated 
[13].  During this artificial evolutionary process, the 
`correct' multiple sequence alignment is created, and 
can be used as reference for measuring alignment 
accuracy.  Similar benchmarking strategies based on 
simulations have been applied previously [32, 10].   

We tested improvement conferred by 
TreeRefiner with respect to alignments generated by 
CLUSTALW, DIALIGN, MAVID, MLAGAN, and 
TBA.  First, the unaligned derived sequences 
generated by Rose were aligned with the tested 
aligners. Then the output multiple alignments were 
fed to TreeRefiner to obtain a refined multiple 
alignment. To compare the accuracy of the original 
and improved alignments, two scores SP (sum of 

pairs) and TC (total columns) were used.  SP is the 
ratio of the number of correctly aligned pairs of 
letters in the test alignment to the number of aligned 
pairs in the reference alignment. TC is the ratio of the 
number of correctly aligned columns in the test 
alignment to the number of columns in the reference 
alignment. Both SP and TC range from 1.0 for 
perfect agreement to 0.0 for no agreement. 

In the case of CLUSTALW and DIALIGN, for 
efficiency reasons we generated simulated sequences 
of length 15 kb.  For MLAGAN, MAVID, and TBA, 
which scale well with sequence length, we instead 
generated simulated sequences of length 100 kb.  We 
run Rose on two trees, each with two sets of 
parameters.  We marked the first tree as ((human 
baboon) (mouse rat)), and the second tree as (((pig 
cow) (dog cat)) ((human baboon) (mouse rat))).  On 
each tree, we chose the first parameter set to mimic 
sequence divergence between the corresponding 
species, as measured [13] on a region  harboring the 



Cystic Fibrosis Transmembrane Conductance 
Regulator gene [39]. The second parameter set kept 
gap parameters the same, but increased the mutation 
rates 40% from their previous values.  All 
simulations and parameters are described in detail in 
our website, http://treerefiner.stanford.edu. 

Tables 2 and 3 show the performance of 
TreeRefiner on alignments produced by the different 
programs.  As seen in the tables, TreeRefiner 
improves the accuracy of most programs under all 
four different parameter sets, both in terms of the SP 
and the TC measure.  As we increase the radius of 
dynamic programming area where TreeRefiner is run, 
we see improvements in accuracy, and note that in 
most cases we experience diminishing returns as the 
radius increases from 4 to 8. 

We note that some of the alignment tools benefit 
much more than other tools by application of 
TreeRefiner on their output.  For example, DIALIGN 
seems to improve considerably more than 
CLUSTALW: while the original CLUSTALW 
alignments are always more accurate than the ones by 
DIALIGN according to the SP and TC measures, the 
DIALIGN alignments tend to become more accurate 
as soon as TreeRefiner is applied with radius at least 
4. MLAGAN and MAVID also improve considerably 
with refinement.  The only tool that does not benefit 
from refinement is TBA, which performs extremely 
well in these simulations and refinement results in 
similar or slightly lower accuracy, depending on the 
example.  TBA is known to be the best aligner in 
simulation benchmarks [10].  

We observed that the running time of 
TreeRefiner, as expected, grows approximately 
linearly with length of the input multiple alignment, 
linearly with the number of species, and 
exponentially with radius.  In the cases of 
CLUSTALW and DIALIGN alignments, TreeRefiner 
had significantly lower running time (at least 10 
times lower for CLUSTALW, and 3 times lower for 
DIALIGN, for radius 8 on the 8-species alignment).  
Compared to the other aligners, TreeRefiner was 
significantly slower with high radius.  For example, a 
radius of 8 takes approximately 800 seconds on a 
multiple alignment of 8 sequences of length 100,000 
each, on a 3.2 GHz Pentium IV machine.  However, 
running time is practical for long alignments: we 
refined the MLAGAN alignment of the CFTR region 
in 9 species (4.3 million columns) in 24 minutes with 
radius 2.  Although the “correct” alignment is not 
known as in simulations, and therefore we cannot 
measure local nucleotide-level improvements 
rigorously, the resulting alignment looks significantly 
improved by visual inspection.  We include examples 
of regions before and after improvement, in Table 4.  

Supplemental results are available in our 
webpage, http://treerefiner.stanford.edu.  We include 
the source code and executable for TreeRefiner, with 
documentation of how to run it.  We also include our 
test scripts, test input sequences, as well as resulting 
alignments of running each tool before and after 
refinement. Finally, we include the alignment of the 
CFTR region before and after refinement, as well as 
automatically generated snapshots of regions that are 
significantly improved according to a score 
difference threshold. 
 
 
4. Discussion 

 
TreeRefiner is a practical tool for improving the 

affine sum-of-pairs score of a multiple alignment on 
a limited search area within the original alignment.  
TreeRefiner is available as public domain software, 
at http://treerefiner.stanford.edu. The symmetric-
pessimistic scoring function used in this paper is a 
version of sum-of-pairs with affine gaps, with user-
defined parameters.  Users can experiment with 
alternative scoring models by modifying the per-
column scoring function in the source code, for 
which documentation is available. 

The refinement algorithm used by TreeRefiner 
can make only local adjustments to an alignment: 
with radius r, a segment of arbitrary length can move 
at most r positions, or a segment of length r can 
move an arbitrary number of positions, with respect 
to the input alignment. No long-range improvements 
can be made, such as aligning correctly a protein-
coding exon that was previously missed. Local 
improvements are important in applications that 
require high accuracy at the level of single letters or 
short features. Examples include phylogenetic 
analysis and estimates of evolutionary rates, where 
the number of substitutions should not be 
overestimated, comparative gene recognition, where 
features such as the ‘ATG’, splice sites, and stop 
codons should be aligned exactly, regulatory element 
finding, where the motifs of interest are short and 
often difficult to align, and noncoding RNA structure 
prediction and detection where, again, features such 
as stems and bulges are short. 

Development of rigorous methods for measuring 
the accuracy of real genomic DNA alignments is an 
open problem [29].  In lieu of that, simulations are a 
reasonable alternative [32, 10].  While we cannot 
quantify rigorously the improvement in accuracy that 
TreeRefiner will produce on real sequences, our 
simulations indicate that improvements are 
significant with respect to alignments produced by 
several popular aligners that we tested.  



Table 4.  Examples of TreeRefiner improvements on the MLAGAN alignment of the CFTR region.  In both 
cases, changes are subtle and involve insertion or shifting of gaps in several sequences.  Visual inspection 
points to several areas of the alignment such as the two shown here, where the large-scale map remains the 
same, but the nucleotide-level alignment is significantly improved after refinement.  Quantifying the 
nucleotide-level accuracy of alignments of real genomic DNA alignments remains an open problem. 
 
Before Refinement. Score: 103967; Column Number: 697953. 

Baboon : GAGCCCAGTGCTTTGAGAATG-TCAATGCAAAATTATAATAATTACTTATC 
Chimp  : GAGCCCAGTGCTTTGAGAATG-CCAATGCAAAATTATAATAATTACTTATT 
Human  : GAGCCCAGTGCTTTGAGAATG-CCAATGCAAAATTATAATAATTACTTATT 
Cat    : GAACTCAGTGCTTTGAGACTG-TTAATGCAAAATTATGACAACT--TTATT 
Dog    : GAGCTCAGTACTTTGAGAATG-TCAATGCAAAATTATAATAATTGCTCATT 
Cow    : GAGGCCAGTGCTTTGAGAATG-CCAATGCAAAATTATAATAATTGCTTATT 
Pig    : GATCCCAGTGCTTTGAGAATG-CCAATGCAAAATT---ATAATTGCTTCTT 
Mouse  : GAGTCCAATACTTAAGAGAATGTCAATACAAAATTAAAATAATTGGTCATT 
Rat    : GAGCCCAATACTTTGAGATTGTCAATACAAAATTAAAAATAATTGCTCATT 

After Refinement.  Score: 122382; Column Number: 704386.  
Baboon : GAGCCCAGTGCTTT-GAGAATGTCAATGCAAAATTATAA-TAATTACTTATC 
Chimp  : GAGCCCAGTGCTTT-GAGAATGCCAATGCAAAATTATAA-TAATTACTTATT 
Human  : GAGCCCAGTGCTTT-GAGAATGCCAATGCAAAATTATAA-TAATTACTTATT 
Cat    : GAACTCAGTGCTTT-GAGACTGTTAATGCAAAATTATGA-CAACT--TTATT 
Dog    : GAGCTCAGTACTTT-GAGAATGTCAATGCAAAATTATAA-TAATTGCTCATT 
Cow    : GAGGCCAGTGCTTT-GAGAATGCCAATGCAAAATTATAA-TAATTGCTTATT 
Pig    : GATCCCAGTGCTTT-GAGAATGCCAATGCAAAATTA----TAATTGCTTCTT 
Mouse  : GAGTCCAATACTTAAGAGAATGTCAATACAAAATTAAAA-TAATTGGTCATT 
Rat    : GAGCCCAATACTTT-GAGATTGTCAATACAAAATTAAAAATAATTGCTCATT 

 
Before Refinement. Score: 103967; Column Number: 697953. 

Baboon : CATGCTAAGACCCATTTTAGCTCTGATTTTCTGTGAGTCATAGCAGAGGA 
Chimp  : CATGCTAAGACTCATTTTAGCTCTGATTTTCTGTGAGTCATAGCAGAGGG 
Human  : CATGCTAAGACTCATTTTAGCTCTGATTTTCTGTGAGTCATAGCAGAGGG 
Cat    : ATCTCTAAT-CCATTTTAGCTCGATTTTTTTGTGTGTGTCATAGCAGGGG 
Dog    : ATCTCCAATATTCATTTTACATCTGATTTTTTGGTGTATTGTAGCAGGGG 
Cow    : GTCTCGAAGGTTCATTTTCACCCCAGTTTTCT-GTGAGTCATGGCAGGGA 
Pig    : ATTTTTGAGGGTCATTTTCCTCCAGTTTTCTG-TGAGTCAATGGCATGGT 
Mouse  : GTCCTGCAGATTCCTTTTTGCTTTGAATGTCTGTGAGTCACGTTACAAGG 
Rat    : GTCTTGCAGATTCATTTTTGCTTTGAATTTCTGTGAGTCACGTCACAAGG 

After Refinement.  Score: 122382; Column Number: 704386.  
Baboon : CATG----CTAAGACCCATTTTAGCTCTGATTTTCTG--TGAGTCATAGCAGAGGA
Chimp  : CATG----CTAAGACTCATTTTAGCTCTGATTTTCTG--TGAGTCATAGCAGAGGG
Human  : CATG----CTAAGACTCATTTTAGCTCTGATTTTCTG--TGAGTCATAGCAGAGGG
Cat    : GATGATCTCTAA--TCCATTTTAGCTCGATTTTTTTGTGTGTGTCATAGCAGGGGG
Dog    : GATGATCTCCAATATTCATTTTACATCTGATTTTTTG-GTGTATTGTAGCAGGGGG
Cow    : GAGGGTCTCGAAGGTTCATTTTCACCCCAGTTTTCTG--TGAGTCATGGCAGGGAG
Pig    : GATGATTTTTGAGGGTCATTTTC-CTCCAGTTTTCTG--TGAGTCAATGGCATGGT
Mouse  : AGTGGTCCTGCAGATTCCTTTTTGCTTTGAATGTCTG--TGAGTCACGTTACAAGG
Rat    : AGCAGTCTTGCAGATTCATTTTTGCTTTGAATTTCTG--TGAGTCACGTCACAAGG 
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