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Abstract

Post-translational modifications (PTMs) are of great bi-
ological importance. Most existing approaches perform a
restrictive search that can only take into account a few types
of PTMs and ignore all others. We describe an unrestrictive
PTM search algorithm that searches for all types of PTMs
at once in a blind mode, i.e., without knowing which PTMs
exist in a sample. The blind PTM identification opens a
possibility to study the extent and frequencies of different
types of PTMs, still an open problem in proteomics. Us-
ing our new algorithm, we were able to construct a two-
dimensional PTM frequency matrix that reflects the num-
ber of MS/MS spectra in a sample for each putative PTM
type and each amino acid. Application of this approach to
a large IKKb dataset resulted in the largest set of PTMs re-
ported for a single MS/MS sample so far. We demonstrate
an excellent correlation between high values in the PTM
frequency matrix and known PTMs thus validating our ap-
proach. We further argue that the PTM frequency matrix
may reveal some still unknown modifications that warrant
further experimental validation.

1 Introduction

Fueled by recent improvements in instrumentation and
software, tandem mass spectrometry has become the tool
of choice for protein identification. However, while the
popular algorithms like Sequest [8] and Mascot [16] are
used extensively for peptide identification, many spectra
remain unidentified by these algorithms. This can be at-
tributed to several factors including poor quality of frag-

mentation/ionization, and the presence of post-translational
modifications (PTMs) and mutations.

Identifying PTMs at a global level is undoubtedly the
next big step for proteomics (Cantin and Yates, 2004 [5]).
Post translational modifications greatly increase the com-
plexity of the proteome and recent reports [3, 22] suggest
that the extent of modifications is much larger than some
earlier estimates. However, reliable computational identifi-
cation of PTMs and mutations remains a formidable chal-
lenge. In theory, one could enumerate all of the combina-
torial modifications for each peptide, score them, and find
the best scoring peptide. In practice, however, the combi-
natorial explosion makes it harder to enumerate all but a
few choice modifications. Mutations complicate the picture
even further, as each residue can be mutated into a different
residue.

The first approach to PTM identification was proposed
by Yates et al., 1995 [25], who advocated the enumera-
tion and scoring of all possible candidates. This exhaustive
search approach has serious limitations since it can only
take into account a few modifications and would be pro-
hibitively slow for mutation detection. In other words, a re-
searcher has to “guess” in advance which PTMs are present
in the sample, an unrealistic expectation. As a result, the
current practice is to perform a restrictive search for a small
set of PTMs (such as phosphorylation) and ignore all other
PTMs. The question arises whether one can design an un-
restrictive PTM search algorithm that searches for all types
of PTMs at once in a blind mode, i.e., without knowing
which PTMs exist in a sample. Another, even more ambi-
tious question is whether one can predict PTMs that are not
known yet by data mining large MS/MS datasets, something
that was never done before. The blind PTM identification

1



approach would open a possibility to study the extent and
frequencies of different types of PTMs, still an open prob-
lem in proteomics.

The first blind approach to PTM identification (spec-
tral alignment) was proposed by Pevzner et al., 2000,
2001, [17, 18]. Recently, Searle et al., 2004 (OpenSea) [21]
and Han et al., 2004 [10] (SPIDER) proposed yet another
approach to blind PTM identification. In contrast to spectral
alignment, these approaches rely on de novo interpretation
of MS/MS spectra. For example, Han et al. [10] formu-
late the problem as the identification of a modified peptide
that best matches both the de novo interpretation and the
database peptide. While this elegant formulation accom-
modates some de novo sequencing errors, the approach de-
pends critically on a good de novo interpretation and thus is
vulnerable to de novo sequencing errors.

In parallel, there has been extensive research of late on
improving the scoring of unmodified mass spectra against
peptides [2,6,9,13,16,19,20,23,25,26]. These score func-
tions consider fragmentation propensities, peptide composi-
tion, ion dependencies, completeness of b-y ladders, etc. Fi-
nally, the reliability of peptide assignments is considered by
comparisons of the score distribution of correctly and incor-
rectly assigned peptides [11, 14, 15]. Unfortunately, these
extensions do not carry over to the identification of mod-
ified peptides, and most algorithms for identifying PTMs
still consider simpler score functions.

Recently, Tanner et al. [24] revisited PTM search in re-
stricted mode (i.e, with a short list of putative modifica-
tions). They start with a de novo approach to tag genera-
tion, and combine tag generation and extension in the pres-
ence of modifications with a novel scoring function. This
approach revealed many previously unidentified PTMs in
large samples of MS/MS spectra (Alliance for Cellular Sig-
nalling) and is about 2 orders of magnitude faster than other
restricted PTM searches. Tanner et al. [24] separate can-
didate generation from the scoring step thus allowing the
scoring step to take advantage over recent improvements
in scoring. However, their algorithm also has to “guess”
the types of PTMs in advance and cannot be run in a blind
mode. Moreover, the time complexity of their algorithm de-
pends exponentially on the size of the set of allowed modi-
fications. In particular, this makes the algorithm impractical
for handling mutations.

In this paper, we revisit the blind approach to PTM iden-
tification that directly aligns the spectra against the database
thus eliminating the dependence on accurate de novo inter-
pretations. We describe a new algorithm that extends the
dynamic programming approach of Pevzner et al. [17, 18]
and addresses some limitations of spectral alignment. Our
alignment is a local or fitting version of spectral alignment
instead of global alignment as in Pevzner et al. [17,18]. Ad-
ditionally, we use a more realistic scoring function that ac-

cumulates evidence for present ions, penalizes missing ions,
and uses a more general scoring to account for PTMs. Al-
though these improvements further complicate the spectral
alignment approach, we were successful in keeping the run-
ning time of the fitting spectral alignment low. We apply
our algorithm only to get an initial list of candidates, which
are then rigorously scored using a Support Vector Machine
(SVM) approach to obtain p-values on the hits. Finally, we
address the issue of robustness of identification, by combin-
ing information from overlapping, but identically modified
peptides, and identical, but unmodified peptides to generate
a list of reliable PTMs.

Identification of all types of PTMs present in a large col-
lection of MS/MS is a difficult task. An even more dif-
ficult task (that still requires manual case-by-case analy-
sis) is to distinguish between real PTMs and artifacts of
protein identification and to estimate the relative frequen-
cies of different types of PTMs. While many PTMs are
known, there is no study of their relative frequencies in
protein samples. In this paper we address both problems
(finding many diverse PTMs and estimating their frequen-
cies) by studying a large sample of MS/MS spectra gen-
erated at USC Medical School. The key bottleneck in
studying such samples is the limited speed and accuracy
of blind PTM identification. Using our approach we were
able, for the first time, to construct a PTM frequency ma-
trix PTM(∆, a) that reflects the number of MS/MS spec-
tra in a sample with predicted PTM ∆ on amino acid a for
all possible shifts ∆ and all amino acids a (Table 2). Ad-
mittedly, many entries in this table represent interpretation
artifacts rather than real PTMs. However, one can notice
that while most entries in this table are small, some en-
tries are very large (shown in bold). We argue that since
the noise in the PTM frequency matrix is “random”, the
large values are likely to represent the real PTMs rather
than artifacts. For example, the four largest entries in
the PTM frequency matrix of Table 2 (PTM(16,M)=614,
PTM(32,M)=376, PTM(28,K)=239, and PTM(14,C)=233)
match common PTMs (oxidation and double oxidation
of Methionine, dimethylation of Lysine, and carboxam-
idomethyl of Cysteine). These four PTMs alone increase
the number of interpreted MS/MS spectra in the sample
by ≈ 15%, a significant increase. Below we demonstrate
an excellent correlation between high values in the PTM
frequency matrix and known PTMs thus validating our ap-
proach. Moreover, some high values in the PTM frequency
matrix (e.g., PTM(53,E)) may point to some still unknown
modifications and provide multiple supporting evidence that
they indeed may correspond to previously unknown PTMs
rather than artifacts of our approach.



2 The algorithm

In this section, we formulate the Modified Peptide Iden-
tification Problem and describe two algorithms that solve
it. We first describe a general algorithm that can solve the
problem with any number of modifications. Then, we show
how to solve the problem more efficiently when there are at
most 2 modifications.

2.1 Preliminaries

We begin with some definitions. Let A = {a1, . . . , a20}
be the set of amino acids, each with molecular mass m(ai).
A peptide P = p1 · · · pn is a sequence of amino acids, with
mass m(P ) =

∑n

i=1
m(pi). For an experimental spectrum

S, m(S) is the mass of the spectrum, which is equal to the
mass of the peptide that generated the spectrum.

Peptide fragmentation in a tandem mass spectrometer
can be characterized by a set of numbers {s1, . . . , sk} repre-
senting the different types of ions that correspond to the re-
moval of a certain chemical group from a peptide fragment
(for example, s = 17 corresponds to loss of water). For tan-
dem mass spectrometry, the theoretical spectrum T (P ) of a
peptide P can be calculated by subtracting all possible ion
types s1, . . . , sk from the masses of all prefixes and suffixes
of P .

The Shared Peak Count between an experimentally mea-
sured spectrum S and a peptide P is the number of masses
in S that are equal to masses in T (P ). In reality, peptide
sequencing algorithms use more sophisticated scoring func-
tions than a simple shared peaks count, incorporating differ-
ent weighting functions for the matching masses and taking
into account intensities of peaks. Let Match(S, P ) be a
function that scores the likelihood that a spectrum S is pro-
duced by a peptide P .

Computationally, a modification ∆ of the peptide P =
p1 · · · pn at position i results in a modified peptide P̂ with
the mass of residue pi increased by ∆. We emphasize that
this operation defines a theoretical spectrum of any mod-
ified peptide P̂ and allows one to compute Match(S, P̂ ).
We study the following problem:

Modified Protein Identification Problem
Input: A database of proteins, an experimental spectrum S,
and a parameter k capping the number of modifications.
Output: A modified peptide P̂ with the best match
Match(S, P̂ ) to the spectrum S that is at most k modifi-
cations away from a peptide P that appears in the database
(namely, P is a substring of some protein in the database).

To simplify the presentation, we make the following as-
sumptions on the input. We assume that if two modifica-
tions appear on two consecutive amino acids of the pep-
tide, then either the b-ion or the y-ion that corresponds to

the cleavage site between these two amino acids appears in
the spectrum S. Moreover, we assume that there are no
two consecutive cleavage sites whose b and y ions are miss-
ing from S. We also assume that the masses of all amino
acids and all modifications are integers, and that there are
no measurement errors in the spectrum S. We note that our
actual algorithm does not need these assumptions (due to
lack of space we do not describe how to remove these as-
sumptions).

2.2 Algorithm for arbitrary number of modifica-
tions

Any modified peptide that is at most k modifications
away from a peptide in the database is called a candidate.
Our approach is to find the highest scoring candidates ac-
cording to some scoring function Match1. These candi-
dates are then rescored in a second stage using a more so-
phisticated scoring function Match2 as described in Sec-
tion 3. To start, low-intensity peaks are filtered from spectra
as described in Bandeira et al. [4].

The score Match1(S, P̂ ) of a candidate P̂ consists of
two parts: scores for the masses of the prefixes of P̂ ,
and scores for the modifications in P̂ . More precisely, let
MassScore(v) be a scoring function for every mass v. Let
PTMScore(∆, a) ≤ 0 be a penalty for having a modifi-
cation ∆ on the amino acid a. For every candidate P̂ , the
score of P̂ is the sum of MassScore(v) for every mass v of
a prefix of P̂ (including the entire peptide P̂ and the empty
prefix), plus the sum of scores of the modifications of P̂
according to PTMScore. In our implementation of the al-
gorithm, we use the mass scoring function from Tanner et
al. [24]. The function PTMScore is defined as follows:

PTMScore(∆, a) =











C if −M1 ≤ ∆ ≤ M2

and m(a) + ∆ ≥ 50

−∞ otherwise
,

where M1 (resp., M2) is the maximum (resp., minimum)
allowed mass offset of one modification, and C < 0 is some
constant. This function forbids implausible interpretations,
and gives better results than a constant penalty function.

We now show how to compute the score of the highest
scoring candidate. From S we build a prefix residue mass
(PRM) spectrum S′, namely, for every mass v ∈ S, we add
to S′ the masses v − 1 and m(S) − (v − 19), Furthermore,
we add to S′ the masses 0 and m(S).

Denote the protein database q as a single sequence
p1 · · · pn, and let m be the size of the set S ′. For every
j ≤ n and v ∈ S′, let Dk(j, v) be the maximum score of a
peptide P̂ with exactly k modifications whose unmodified
peptide P is a substring of q that ends at pj , and whose mass
is v. Note that the size of the table Dk is n × m.



The table D0 can be easily computed in O(nm) time.
To compute a value Dk(j, v) for k ≥ 1 we need to consider
five cases: (1) The optimal peptide P̂ for Dk(j, v) does not
have a modification on its last amino acid, and the mass v′

of the prefix of P̂ of length |P̂ | − 1 is in S′ (2) P̂ does not
have a modification on its last two amino acids and v′ /∈ S′,
(3) P̂ has a modification on its last amino acid and v′ ∈ S′,
(4) P̂ has a modification on its last amino acid and v′ /∈ S′,
and (5) P̂ has a modification on its penultimate amino acid
but not on its last, and v′ /∈ S′. Formally, the recurrence
formula for Dk(j, v) is given by the following lemma.

Lemma 2.1. Dk(j, v) = max{dj,v,k,1, dj,v,k,2, dj,v,k,3,
dj,k,v,4, dj,k,v,5} + MassScore(v), where dj,v,k,1, dj,v,k,2,
dj,v,k,3, dj,k,v,4, and dj,k,v,5 are defined in Figure 1.

After computing Dk(j, v) for all j and v, we can find the
score of the highest scoring candidate with at most k modifi-
cations by computing maxk′≤k,j Dk′(j,m(S)). Each value
Dk′(j,m(S)) is the maximum score of a candidate with k′

modifications that ends at pj . This candidate can be found
by traversing the dynamic programming tables starting at
Dk′(j,m(S)). By performing this process on the T k′, j
pairs with highest Dk′(j,m(S)) values (for some parame-
ter T ), we obtain a set of candidates, which is passed to the
second stage.

The time complexity of the algorithm above is
O(knm2). This is expensive for typical values of the pa-
rameters, and can be improved for two special cases of prac-
tical importance. The first case is when PTMScore(∆, a) is
a constant C, namely, it does not dependent on the modifica-
tion or the residue a. In that case, we can compute cases 3–5
of the algorithm in constant time by maintaining additional
information. Define Mk(j, v) = maxw<v{Dk(j, w)}. It
is easy to see that in case 3, dj,v,k,3 = Mk−1(j − 1, w).
Cases 4 and 5 can be modified in a similar fashion. Mk

can be computed in constant time per entry, leading to an
O(knm) time algorithm.

In the next section, we describe an efficient algorithm for
an arbitrary function PTMScore, but we limit the number
of modifications to 2. As the results with 3 or more modi-
fications are not very reliable, this restriction is reasonable.
The handling of 0 or 1 modifications is simpler, and is not
described here.

2.3 Algorithm for two modifications

We denote by M1 (resp., M2) the maximum (resp., min-
imum) mass offset of one modification. Instead of us-
ing the tables D0, D1, and D2, our algorithm will use
D1 and the following two tables: For every i ≤ j
such that m(pi · · · pj) ≤ m(S) + M1, PrefixScore(i, j)
is the score of pi · · · pj , namely PrefixScore(i, j) =

MassScore(0) +
∑j

k=i MassScore(m(pi · · · pk)). Sim-
ilarly, for every j ≤ i such that m(pj · · · pi) ≤
m(S) − M2, SuffixScore(j, i) = MassScore(m(S)) +
∑i

k=j MassScore(m(S) − m(pk · · · pi)). Computing the
table PrefixScore is done by going over all i, and accumu-
lating the scores MassScore(m(pi · · · pj)) for all j. Com-
puting SuffixScore is done similarly.

Define ∆i,j,v = v − m(pi · · · pj) for every i ≤ j ≤ n
and v ∈ S′. To compute the table D1, we use the following
lemma (note that there are only four cases in the lemma,
while Lemma 2.1 has five cases).

Lemma 2.2. D1(j, v) = max{dj,v,1,1, dj,v,1,2, dj,v,3,
dj,v,4} + MassScore(v), where dj,v,1,1 and dj,v,1,2 are de-
fined in Figure 1, and dj,v,3 and dj,v,4 are defined in Fig-
ure 2.

After computing D1(j, v) for all j and v, we can find
the maximum score of a candidate as follows: Define
∆̂j,i,v = m(S)−m(pj+1 · · · pi)− v for all j, i, and v. The
maximum score of a candidate is max (∪j,v{bj,v,1, bj,v,2}),
where bj,v,1 and bj,v,2 are defined in Figure 2. Like in the
previous algorithm, we generate the highest scoring candi-
dates by traversing the table D1.

Time complexity The time complexity of the algorithm is
O(dnm) where d = b(M1−M2)/57c+1 is an upper bound
on the number of values of i we need to consider in order to
compute a single value of dj,v,3, dj,v,4, bj,v,1, or bj,v,2 (this
upper bound follows from the fact that for all i, ∆i+1,j,v −
∆i,j,v is the mass of some amino acid, and the minimum
mass of an amino acid is 57 Da.) On average, the number of
i values is even smaller: d̄ ' b(M1−M2)/100c+1. Typical
values are M1 = 150, M2 = −150, implying d̄ ' 4.

3 Scoring and P-value computation

An important part of our approach is that we dissoci-
ate candidate generation from the final scoring, and P-value
computation. To score modified peptides, we follow the ap-
proach of Tanner et al. [24] that is built upon Dancik et
al., 1999 [7], and Bafna and Edwards, 2001 [2]. We also
address the question of validity of the top-scoring peptide.
While every spectrum returns a top-scoring peptide, the top
scoring peptide is not always the correct one even if the
score function is accurate. This could happen, for exam-
ple, if the correct peptide was not in the database, or the
spectrum was of low quality etc. The common approach
to validation [1, 11, 14, 15, 24] is to combine a number of
features, including the assignment score, a δ-score (differ-
ence in match score between the top match and the nearest
runner-up), similar to ∆cn feature used by Sequest. Be-
cause δ-score is sensitive to database size, we also include



dj,v,k,1 =

{

Dk(j − 1, v − m(pj)) if v − m(pj) ∈ S′

−∞ otherwise

dj,v,k,2 =

{

Dk(j − 2, v − m(pj−1pj)) + MassScore(v − m(pj)) if v − m(pj−1pj) ∈ S′

−∞ otherwise

dj,v,k,3 = max ({Dk−1(j − 1, w) + PTMScore(v − (w + m(pj)), pj) ∀w ∈ S′, w < v} ∪ {−∞})

dj,v,k,4 = max

({

Dk−1(j − 2, w) + PTMScore(v − (w + m(pj−1pj)), pj)

+ MassScore(w + m(pj−1))
∀w ∈ S′, w < v

}

∪ {−∞}

)

dj,v,k,5 = max

({

Dk−1(j − 2, w) + PTMScore(v − (w + m(pj−1pj)), pj−1)

+ MassScore(v − m(pj))
∀w ∈ S′, w < v

}

∪ {−∞}

)

Figure 1. Definitions of dj,v,k,1, dj,v,k,2, dj,v,k,3, dj,k,v,4, and dj,k,v,5.

dj,v,3 = max ({PrefixScore(i, j − 1) + PTMScore(∆i,j,v , pj) ∀i s.t. M1 ≤ ∆i,j,v ≤ M2} ∪ {−∞})

dj,v,4 = max

({

PrefixScore(i, j − 2) + PTMScore(∆i,j,v , pj−1)

+ MassScore(v − m(pj))
∀i s.t. M1 ≤ ∆i,j,v ≤ M2

}

∪ {−∞}

)

bj,v,1 = max

({

D1(j, v) + PTMScore(∆̂j,i,v , pj+1)

+ SuffixScore(j + 2, i)
∀i s.t. M1 ≤ ∆̂j,i,v ≤ M2

}

∪ {−∞}

)

bj,v,2 = max

({

D1(j, v) + PTMScore(∆̂j,i,v , pj+2)

+ SuffixScore(j + 3, i)}+ MassScore(v + m(pj+1))
∀i s.t. M1 ≤ ∆̂j,i,v ≤ M2

}

∪ {−∞}

)

Figure 2. Definitions of dj,v,3, dj,v,4, bj,v,1, and bj,v,2.

as a feature the total number of peptide candidates consid-
ered. Other features considered include the percentage of
b and y fragments found, the percentage of spectral peaks
annotated, and the percentage of total ions present in the an-
notated peaks. We use an SVM based approach, similar to
Anderson et., 2003 [1]. We have chosen the ISB dataset (see
below) as a training sample containing top-scoring correct,
and incorrect peptide assignments, and an SVM was used to
optimally classify the correct and incorrectly assigned pep-
tides using the features described above. Due to space limi-
tations, we omit the details. The distribution of the incorrect
peptide assignments can be used as a P-value for the hit.

Different modifications may produce similar theoreti-
cal spectra, and a single spectrum often does not provide
enough information to confidently choose among the alter-
natives. Consider a peptide with two consecutive Methion-
ines, one of which is oxidized. Unless the spectrum is of
particularly high quality, the two candidate peptides that
place the oxidation on either residue will receive very sim-
ilar scores. However, if these candidates greatly outscore
any others, we can confidently assign a peptide annotation

(with some uncertainty on the oxidation position). There-
fore, we categorize search results as being either incorrect,
correct, or exact. A correct result recovers the correct pep-
tide (possibly with misplaced modifications), while an ex-
act result recaptures the original peptide sequence exactly.
In the case with two consecutive Methionines, and one ox-
idation, we would have high confidence that the match was
correct, but lower confidence that it was exact.

Correspondingly, for the SVM training, we compute two
δ-scores: The first is difference from the runner-up, and the
second is difference in scores between the top scoring pep-
tide and the highest scoring distinct peptide. The first δ-
score is most useful for classifying matches as exact, and
the second for classifying them as correct.

4 Results

Although there are multiple approaches for identifying
blind PTMs [10, 17, 21], there was no direct comparison
of these approaches yet. We also were not able to bench-
mark these tools against our approach for a variety of rea-



sons (PEDANTA was developed for in-house use within a
company, OpenSea was not available for licensing at the
time this paper was written and SPIDER’s stand-alone ver-
sion is not available). However, we make a few remarks that
justify our approach. Our tool is an extension and improve-
ment over the spectral alignment approach in PEDANTA.
Both SPIDER and OpenSea require a good de novo inter-
pretation as a starting point for the alignment, which is a
challenging research problem. Further, both approaches use
a scoring scheme that requires a manual validation of the re-
sults, thereby making it difficult to mine large datasets for
interesting modifications. Our PTM frequency matrix ap-
proach provides reliable PTM identifications that bypasses
this problem.

4.1 Datasets

We apply our analysis in three computational tests. In
the first test, we choose previously identified spectra, but
mutate the database. In the second, we shift the peaks of
the spectra to simulate modifications. As large datasets of
annotated spectra of modified peptides is currently miss-
ing, these datasets are valuable in testing the performance
of our approach. Finally, we consider previously unanno-
tated PTMs in a large dataset of 45079 spectra. The results
on both simulated and real datasets validate our approach to
identifying modifications and mutations.

We use the following MS/MS datasets in our computa-
tional experiments:

• ISB dataset Annotated high-quality spectra from the
ISB dataset (charge 2, Sequest Xcorr score > 2), a
public collection of MS/MS spectra from 22 separate
LC-MS runs on a ThermoFinnigan ESI-ITMS [12].

• IKKb dataset 45079 spectra acquired at USC Med-
ical School from a non-specific digestion of the in-
hibitor of nuclear factor kappa B kinase beta subunit
(shortly IKKb protein). GST-IKKb was produced in
E. coli and purified on glutathione sepharose (T. Hi-
gashimoto and E. Zandi, unpublished data). IKKb was
digested using multiple proteases (Trypsin, V6 Pro-
tease, Elastase) to produce overlapping peptides.

The ISB datasets were used in the following simulations:

SimMod We constructed a dataset of modified spectra by
adding feasible modifications to each peptide as described
in Tanner et al., 2005 [24]. SimModi refers to the dataset
with i modifications randomly selected from the set of fea-
sible modifications. The set of allowable modifications was
hydroxylation of Proline or Lysine, sulfation of Tyrosine,
and oxidation of Methionine.

MutDb We selected 168 spectra from the ISB dataset,
constructed a non-redundant database of the protein se-
quences containing the relevant peptides, and mutated this
database to a sequence identity level of 90%. Mutations are
chosen at random, using parameters from the BLOSUM90
matrices.

4.2 Results on SimMod and MutDb

We searched the MutDb spectra in blind mode, allow-
ing up to two modifications per peptide. As shown in Ta-
ble 1(a), accuracy is affected by the number of mutations.
As the number of modifications increase further, the advan-
tages of database search over de novo sequencing are atten-
uated. Results on the SimMod1 and SimMod2 datasets were
quite similar to those obtained for the MutDb spectra — see
Table1(b). This is not surprising, as searching for mutations
is similar to the search for post-translational modifications,
when an unrestricted search is made.

4.3 Results on IKKb

We analyzed all 45079 spectra in the IKKb dataset using
our algorithm in blind mode allowing up to 2 modifications.
In addition to 9477 unmodified peptides, we identified 5246
spectra with a single PTM and 354 spectra with with two
PTMs. We admit that some of our PTM assignments may
be wrong and below we describe a procedure to distinguish
between reliable and questionable PTM identifications.

For every peptide with found modification of ∆ on
amino acid a, we incremented the count PTM(∆, a) in the
PTM frequency matrix (Table 2). Large entries in the PTM
frequency matrix indeed correspond to known and common
modifications (shown in gray) thus validating our approach.

We note that the modifications with mass difference 1
should be taken with caution since they may represent an
artifact caused by errors in parent mass. However, one of
the entries PTM(1,N)=180 is particularly large and we sug-
gest that it is a reflection either of a well-known modifica-
tion (deamidation of Asparagine) or a mutation rather than a
parent mass artifact. We also remark that some large counts
in the PTM frequency matrix (e.g., PTM(16,M)=614) may
have a “shadow” (like PTM(17,M)=83) that most likely rep-
resent a parent mass artifact rather than a separate PTM.

There are many small values in the PTM frequency ma-
trix that likely are noise rather than real PTMs. We argue
that there exists an evidence for a PTM ∆ at an amino acid
in the database if at least two MS/MS spectra support this
PTM at this position (these two spectra may be interpreted
by either the same peptides or by overlapping peptides). To
further increase the signal to noise ratio, we label a pre-
dicted modified peptide as reliable if there exists another
predicted modified peptide with exactly the same modifi-



(a)

0 mutations 1 mutation 2 mutations 3+ mutations Overall
Exact 97.1% 54.8% 8.1% 0.0% 42.5%
Correct: 2.9% 35.5% 70.3% 45.5% 38.3%
Incorrect: 0.00% 9.7% 21.6% 54.6% 19.2%

(b)

1 PTM 2 PTMs
Exact 57.3% 15.6%
Correct: 35.4% 67.2%
Incorrect: 7.3% 17.2%

Table 1. (a) Search results against MutDB. Accuracy and exactness are reported for spectra whose
corresponding peptides contain zero, one, two, or more than two mutations. A search allowing up to
two unrestricted modifications was run, so exact matches for a peptide with three or more mutations
were not found. (b) Search results against SimMod1 and SimMod2.

offset A C D E F G H I K L M N P Q R S T V W Y total
-32 0 6∗ 1 0∗ 0∗ 0 0 0 0 0 133∗ 0 0 0 0 0 0 0 0 0∗ 140
-18 0 0 49∗ 15 7∗ 0 1 7 5 0 0∗ 1 6 6 5 21 58 1 0 2 184

1 13 1 24 25 23 35 21 36∗ 3∗ 72∗ 3 180∗ 37 30∗ 3 13 31 21 10 23 604
14 5 233 2∗ 4 0 4∗ 0 1 84 5 37 1∗ 1 0 1 3∗ 0∗ 17∗ 0 1 399
16 2∗ 2 3∗ 56 5∗ 15 0 34∗ 0 35∗ 614∗ 7 6∗ 9 0 8∗ 3 4∗ 83 4 890
17 1 0 1 2 1 5 0 6 0 11 83 6∗ 0∗ 4 0 7 1 0 17 1 146
22 10 1 16∗ 23 8 28 4 16 1 16 1 22 7 22 0 23 20 16 0 10 244
28 4∗ 2∗ 0 1 0 0 0 4 239∗ 29 0 0 1 3∗ 0 39∗ 2∗ 52 0 1 377
32 0∗ 0 0∗ 0 0 3 0 0 0 3 376∗ 2 1∗ 1 0 1 0 2∗ 20 0 409
53 0 0∗ 21 39 0 4 0 15 1 14 1 5 3 2 0 3 3 7 0 2 120

Table 2. PTM frequency matrix for the IKKb dataset (45079 spectra). The first column describes the
mass shift. The entry for modification ∆ and amino acid a refers to the number of times a appeared
with a modification of mass ∆ in a top-scoring spectral interpretation. Only rows with total count of
at least 100 are shown. Entries with frequency greater than 30 are shown in bold and entries that can
be explained by mutations are starred. Entries corresponding to known types of modifications are
shown in gray.

cation on the same position in the database (the first and
second peptides are either identical or overlap). We further
filter the database of modified peptide by retaining only the
reliable peptides and recompute the PTM frequency matrix
for the filtered dataset. This procedure greatly increases the
signal to noise ratio and reduces most entries in the PTM
frequency matrix to zeros (data are not shown).

One can argue that two overlapping peptides validating
the same PTM is a more reliable evidence of PTM than
two identical peptides validating the same PTM. To find
the most reliable PTMs we further reduce noise in the PTM
frequency matrix by applying the second filtering step and
retaining only modified peptides that have an overlapping
modified peptide with the same modification on the same
position. The resulting matrix is shown in Table 3. If one
assumes that the noise cause by incorrect assignments is
distributed randomly across the PTM frequency matrix then
the probability that the bold entries appear simply by chance
is negligent.

The entries that do not correspond to popular PTMs (e.g.,
PTM(53,E)), but still appear in significant numbers, may
prove to be interesting since they may correspond to still
unknown PTMs. Table 3 provides additional evidence that

some of these putative PTMs are not artifacts. Another ap-
proach to validation is if the same peptide appears multi-
ple number of times, with and without the modification.
We list some of the modified peptides with multiple sup-
port in Table 4. Remarkably, most of the the modifications
appear in both modified and unmodified forms or on over-
lapping peptides. Although many modifications in Table 4
are common chemical modifications (like oxidation of Me-
thionine), there are some less common ones, such Trypto-
phan oxidation, and double oxidation, addition of Sodium
(22), dimethylation of K (28), and yet unconfirmed PTM of
mass 53 on E. Moreover, many of these peptides either have
multiple spectra (of the same peptide) confirming the found
PTMs, or identical modifications were predicted on over-
lapping peptides, but distinct peptides. Such independent
cross-validations greatly increase our confidence in the as-
signments. In most cases, the modified peptide appeared a
number of times in its unmodified form. However, the mod-
ified peptide was the dominant form for Cys-methylation,
and Lys-dimethylation, implying that these were consti-
tutive modifications. We remark that these peptides are
missed by traditional database search.

Some of the entries in Table 2 may correspond to PTMs



offset A C D E F G H I K L M N P Q R S T V W Y total
-32 0 0∗ 0 0∗ 0∗ 0 0 0 0 0 0∗ 0 0 0 0 0 0 0 0 0∗ 0
-18 0 0 5∗ 4 0∗ 0 0 0 0 0 0∗ 0 0 0 0 2 47 0 0 0 58

1 0 0 0 16 14 16 3 17∗ 0∗ 27∗ 0 139∗ 6 10∗ 0 2 8 5 0 2 265
14 4 216 0∗ 0 0 0∗ 0 0 84 0 0 0∗ 0 0 0 0∗ 0∗ 0∗ 0 0 304
16 0∗ 0 2∗ 50 0∗ 10 0 34∗ 0 34∗ 474∗ 3 0∗ 8 0 6∗ 0 4∗ 65 0 690
17 0 0 0 0 0 3 0 4 0 8 70 0∗ 0∗ 0 0 0 0 0 3 0 88
22 0 0 0∗ 11 0 14 0 0 0 9 0 3 3 2 0 0 2 2 0 10 56
28 2∗ 0∗ 0 0 0 0 0 2 239∗ 29 0 0 0 0∗ 0 38∗ 0∗ 0 0 0 310
32 0∗ 0 0∗ 0 0 0 0 0 0 0 190∗ 0 0∗ 0 0 0 0 0∗ 0 0 190
53 0 0∗ 18 19 0 0 0 6 0 5 0 3 0 0 0 0 0 0 0 0 51

Table 3. Filtered PTM frequency matrix for the IKKb dataset.

while other may correspond to mutated proteins (starred
entries). Can we distinguish between different modifica-
tions/mutations that result in the same mass difference?
Currently, we treat these simply as mass differences, and do
not try to distinguish between the two. Indeed, we identify
few false PTMs in the MutDb search, and correspondingly
few mutations in the SimMod search. However, this issue
can be addressed. If we see peptides with and without the
mass difference, then modification is the more likely sce-
nario. Alternatively, if we see peptides with a shift but do
not see peptides without a shift (like 28 on K), then muta-
tion may be a more likely scenario.

5 Conclusions

We expect that even larger datasets will provide fur-
ther validation of our PTM frequency matrix approach and
will generate independent pieces of evidence to support our
conclusions (work in progress). As the tools mature, and
more modified and mutated peptides are identified, we can
begin to differentiate between different types of modifica-
tions, by mining these datasets. As an example, Tanner et
al. [24] successfully promote the use of phosphate-loss ions
as signatures of phosphorylation. Other modifications un-
doubtedly will lead to differences in fragment ion propensi-
ties which can be used to train appropriate score functions.
Mutations present a more challenging scenario. However,
certain mutations (for example, a mutation to Proline) can
cause significant change in ionization propensities, which
could be mined to improve identifications.
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Peptide count

-18 on T (Water loss)
LGT*GGFGNVIR 5 179

T*GGFGNVIR 35 0

1 on N (Deamidation)
LTHPN*VV 2 111
LTHPN*VVAAR 1 32

LGEHN*IDVL 2 71
LGEHN*IDVLE 1 137

K[28]IITHPNFN*GN 3 0
K[28]IITHPNFN*GNTL 3 0

IITHPNFN*GN 10 40
IITHPNFN*GNTL 15 11
IITHPNFN*GNTLDND 2 0
IITHPNFN*GNTLDNDI[16]M 2 0
IITHPNFN*GNTLDNDIM[16]LI 5 0
IITHPNFN*GNTLDNDIML[16]I 1 0

THPNFN*GNTL 7 15
THPNFN*GNTLDNDI[16]M 1 0
THPNFN*GNTLDNDIM[16]LI 3 3

FN*GNTLDNDIM[16]LIK 1 0
AFPSAINQDNYPN*GGFTAE 20 4
AFPSAINQDNYPN*GGFTAEQITK 1 0

TYLN*GDHVTHPDF[16]M 6 0
TYLN*GDHVTHPDFM[16]L 8 0

14 on C (PAM-Cys)
AGLALIPDKPATQC*ISDGK 11 0
AGLALIPDKPATQC*ISDGKLNE 1 0

LIPDKPATQC*ISDGK 2 0
IPDKPATQC*ISDGK 22 0
PDKPATQC*ISDGK 1 0

C*ISDGKLNEGH 8 0
PQPESVSC*ILQEPK 3 4

SVSC*ILQEPK 66 0
SVSC*ILQEPKR 1 0

SC*ILQEPK 46 38
C*ILQEPK 4 0

AHNLC*TLLE 47 0
HNLC*TL 1 0

14 on K (Methylation)
LGEHNIDVLEGNEQFINAAK* 2 4

NIDVLEGNEQFINAAK* 10 3
EGNEQFINAAK* 7 4

GNEQFINAAK* 2 3
K*LSSPATL 16 0
K*LSSPATLN 2 0
K*LSSPATLNS 37 0
K*LSSPATLNSR 8 0

Peptide count

16 on M (Oxidation)
RDVPEGM*QNLAPNDLPL 13 0
RDVPEGM*QNLAPNDLPLLA 14 0

DVPEGM*QNLAPN 4 0
DVPEGM*QNLAPNDLPL 3 0
DVPEGM*QNLAPNDLPLLA 10 0

LVHILNM*VTGT 11 0
LVHILNM*VTGTI 1 0

L[42]VHILNM*VTGTIH 4 0
LVHILNM*VTGTIH 13 0
LVHILNM*VTGTIHTYPVTE 2 2

LNM*VTGTIH 13 0
NM*VTGTIH 1 3

LNEGHTLDM*DLV 1 0
LNEGHTLDM*DLVFL 2 0

GHTLDM*DLVFLFDNSK 2 0
TLDM*DLVFL 1 0

M*DLVFLFDNSK 5 0
VEEVVSLM*NEDEK 6 10

EVVSLM*NEDEKTVVR 1 0
VVSLM*NEDEK 2 3

SLM*NEDEK 1 0
SLM*NEDEKTVV 54 4

M*NEDEKTVV 7 0
VRGPVSGSPDSM* 2 1
VRGPVSGSPDSM*NA 10 0
VRGPVSGSPDSM*NAS 6 5

GPVSGSPDSM*NASR 4 11
SRLSQPGQLM*SQPS 1 0
SRLSQPGQLM*SQPSTA 7 0

LSQPGQLM*SQPSTA 13 4
LSQPGQLM*SQPSTASNSLPEPAK 3 6

PGQLM*SQPSTASNSLPEPAKK 1 0
K[28]IITHPNFNGNTLDNDIM*LI 4 0

IITHPNFNGNTLDNDIM* 8 0
IITHPNFNGNTLDNDIM*LI 30 0

IITHPNFN[1]GNTLDNDIM*LI 5 0
IITHPNFNGNTLDNDIM*LIK 11 0

IITH[34]PNFNGNTLDNDIM*LIK 1 0
THPNFNGNTLDNDIM* 2 0
THPNFNGNTLDNDIM*L 2 0
THPNFNGNTLDNDIM*LI 5 3

THPNFN[1]GNTLDNDIM*LI 3 3
FN[1]GNTLDNDIM*LIK 1 0

GNTLDNDIM*LI 2 0
TLDNDIM*LI 5 0
TLDNDIM*LIK 11 0

DFLSKLPEM* 9 0
DFLSKLPEM*L 43 35

LPEM*LK 3 0

16 on W (Hydroxylation)
GFRPFLPNW*Q 1 0
GFRPFLPNW*QPV 55 150

RPFLPNW*QPV 1 75
QKELW*NLL 3 81
QKELW*NLLK 1 16

ELW*NLLK 1 27

Peptide count

22 on E (Sodium)
IQQDTGIPEEDQE*LL 1 15
IQQDTGIPEEDQE*LLQ 1 2

KQGGTLDDLEE*Q 1 52
KQGGTLDDLEE*QA 3 72

NIDVLEGNE*Q 1 6
NIDVLEGNE*QFI 3 17
NIDVLEGNE*QFINAA 1 15

28 on K (Dimethylation)
NIDVLEGNEQFINAAK*II 2 0

K*IITHPNFNGN 10 0
K*IITHPNFN[1]GN 3 0
K*IITHPNFNGNTL 4 0
K*IITHPNFN[1]GNTL 3 0
K*IITHPNFNGNTLDNDIM[17]L 1 0
K*IITHPNFNGNTLDNDIM[16]LI 4 0

IMLIK*LSSPATLNSR 5 0
IK*LSSPATL 1 0
IK*LSSPATLNSR 1 0
K*LSSPATL 39 0
K*LSSPATLN 20 0
K*LSSPA[1]TLNS 1 0
K*LSSPATL[1]NS 3 0
K*LSSPATLNS 97 0
K*LSSPATLN[1]S 6 0
K*LSSPAT[1]LNS 2 0
K*LSSPATLNSR 13 0
K*LSSP[1]ATLNSR 1 0
K*LSSPATLN[1]SR 5 0

28 on S (???)
DIFGPGTS*ILSTWIGGSTR 21 0
DIFGPGTS*ILSTWIGGSTRSISGT 4 0

FGPGTS*ILSTWIGGSTR 1 0
GPGTS*ILSTWIGGSTR 4 0

32 on M (Oxidation)
M*MALQTD[53]IVDLQ 1 0
M*MALQTDIVDLQ 10 0
M*MALQTDIVD[22]LQ 3 0
M*MALQTDI[53]VDLQ 1 0
M*MALQTD[1]IVDLQR 2 4
M*MALQTDIVDLQR 160 4

53 on D (???)
KQGGTLDD*LEEQA 7 72
KQGGTLDD*LEEQAR 1 21

QGGTLDD*LEEQA 3 7

53 on E (???)
DLKPE*NIV 1 51
DLKPE*NIVLQ 3 41

IQQDTGIPE*EDQE 1 0
IQQDTGIPE*EDQELL 7 15

53 on I (???)
DLKPENI*VLQ 1 41
DLKPENI*VLQQ 5 32
DLKPENI*VLQQGEQ 1 28

ALDDI*LNL 6 8
ALDDI*LNLK 3 108

Table 4. PTM validation, described by multiple occurrences of identical or overlapping peptides. The
second column is the number of occurrences of the modified peptide, while the third column is the
count of the unmodified peptides. It is possible that some of the PTMs listed in the table are incorrect
either in the peptide assignment, or in the assignment of PTM positions.
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