
PSIST: Indexing Protein Structures using Suffix Trees

Feng Gao and Mohammed J. Zaki
{gaof,zaki}@cs.rpi.edu

Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY, 12180

Abstract

Approaches for indexing proteins, and for fast and scal-
able searching for structures similar to a query structure
have important applications such as protein structure and
function prediction, protein classification and drug discov-
ery. In this paper, we developed a new method for extract-
ing the local feature vectors of protein structures. Each
residue is represented by a triangle, and the correlation be-
tween a set of residues is described by the distances between
Cα atoms and the angles between the normals of planes in
which the triangles lie. The normalized local feature vec-
tors are indexed using a suffix tree. For all query segments,
suffix trees can be used effectively to retrieve the maximal
matches, which are then chained to obtain alignments with
database proteins. Similar proteins are selected by their
alignment score against the query. Our results shows clas-
sification accuracy up to 97.8% and 99.4% at the superfam-
ily and class level according to the SCOP classification, and
shows that on average 7.49 out of 10 proteins from the same
superfamily are obtained among the top 10 matches. These
results are competitive with the best previous methods.

1. Introduction

Proteins are composed of chains of basic building blocks
called amino acids. Traditionally the problem of determin-
ing similar proteins was approached by finding the amount
of similarity in their amino acid sequences. However biolo-
gists have determined that even proteins which are remotely
homologous in their sequence similarities can perform sur-
prisingly very similar functions in living organisms [24].
This fact has been attributed to the dependency of the func-
tional role of proteins on their actual three-dimensional
(3D) structure. In view of this then it can be stated that two
proteins with remote sequence homology can be function-
ally classified as similar if they exhibit structural homology.

Searching the growing database of protein structures for
structural homologues is a difficult and time-consuming
task. For example, we may want to retrieve all structures
that contain sub-structures similar to the query, a specific
3D arrangement of surface residues, etc. Searches such
as these are the first step towards building a systems level
model for protein interactions. In fact, high throughput pro-
teomics methods are already accumulating the protein in-
teraction data that we would wish to model, but fast com-
putational methods for structural database searching lag far
behind; biologists are in need of a means to search the pro-
tein structure databases rapidly, similar to the way BLAST
[1] rapidly searches the sequence databases.

Protein structural similarity determination can be clas-
sified into three approaches: pairwise alignment, multiple
structure alignments, and database indexing.

Pair-wise structure alignment methods can be classified
into three classes [10]. The first class works at the residue
level [12, 26]. The second class focuses on using secondary
structure elements (SSEs) such as α-helices and β-strands
to align two proteins approximately [16, 19, 22]. The third
approach is to use geometric hashing, which can be applied
at both the residue [15] and SSE level [13].

Previous work has also looked at multiple structure
alignments. These methods are also based on geometric
hashing [21], or SSE information [9]. A recent method [25]
aims to solve the multiple structural alignment problem
with detection of partial solutions; it computes the best scor-
ing structural alignments, which can be either sequential
or sequence-order independent [29], if one seeks geomet-
ric patterns which do not follow the sequence order. Due
to their time complexity, the pairwise and multiple struc-
ture alignment approaches are not suitable for searching for
similarity over thousands of protein structures. Database
indexing and scalable searching approaches satisfy this re-
quirement.

There are two classes of protein structure indexing ap-
proaches according to the representation of the local fea-

tures. The first class focuses on indexing the local features
at the residue level directly, and the other class uses SSEs to
approximate the local feature of the proteins.

CTSS [4] approximates the protein Cα backbone with a
smooth spline with minimum curvature. The method then
stores the curvature, torsion angle and the secondary struc-
ture that each Cα atom in the backbone belongs to, in a
hash-based index.

ProGreSS [3] is a recent method, which extracts the fea-
tures for both the structure and sequence, within a slid-
ing window over the backbone. Its structure features are
the same as the CTSS features (curvature, torsion angles,
and SSE information); its sequence features are derived us-
ing scoring matrices like PAM or BLOSUM. Like CTSS,
ProGreSS features are not localized.

The LFF profile algorithm [6] first extracts some repre-
sentative local features from the distance matrix of all the
proteins, and then each distance matrix is encoded by the
indices of the nearest representative features. Each structure
is represented by a vector of the frequency of the represen-
tative local features. The structure similarity between two
proteins is the Euclidean distance between their LLF profile
vectors. This method is more suitable for global rather than
local similarity between the query and database proteins.

There are also some methods that index the protein struc-
tures using SSEs. For each protein, PSI [5] uses a R∗-tree
to index a nine-dimensional feature vector, a representation
of all the triplet SSEs within a range. After retrieving the
matching triplet pairs, a graph-based algorithm is used to
compute the alignment of the matching SSE pairs. Another
SSE-based method, ProtDex [2] obtains the sub-matrices
of the SSE contact patterns from the distance matrix of a
protein structure. The grand sum of the sub-matrices and
the contact-pattern type are indexed by an inverted file in-
dex. By their nature, SSEs model the protein only approx-
imately, and therefore these SSE-based approaches lack in
retrieval accuracy and furthermore, are not very useful for
small query proteins with few SSEs.

For a given query, the most common similarity scoring
scheme is the number of votes accumulated from the match-
ing residues [3, 4, 15]. CTSS and ProGreSS further de-
fine the p-value of a protein based on the number of votes
and smaller p-values imply better similarity. These scoring
schemes, however, do not take into account the local simi-
larity.

Our Contributions In this paper, we present a fast, novel
protein indexing method called PSIST (which stands for
Protein Structure Indexing using Suffix Trees). As the
name implies, our new approach transforms the local struc-
tural information of a protein into a “sequence” on which
a suffix tree is built for fast matches. We first extract local
structural feature vectors using a sliding a window along

the backbone. For a pair of residues, the distance between
their Cα atoms and the angle between the planes formed
by the Cα, N and C atoms of each residue are calculated.
The feature vectors for a given window include all the dis-
tances and angles between the first residue and the rest of
the residues within the window. Compared with the local
features from a single residue, our feature vectors contain
both the translational and rotational information. After nor-
malizing the feature vectors, the protein structure is con-
verted to a sequence (called the structure-feature sequence
or SF-sequence) of discretized symbols.

We use suffix trees to index the protein SF-sequences.
A suffix tree is a versatile data structure for substring prob-
lems [11], and they have been used for various problems
such as protein sequence indexing [14, 18] and genome
alignment [7, 8]. Suffix trees can be constructed in O(n)
time and space [17, 28], and thus are an effective choice for
indexing our protein SF-sequences.

For a given query, all the maximal matches are retrieved
from the suffix tree and chained into alignments using dy-
namic programming. The top proteins with the highest
alignment scores are finally selected. Our results shows
classification accuracy up to 97.8% and 99.4% at the super-
family and class level according to the SCOP classification,
and shows that on average 7.49 out of 10 proteins from the
same superfamily are obtained among the top 10 matches.
These results are competitive with the best previous meth-
ods.

2. Indexing proteins

2.1. Local feature extraction

A protein is composed of an ordered sequence of
residues linked by peptide bonds. Each residue has Cα,
N and C atoms, which constitute the backbone of the pro-
tein. Although the backbone is linear topologically, it is
very complex geometrically. The bond lengths, bond an-
gles and torsion angles completely define the conformation
and geometry of the protein.

The bond length is the distance between the bonded
atoms, and the bond angle is the angle between any two
covalent bonds that include a common atom (see Figure 1).
For instance, the bond length of N -C is 1.32Å (Å denotes
distance in angstroms), the bond angle between Cα-N and
N -C is 123◦. Torsion angles are used to describe confor-
mations around rotatable bonds (see Figure 2). Assume four
consecutive atoms are connected by three bonds bi−1, bi and
bi+1. The torsion angle of bi is defined as the smallest angle
between the projections of bi−1 and bi+1 on the plane per-
pendicular to bond bi. In Figure 2, φ, ψ and ω are the torsion
angles on the bond N -Cα,Cα-C and C-N respectively.

O

H

Cα1

Cα2

A
o

A
o

A
o

R

R

C

N

N

H

123 110
o o

H

1.47

1.32

1.53
o

114

Figure 1. Bond length and bond angles

O R

Cα

Cα
C

R

N

N

H

H

H

φ ωϕ

Figure 2. Torsion angles

Cα

Cα

C

N

CN

θ

dp pi i+1

Figure 3. The distance and angle between two
residues

To capture the local features more accurately, we need
to extract the features from a set of local residues. To ob-
tain the local feature vector, we first represent each residue
individually, and then consider the relationship between a
pair of residues and a set of residues. For each residue, the
length of Cα-N bond is 1.47Å and that of the Cα-C bond
is 1.53Å, and the angle between Cα-N and Cα-C bonds is
110◦. Thus all the triangles formed by N -Cα-C atoms in
each residue are equivalent, and each residue can be repre-
sented by a triangle of the same size.

The relationship between a pair of residues in 3D (three-
dimensional) space can be fully described by the rigid trans-

formation between two residues, which is a vector of 6 di-
mensions, containing 3 translational and 3 rotational de-
grees of freedoms. To reduce the dimension of the vector,
we use a distance and an angle to describe the transforma-
tion features between two residues.

We define the distance d between a pair of residues as
the Euclidean distance between their Cα atoms. The angle
θ between a pair of residues is defined as the angle between
the planes that contain N -Cα-C triangles representing each
residue (see Figure 3).

The distance and angle are invariant to displacement and
rotation of the protein. The Euclidean distance between two
Cα atoms is calculated by their 3D coordinates directly. The
angle between the two planes defined by the N -Cα-C tri-
angles, is calculated between their normals having Cα as
the origin. The normal of the plane define by the triangle
N -Cα-C is given as

−→n =
−−−→
NCα ×−−→

CαC

‖−−−→NCα ×−−→
CαC‖

The angle between the two normals −→n1 and −→
n2 is then cal-

culated as

cos θ =
‖−→n1‖2 + ‖−→n2‖2 − ‖−→n2 −−→

n1‖2

2 ∗ ‖−→n1‖ ∗ ‖−→n2‖
To describe the local features between a set of residues,

we slide a window of length w along the backbone of the
protein. The distances and angles between the first residue
i and all the other residues j (with j ∈ [i + 1, i + w −
1]) within the window are computed and added to a feature
vector. Each window is associated with one feature vector.

Let P = {p1, p2, . . . , pn} represent a protein, where pi

is the ith-residue along the backbone. The feature vector
of the protein is defined as P v = {pv

1, p
v
2, . . . , p

v
n−w+1},

where w is the sliding window size, and pv
i is a feature

vector (d(pi, pi+1), cos θ(pi, pi+1), . . . , d(pi, pi+w−1),
cos θ(pi, pi+w−1)), where d(pi, pj) is the distance between
the residues pi and pj , and cos θ(pi, pj) gives the angle
between the residues pi and pj . With window size is w, the
dimension of each feature vector pv

i is 2 ∗ (w − 1).

2.2. Normalization

Our feature vector is a combination of distances and an-
gles, which have different measures. A normalization pro-
cedure is performed after the feature vectors are extracted.
The angle θ is in the range [0, π], so cos θ ∈ [−1, 1].

For normalizing the distances, we need to know the
upper-bound on the distance between the i-th and (i + w −
1)-th residue in the protein. From figure 1, the average
distance between Cα1-N atoms is d1 = 1.47Å, the av-
erage distance between N -C atoms is d2 = 1.32Å, and

the angle α between Cα1-N and N -C bonds is 123◦. The
distance between Cα1-C atoms is therefore d(Cα1, C) =√

d2
1 + d2

2 − 2 ∗ d1 ∗ d2 ∗ cosα = 2.453. The distance be-
tween C-Cα2 atoms is d(C, Cα2) = 1.53, so the aver-
age distance between two Cα atoms is: d(Cα1, Cα2) <=
d(Cα1, C) + d(C, Cα2) = 2.453 + 1.57 = 4.023. If the
distance between two atoms are greater than 4.023, it is
trimmed to 4.023. For a sliding window of size w, the lower
bound of the distance between any two atoms is 0, and the
upper bound is 4.023∗ (w−1), so the distance between any
pair of residues within a w length window is in the range
[0, 4.023 ∗ (w − 1)].

All the distances and angles are normalized and binned
into an integer within the range [0, b− 1]. We use the equa-
tion d = � d∗b

4.023∗(w−1)� to normalize and bin the distance

and cos θ = � (cos θ+1)∗b
2 � to normalize and bin the angle.

Table 1 shows 3 examples of normalized and binned feature
vectors for w = 3 and b = 10. The size of each feature vec-
tor is 2 ∗ (w − 1) = 4, and the normalized value is within
[0, 9].

Table 1. Examples of normalized feature vec-
tors for w = 3 and b = 10

Feature vector
d cos θ d cos θ

original 3.55 0.29 5.4 −0.23
normalized 4 6 6 3

original 4.04 0.11 5.75 −0.25
normalized 5 5 7 3

original 3.60 0.45 5.29 0.21
normalized 4 7 6 6

After normalization and binning, each feature vector is
defined as ps = {ps

0, p
s
1, . . . , p

s
2∗(w−1)−1}, where ps

i is an
integer within the range [0, b−1]. Thus, the structure of each
protein P is converted to a structure-feature sequence P s =
{P s

0 , P s
1 . . . P s

n−w+1}, called the SF-sequence, where P s
i is

the i-th normalized feature vector (ps) along the backbone.
Note that each symbol within an SF-sequence is a vector
of length 2(w − 1), to which we assign a unique integer
identifier as its label. Thus the SF-sequences are over an
alphabet of size b2(w−1).

2.3. Generalized suffix trees construction

After obtaining the SF-sequences for all proteins in the
database, we use generalized suffix tree (GST) as the in-
dexing structure. GST is a compact representation of the
suffixes of sequences, and can be constructed in linear
time [28]. A suffix can be located by following an unique
path from the root to a leaf.

0©
b

���������
a

��
x

�������������

1©
x

����
�� a

��

4©
$ ��

bx

��������� 6©
ba ��

a

���
��

�

2©
a

����
�� ba��

3©
$ �� bxba���

��
� 12©

(1,4)(2,5)

5©
ba ����

�� a
��

15©
(2,3)

7©
$ ����

�� bxa��
8©

(1,2)

9©
(2,2)

10©
(2,4)

11©
(2,0)

13©
(2,1)

14©
(1,1)

16©
(1,3)

17©
(1,0)

Figure 4. GST for sequences S1 = xabxa and
S2 = babxba

To save the storage space of the suffix tree, we map each
structure feature vector ps to an unique key or symbol for
the suffix tree construction, and map it back to the normal-
ized vector when we compute the distance between two fea-
ture vectors. For instance, the three feature vectors in the
table 1 could be mapped to the symbols a, b and x respec-
tively.

Notation: Let GST be a generalized suffix tree, we use
the following notation in the rest of the paper. We use N
for a node in the suffix tree, E for an edge, C(E) for a child
node of the edge E, L(E) for the label on edge E, L(E[i])
for the ith symbol of the edge label L(E), P (N) for the
path-label of the node N (formed by concatenating all the
edge labels from the root node to N), and P (E[i]) for the
path-label of L(E[i]). Further, each leaf node in GST con-
tains a sequence-position pair (x, p), where x is a sequence
identifier, and p is the start position of the suffix within se-
quence x. For any node N , we use the notation sp−list(N)
for the collection of the sequence-position pairs for all the
leaves under N .

Example: Figure 4 shows an example of GST for two
SF-sequences S1 = xabxa and S2 = babxba, over the
alphabet {a, b, x}, obtained by mapping each normalized
feature vectors in Table 1 to a unique letter symbol. Node
0 is the root node, node 1 to 7 are internal nodes, and
the rest are leaves. ’$’ is the unique termination charac-
ter. The path label of node 7 is xa. The edge label L(E)
of the edge out of node 7 is bxa, so its second charac-
ter L(E[2]) is x, and its path-label P (E[2]) is xabx. The
sequence-position identifier (1, 0) of the node 7 stands for
xabxa, a suffix of sequence S1 that starts at position 0.
Thus sp − list(7) = {(1, 0)}, and the sp-list for node 6
is sp − list(6) = {(2, 3), (1, 3), (1, 0)}.

3. Querying

So far we have discussed how to build the suffix tree in-
dexing based on the local structure features for each protein.
In this section, we will present how to search for similar
proteins.

Given a query (Q, ε), we first extract its feature vectors
and convert it into a SF-sequence Qs as described in sec-
tion 2.1 and 2.2. Then three phases are performed: search-
ing, ranking and post-processing. The searching phase re-
trieves all the matching segments/subsequences from the
database within a distance threshold ε (on a per symbol ba-
sis), the ranking phase ranks all the proteins by chaining
the matching segments, and the post-precessing step further
uses Smith-Waterman [27] approach to find the best local
alignment between the query and the selected proteins.

3.1. Searching

For a given query SF-sequence Qs = {Qs
1Q

s
2 . . .Qs

n},
maximum feature distance threshold ε, and a minimum
match length threshold l, the search algorithm finds all max-
imal matching SF-subsequences P s = {P s

1 , P s
2 . . . P s

m}
that occur in both the query SF-sequence and any database
protein SF-sequence. A maximal match has the following
properties:

1. There exists a matching SF-subsequence
Qs

i+1 . . . Qs
i+m of Qs, such that dist(Qs

i+j , P
s
j) < ε,

where j = 1, 2 . . .m, Qs
i+j and P s

j are the normalized
and binned feature vectors of length 2 ∗ (w − 1). The
distance function used in our algorithm is Euclidean
distance.

2. The length of the match is at least as long as the length
threshold, i.e., m ≥ l.

3. Assume P s is a SF-subsequence of protein Rs, then
neither P sv nor vP s is a matching SF-subsequence of
Qs and Rs for any feature vector v (this ensures max-
imality).

For instance, abx is a maximal match between the SF-
sequences xabxa and babxba of Figure 4. Note that our
approach differs from MUMmer genome alignment method
presented in [7] which finds exact maximal unique matches
between two genomes.

To find all maximal matches within ε between the query
Qs and suffix tree GSTd built from the database proteins,
one solution is to trace every SF-subsequence of Qs from
the root of GSTd, but the common prefix of two subse-
quences will be searched twice and more comparisons will
be performed. To reduce the number of comparisons, we
build another suffix tree GSTq for Qs, and then traverse
two suffix trees simultaneously to retrieve all the maximal

Input : query Node Nq , database Node Nd, dis-
tance ε, length threshold l

Output : maximal matches set (MMSet)
Initialization : MMSet = ∅

Procedure: MMS(Nq,Nd,ε,l)
foreach edge Eq out of Nq do

foreach edge Ed out of Nd do
NS(Eq, 0, Ed, 0, ε, l).

Figure 5. MaximalMatchesSearch algorithm

matches. In the discussion below, we use the subscript q for
the query, and d for the database. For instance, Nq stands
for a query suffix tree node, while Nd stands for a database
suffix tree node.

The matching algorithm starts with the MMS procedure
as shown in Figure 5, and its inputs are the root node (Nq)
of the query suffix tree GSTq, the root node (Nd) of the
database suffix tree GSTd, the distance tolerance ε and the
minimum length of the maximal match l. For every edge
out of the query node and database node, MMS calls the
NodeSearch procedure (see Figure 6) to match their labels
and follow the path to find all the matching nodes.

In the NodeSearch procedure, for two edges from differ-
ent suffix trees, the distance between the corresponding pair
of label symbols (L(E[i]q) and L(E[j]d) is computed in
step 2. If the distance is larger than ε, which implies a mis-
match, the procedure updates the MMSet and proceeds to
the next branch. If there is no mismatch, the short edge will
reach the end first. If the child node of the short edge is a
leaf, we need to update the MMSet. If the child node is
an internal node, two different procedures are called recur-
sively. 1) If the lengths of two edge labels are the same,
then MMS procedure is called for two child nodes in step
3. 2) If one of the edge has a shorter label, the algorithm
NodeSearch will be called recursively with the new input of
all the edges out of the child node of the short edge (please
see step 4 and 5).

Each matching SF-subsequence s is defined by two
triplets (x, p, l) and (y, q, l), where p and q are the start
positions of s in the query sequence Qx and the protein se-
quence Py respectively, and l is the length. If s is a maximal
match, it will be added to the MMSet in the updateMMS
procedure. To identify a maximal match, we need to com-
pare whether any extension of the match will result in a mis-
match. In our algorithm, each common subsequence s is
obtained either from characters mismatch or a leaf node, so
we just need to compare the characters before the common
subsequence (Qx[p− 1] and Py[q− 1]) to identify the max-
imal match.

Input : query Edge Eq, query Edge iterator i,
database Edge Ed, database Edge iterator
j, distance ε, length threshold l

Output : maximal matches set (MMSet)

Procedure: NS(Eq,i,Ed,j,ε,l)
1 while i < L(Eq).len and j < L(Ed).len) do
2 if dist(L(E[i]q), L(E[j]d)) > ε then

updateMMS(C(Eq), C(Ed), P (E[i]q).len − 1, l).
return;

else
i=i+1, j=j+1

3 if i = L(Eq).len and j = L(Ed).len then
if isleaf(C(Eq)) or isleaf(C(Ed)) then

updateMMS(C(Eq), C(Ed), P (E[i]q).len−1, l)).
else

MMS(C(Eq), C(Ed), ε, l).

4 if i = L(Eq).len and j < L(Ed).len then
if isleaf(C(Eq)) then

updateMMS(C(Eq), C(Ed), P (E[i]q).len − 1, l).
else

foreach edge EC out of C(Eq) do
NS(EC ,0,Ed,j,ε,l).

5 if i < L(Eq).len and j = L(Ed).len then
if isleaf(C(Ed)) then

updateMMS(C(Eq), C(Ed), P (E[j]d).len− 1, l).
else

foreach edge EC out of C(Ed) do
NS(Eq, i, EC , 0, ε, l).

Figure 6. NodeSearch algorithm

Input : query Node Nq , database Node Nd, match
length m, length threshold l

Output : maximal matches set (MMSet)

Procedure: UpdateMMS(Nq, Nd, m, l)
if m >= l then

foreach (x, a) ∈ sp-list(Nq) do
foreach (y, b) ∈ sp-list(Nd) do

if dist(Qx[a − 1], Py[b − 1]) > ε then
add ((x, a, a + m− 1), (y, b, b + m− 1))
to MMSet

Figure 7. UpdateMaximalMatchesSet algo-
rithm

We can also process multiple query SF-sequences at the
same time by inserting them to the query suffix tree GSTq ,
so the nodes with the same path-label are visited only once

and the performance will be improved.

3.2. Ranking

The maximal matches are obtained for the query se-
quence and reference sequences in the database. Every
maximal match is a diagonal run in the matrix formed by
a query and reference sequence. We use the best diagonal
runs described in the FASTA algorithm [23] as our ranking
scheme. We calculate the alignment as a combination of
the maximal matches with the maximal score. The score
of the alignment is the sum of the scores of the maximal
matches minus the gaps penalty. Both the score of a maxi-
mal match and a gap are their length in our algorithm. Two
maximal matches can be chained together if there are no
overlap between them. We use a fast greedy algorithm to
find the chains of maximal alignments. At first, the maxi-
mal matches are sorted by their length. The longest max-
imal match is chosen first, and we remove all other over-
lapping matches. Then we choose the second longest max-
imal match which doesn’t overlap with the longest match,
remove its overlapping matches and repeat the above steps
until no maximal matches are left. This way we find the
longest chained maximal matches between the query and
each retrieved database SF-sequence. Finally all the candi-
dates with small alignment scores are screened out and only
the top similar proteins are selected.

3.3. Post-precessing

For each top protein SF-sequence with a high score se-
lected from the database, it is aligned with the query by run-
ning Smith-Waterman [27] dynamic programming method.
The similarity score between two residues is set to 1 if the
distance between their normalized feature vector is smaller
than ε, or it is 0. Proteins are then ranked in decreasing
order according to their new alignment scores and the top
proteins with the highest scores are reported to the user.

4. Experiments

The SCOP database [20] classifies proteins according
to a four level hierarchical classification, namely, family,
super-family, fold and class. Since the SCOP database is
curated by visual inspection it is considered to be extremely
accurate. For our tests, the target database we used, has pro-
teins from four classes of SCOP: all α, all β, α+β and α/β.
Our dataset D includes a total of 1810 proteins taken from
181 superfamilies which have at least 10 proteins, but only
10 proteins are chosen from each superfamily. One protein
from each superfamily is chosen randomly as the query, so
the size of the query set Dq is also 181. This is the same
dataset used in several previous indexing studies [3, 5].

To evaluate our algorithm we perform two different tests:
The retrieval test finds the number of correct matching
structures from the same superfamily as the query among
the top k scoring proteins, and the classification test tries to
classify the query at the superfamily and class levels. Our
algorithm was implemented in C++ and all experiments re-
ported below were done on a PC with 2.8GHz CPU and
6GB RAM, running Linux 2.6.6.

4.1. Retrieval test

We compare our approach with one of the best previ-
ous indexing approach ProGreSS [3], using the Java-based
code provided by its authors. We also directly compare with
a geometric hashing based [15] indexing method, which
we coded ourselves. For geometric hashing we take two
consecutive Cα atoms along the backbone as the reference
frame. Each remaining Cα atom and the reference frame
form a triplet. The three pair-wise distances from a triplet
are added to an R∗-tree if all of them are within 7Å. For
querying, we form query triplets in the same manner, and
find all matching triplets within ε range. Suppose there are n
triplets with the same query reference frame, and the match-
ing protein has m triplets with the same reference frame,
these two reference frames are considered to be a matching
pair if the ratio between m and n is greater than a threshold,
i.e., if m/n > 0.75. The score of a protein is its number
of matching reference frames with respect to the query, and
the proteins are ranked based on their scores.

We ran the experiments using PSIST, ProGreSS, and ge-
ometric hashing, to obtain the number of proteins found
from the same superfamily for each of the 181 queries.
Since each superfamily has 10 proteins, including the query,
there can be at most 10 correct matching proteins from the
same superfamily.

There are five parameters used in our approach. w is
the size of the window used to index the local features, b
is the range used to normalize the feature vectors, ε is the
distance threshold based on the normalized feature vectors,
l is the minimum length of the maximal matches, and k is
the number of top scoring proteins reported. We first show
how PSIST performs for different values of w, ε, b, l and k.

Figure 8 shows the number of proteins found from the
same superfamily for different top-k cutoffs. Note that the
number of correct matches is an average over all 181 SCOP
superfamilies used in our test. The retrieval performance
tapers off as k increases. We choose the largest cutoff as
k = 100, since there is not much to be gained by using
larger values.

We next study the effect of varying window size w, while
keeping b = 10, ε = 3 and l = 15. Figure 9 shows that a
smaller window size of w = 3 yields the most number of
correct matches (on average 8 correct matches out of 10),

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 p

ro
te

in
s

cutoff k

Figure 8. Number of proteins found from the
same superfamily for different top-k value
(w = 3, b = 10, ε = 3 and l = 10).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3 3.5 4 4.5 5 5.5 6 6.5 7

nu
m

be
r

of
 p

ro
te

in
s

win size w

Figure 9. Number of proteins found from the
same superfamily for different window sizes
w when (b = 10, ε = 3 and l = 15)

and the retrieval rate drops as w increases. For a smaller
window size more matches are found in the database within
the ε distance, and PSIST is able to find the best matches
after finding the chain of maximal matches. For larger win-
dows the number of matches drops and some of the correct
proteins are missed. From this experiment we conclude that
w = 3 is the best for PSIST.

Figure 10 shows the effect of varying ε with k = 100.
The larger the ε, the more the structures retrieved and then
PSIST is able to find the correct ones by ranking the align-
ments. We find that ε = 3 works well for PSIST, and per-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.5 1 1.5 2 2.5 3

nu
m

be
r

of
 p

ro
te

in
s

distance ε

Figure 10. Number of proteins found from the
same superfamily for different ε (w = 3, b = 10
and l = 15)

formance tapers off for larger values.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 6 8 10 12 14

nu
m

be
r

of
 p

ro
te

in
s

number of bins b

Figure 11. Number of proteins found from the
same superfamily for different b (w = 3, ε = 2.5
and l = 15)

Figure 11 and 12 show that the varying normalization
range b and the length of maximal match l have the similar
effect on the number of proteins found from the same su-
perfamily. For smaller range b and maximal match length l,
there can potentially be many incorrect proteins with sim-
ilar match segments, but for larger b and l, fewer maximal
matches, but correct proteins are found. PSIST obtains its
best performance when the bin range is between 6 and 10,
and the length between 9 and 12.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 6 8 10 12 14 16 18

nu
m

be
r

of
 p

ro
te

in
s

len of maximal match l

Figure 12. Number of proteins found from the
same superfamily for different length of max-
imal matches (w = 3, ε = 2.5 and b = 10)

Table 2. Overall comparison of the number
of proteins found from the same superfamily
among the top k candidates

Algorithm top4 top10 top50 top100

GeoHash 2.43 3.74 4.40 4.86
ProGreSS 3.53 6.17 6.69 7.09
PSIST 3.72 7.49 8.10 8.40

Table 2 shows the comparison of the number of proteins
found from the same superfamily for different top k val-
ues. The table compares the performance of our approaches
against geometric hashing and ProGreSS. Geometric hash-
ing can find only 2.43 correct proteins within the top 10
proteins (with ε = 0.18, which was the best value we deter-
mined empirically). It also has relatively poor performance
for other values of k. Both ProGreSS and PSIST retrieve
more than 3 correct proteins within the top 4 candidates.
However, PSIST performs better than ProGreSS when the
cutoff increases. For instance, PSIST could find 7.49 out of
10 proteins within the top 10 candidates. Note that based
on the previous experiments, for the PSIST algorithm we
set w = 3, b = 10, ε = 3 and l = 9. For fair comparison,
we tuned the parameter settings for ProGreSS to report its
best results (we use sequence distance threshold εt = 0.05,
the structure distance threshold εq = 0.01 and window size
w = 3).

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3 3.5 4 4.5 5 5.5 6 6.5 7

%
 o

f c
or

re
ct

ed
 c

la
ss

ifi
ed

 p
ro

te
in

s

window size w

SF
CL

Figure 13. Percentage of query proteins cor-
rectly classified for different window sizes
when ε=3

4.2. Classification test

In the classification test, we assume we do not know the
superfamily or the class to which a query protein belongs.
For each query we then classify it into one of 181 SCOP su-
perfamilies and one of the four SCOP classes (all α, all β,
α+β and α/β) as follows. For each query, the top k similar
proteins are selected from the database. The query itself is
not counted in the top k matches. Each protein among the
top k matches is assigned a score, a superfamily id, and a
class id. The scores of the top k proteins from the same su-
perfamily or class are accumulated. The query is assigned to
the superfamily or class with the highest score. This classi-
fication approach can thus be thought of as k Nearest Neigh-
bor classification. Below we report results separately for the
superfamily-level and class-level classification. For the per-
formance, we report the percentage of correctly classified
query proteins (out of the 181 queries). For the classifica-
tion tests we also compare with the numbers reported by
PSI [5] and LFF [6], in addition to the results of ProGreSS
and Geometric Hashing. For PSIST, ProGreSS and Geo-
metric Hashing we use the best parameter settings reported
in the last section.

Proteins are classified correctly if the proteins from the
same superfamily have a better rank. Thus the classification
accuracy is proportional to the number of the correct pro-
teins found in the top candidates. For instance, Figure 13
shows the percentage of query proteins correctly classified
for different window sizes when ε = 3, and using k = 3,
at the superfamily (SF) and class (CL) levels. It has a simi-
lar shape as Figure 9; the more the proteins found from the
same superfamily, the higher the accuracy obtained.

Table 3 shows the SCOP classification comparison with
other algorithms at the superfamily and class level respec-

Table 3. SCOP classification accuracy com-
parison at the superfamily (SF) and class (CL)
level

Algorithm Superfamily Class

Geometric Hashing 60.2% 72.9%
PSI 88% N/A
LFF 68.6% 93.2%
ProGreSS 97.2% 98.3%
PSIST 97.8% 99.4%

tively. Geometric hashing has the worst performance, it can
only classify 60.2% and 72.9% proteins correctly at the su-
perfamily and class level. PSI [5] uses SSE-based features,
and its accuracy for superfamily is 88%, but its class accu-
racy is unavailable. LFF profiles [6] only classify 68.5% of
the superfamily correctly, but it agrees with SCOP classifi-
cation at 93% for class level (Note that LFF profiles use a
different testing protein dataset than ours). ProGreSS and
PSIST could obtain more than 3 proteins within the top 4
candidates, so their accuracy is very close and much better
than the others. ProGreSS uses both the structure and se-
quence features to classify the proteins, and its accuracy is
97.2% and 98.3% at the superfamily and class level. With-
out considering the sequence features, PSIST has slightly
better performance than ProGreSS, its accuracy is 97.8%
and 99.4% at the superfamily and class level.

4.3. Performance test

We compare the running time of different approaches in
this section. Suppose a protein has n residues, the window
size is w, then the number of feature vectors is n − w + 1,
so the complexity of our approach is O(n−w−1) = O(n)
per protein. Assume the average number of neighbors of
each reference frame is k, the complexity of our implemen-
tation of geometric hashing is O(k∗n). Although they have
the same complexity, geometric hashing is slower because
of the coefficient k; its running time is 1080.4 seconds per
query for distance ε = 0.18.

Table 4. Running time comparison
Algorithm SF% CL% top10 time(s)

ProGreSS 97.2% 98.3% 6.17 1.67
PSIST-1 96.7% 98.3% 6.57 0.47
PSIST-2 97.2% 99.4% 7.19 4.41
PSIST-3 97.2% 99.4% 7.19 3.28

Both ProGreSS and PSIST provide a trade-off between

the running time and the accuracy performance by adjusting
the parameters such as window size and distance. For a fair
algorithmic comparison, we compare the time performance
of ProGreSS and PSIST based on their retrieval and classi-
fication test. Table 4 shows the running time for ProGreSS
and PSIST. For ProGreSS, we choose the best sequence and
structure distance thresholds and set window size w = 3.
We set w = 3, b = 2, ε = 0 and l = 15 for the first case of
PSIST, and it is 3.5 times faster than ProGreSS with similar
retrieval and classification perform ace. The last two cases
have the same parameters: w = 3, b = 6, ε = 2, l = 15,
but the difference is that the third case builds a query suffix
tree for every 20 queries and processes them together. They
have the same retrieval and classification performance but
the third case is faster. Although both cases are slower than
ProGreSS, they retrieve on average more proteins (7.49 vs.
6.47) out of the top 10 matches and obtain slightly higher
accuracy.

5. Conclusion

In this paper, we present a new local feature represen-
tation of protein structures and convert the structure index-
ing to sequence indexing. We also propose a novel use of
suffix trees to find the maximal matches between structure-
feature sequences and use the alignment between the query
and database SF-sequences to measure the structure simi-
larity. Compared to ProGreSS, our approach either obtains
higher accuracy, or runs faster with similar classification ac-
curacy.

Acknowledgment

We thank Tolga Can, Arnab Bhattacharya and Ambuj
Singh for providing us the ProGreSS code and other as-
sistance. We also thank Chris Bystroff and Nilanjana De
for helpful suggestions. This work was supported in part
by NSF CAREER Award IIS-0092978, DOE Career Award
DE-FG02-02ER25538, NSF grant EIA-0103708, and NSF
grant EMT-0432098.

References

[1] S. Altschul, T. Madden, J. Zhang, Z. Zhang, W. Miller, and
D. Lipman. Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids
Research, 25(17):3389–3402, 1997.

[2] Z. Aung, W. Fu, and K. Tan. An efficient index-based
protein structure database searching method. Intl. Conf.
on Database Systems for Advanced Applications (DASFAA),
pages 311–318, 2003.

[3] A. Bhattacharya, T. Can, T. Kahveci, A. Singh, and Y. Wang.
Progress: Simultaneous searching of protein databases by

sequence and structure. Pacific Symp. Bioinformatics (PSB),
pages 264–275, 2004.

[4] T. Can and Y. Wang. CTSS: a robust and efficient method for
protein structure alignment based on local geometrical and
biological features. IEEE Computer Society Bioinformatics
Conference (CSB), pages 169–179, 2003.

[5] O. Çamoğlu, T. Kahveci, and A. Singh. Towards index-
based similarity search for protein structure databases. IEEE
Computer Society Bioinformatics Conference (CSB), pages
148–158, 2003.

[6] I. Choi, J. Kwon, and S. Kim. Local feature frequency pro-
file: A method to measure structural similarity in proteins.
Proc. Natl. Acad. Sci, 101(11):3797–3802, 2004.

[7] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White,
and S. Salzberg. Alignment of whole genomes. Nucleic Acid
Research, 27(11):2369–2376, 1999.

[8] A. Delcher, A. Phillippy, J. Carlton, and S. Salzberg. Fast al-
gorithms for large-scale genome alignment and comparison.
Nucleic Acid Research, 30(11):2478–2483, 2002.

[9] O. Dror, H. Benyamini, R. Nussinov, and H. Wolfson.
MASS: Multiple structural alignment by secondary struc-
tures. Bioinformatics, 19(12):95–104, 2003.

[10] I. Eidhammer, I. Jonassen, and W. Taylor. Structure com-
parison and structure patterns. J. Comp. Bio., 7(5):685–716,
2000.

[11] D. Gusfield. Algorithms on strings, trees, and sequences:
Computer science and computational biology. Cambridge
University Press, New York, 1997.

[12] L. Holm and C. Sander. Protein structure comparison by
alignment of distance matrices. J. Mol. Biol, 233:123–138,
1993.

[13] L. Holm and C. Sander. 3-d lookup: fast protein structure
database searches at 90% reliability. Intl. Conf. on Intelli-
gent Systems for Molecular Biology (ISMB), pages 179–187,
1995.

[14] E. Hunt, M. Atkinson, and R. Irving. Database indexing for
large dna and prtein sequence collections. Int. Conf. on Very
Large Data Bases (VLDB), pages 256–271, 2003.

[15] Y. Lamdan and H. Wolfson. Geometric hashing: a general
and efficient model-based recognition scheme. Intl. Conf. on
Computer Vision (ICCV), pages 238–249, 1988.

[16] T. Madej, J. Gibrat, and S. Bryant. Threading a database of
protein cores. Proteins, 23:356–369, 1995.

[17] E. McCreight. A space-economic suffix tree construction
algorithm. Journal of the Association for Computing Ma-
chinery, 23(2):262–272, 1976.

[18] C. Meek, J. Patel, and S. Kasetty. Oasis: An online and ac-
curate technique for local-alignment searches on biological
sequences. Int. Conf. on Very Large Data Bases (VLDB),
pages 910–923, 2003.

[19] K. Mizoguchi and N. Go. Comparison of spatial arrange-
ments of secondary structural elements in proteins. Protein
Eng., 8:353–362, 1995.

[20] A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP:
a structural classification of proteins database for the inves-
tigation of sequences and structures. J. Mol. Biol., 247:536–
540, 1995.

[21] R. Nussinov, N. Leibowit, and H. Wolfson. MUSTA: a
general, efficient, automated method for multiple structure
alignment and detection of common motifs: Application to
proteins. J. Comp. Bio., 8(2):93–121, 2001.

[22] C. Orengo and W. Taylor. SSAP: Sequential structure align-
ment program for protein structure comparisons. Methods
in Enzymol., 266:617–634, 1996.

[23] W. R. Pearson and D. J. Lipman. Improved tools for biolog-
ical sequence comparison. Proc. Natl. Acad. Sci., 85:2444–
2448, 1988.

[24] B. Rost. Twilight zone of protein sequence alignments. Pro-
tein Eng., 12(2):85–94, 1999.

[25] M. Shatsky, R. Nussinov, and H. Wolfson. Multiprot - a
multiple protein structural alignment algorithm. Proteins,
56:143–156, 2004.

[26] I. Shindyalov and P. Bourne. Protein structure alignment by
incremental combinatorial extension(ce) of the optimal path.
Protein Eng., 11(9):739–747, 1998.

[27] F. Smith and M. Waterman. Identification of common
molecular subsequences. J. Mol. Biol., (147):195–197,
1981.

[28] E. Ukkonen. On-line construction of suffix trees. Algorith-
mica, 14(3):249–260, 1995.

[29] X. Yuan and C. Bystroff. Non-sequential structure-based
alignments reveal topology-independent core packing ar-
rangements in proteins. Bioinformatics, Advance Access
published online, Nov. 2004.

