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Abstract

Searching genomes for RNA secondary structure with
computational methods has become an important approach
to the annotation of non-coding RNAs. However, due to
the lack of efficient algorithms for accurate RNA structure-
sequence alignment, computer programs capable of fast
and effectively searching genomes for RNA secondary
structures have not been available. In this paper, a novel
RNA structure profiling model is introduced based on the
notion of a conformational graph to specify the consen-
sus structure of an RNA family. Tree decomposition yields
a small tree width ¢ for such conformation graphs (e.g.,
t = 2 for stem loops and only a slight increase for pseudo-
knots). Within this modelling framework, the optimal align-
ment of a sequence to the structure model corresponds to
finding a maximum valued isomorphic subgraph and con-
sequently can be accomplished through dynamic program-
ming on the tree decomposition of the conformational graph
in time O(k*N?), where k is a small parameter, and N is
the size of the profiled RNA structure. Experiments show
that the application of the alignment algorithm to search
in genomes yields the same search accuracy as methods
based on a Covariance model with a significant reduction
in computation time. In particular, very accurate searches

of tmRNAs in bacteria genomes and of telomerase RNAs in
yeast genomes can be accomplished in days, as opposed to
months required by other methods.

The tree decomposition based searching tool is free
upon request and can be downloaded at our site
http://www.uga.edu/RNA-Informatics/software/index.php.

Keywords: RNA secondary structure profiling, Pseudo-
knot search, Tree decomposition, Covariance model

1. Introduction

Non-coding RNAs (ncRNAS) are biologically important
and play fundamental roles in a variety of biological pro-
cesses such as gene regulation, chromosome replication,
and RNA modification [9, 22, 18]. Recently, with the large
amount of available sequence data, homologous searching
based on computational methods has become one of the
important approaches to the identification of new ncRNAs
[17, 25, 12]. The core part of such a search program is an
algorithm that aligns a target sequence to an RNA profile.
To optimally identify the structure of remote homologs, the
profile needs to include conserved conformations caused by
long distance nucleotide base pairs (stems) as well as se-
quence conservation.



Most existing RNA search programs [17, 14, 4, 19] are
based on the Covariance model (CM) developed by Eddy
and Durbin [6] which enables the profiling of base pairs as
well as single nucleotides. While CM can achieve high ac-
curacy on searching for pseudoknot-free structures, it can-
not profile the crossing stems of a pseudoknot. In general,
CM based search is computationally inefficient on struc-
tures with more than 300 nucleotides. For instance, the
commonly used CYK structure-sequence alignment algo-
rithm requires a computation time O(N*) for a profiled
pseudoknot-free RNA containing NV nucleotides [16]. To
reduce the computation time needed for searching on long
genomes or large sequence databases, a preprocessing step
can be used to filter out portions of a genome which are un-
likely to contain the desired pattern [2, 17, 27]. The filtra-
tion based methods can significantly reduce the search time
but the amount of speedup may not be guaranteed. These
techniques have yet to be applied to searches for structures
containing pseudoknots.

To profile pseudoknot structures, a few models based
on stochastic grammar systems have been proposed. Rivas
and Eddy [23] introduced a formal grammar to describe the
legal structures identified by their thermodynamics based
pseudoknot prediction algorithm [24]. This grammar is
based on a number of auxiliary symbols used to reorder
the string generated by an otherwise context-free grammar
(CFG). Our previous work [20] on the stochastic parallel
communicating grammar system extended the conventional
statistical CFG with a few additional regular grammar com-
ponents. The crossing stems in a pseudoknot can be gener-
ated by a parallel and cooperative derivation of all grammar
components in the system. In addition, Uemura et al [15]
used tree adjoining grammars for pseudoknot modelling.
However, for all these models the computation time and
memory space costs needed to perform optimal structure-
sequence alignment are O(N®) and O(N*) respectively. In
practice, these models cannot be directly used for profiling
and searching.

On the other hand, searching for pseudoknots may be
significantly speeded up with heuristic approaches. For ex-
ample, ERPIN, a search tool developed by Gautheret and
Lambert [10], disassembles the secondary structure of an
RNA family into separate stem loops. It scans the genome
to search for possible hit locations for each stem loop struc-
ture and reports a hit when a combination of hit locations for
different stem loops can conform with the overall structure.
ERPIN does not allow gaps in the alignment and can there-
fore miss important remote homologs. Another approach,
first proposed by Brown and Wilson [4] and further devel-
oped by us [19], models pseudoknots with the intersection
of several SCFG or CM components. The optimal align-
ment score of a sequence is computed by combining the
scores obtained from aligning the sequence to all compo-

nents separately. This approach has the same drawback in
computation time as CM based methods, therefore is not
suitable for moderately large RNA structures.

In this paper, we introduce a novel RNA structure (in-
cluding pseudoknot) profiling method that can lead to effi-
cient techniques for structure-sequence alignment and thus
very fast search programs. We profile an RNA structure
with a conformational graph, in which each vertex rep-
resents a base region of a stem and each edge connects
two base regions if they form a stem or they constitute
the two ends of a loop. With this method, the optimal
structure-sequence alignment corresponds to a generalized
subgraph isomorphism (embedding) problem in which the
guest graph is the conformational graph, usually of a natu-
rally small tree width . We develop a dynamic program-
ming algorithm over the tree decomposition of the confor-
mation graph, based on which, an optimal alignment can be
found in time O(k* N'2) for a given integer parameter k. The
value of k can be effectively determined by a statistical cut
off and is also small in nature. Compared with the dynamic
programming algorithm used in CM based search, our new
algorithm is significantly faster.

We performed experiments on several ncRNA families to
test the accuracy and efficiency of the searching algorithm.
Our experiments showed that, using a significantly reduced
amount of computation time, the searching algorithm based
on this new model can achieve the same accuracy as the
CM based searching does. Specifically, on average, the
algorithm is about 24 and 50 times faster than CM based
methods on searching for pseudoknot free sequences that
contain around 90 and 150 nucleotides respectively. Our
experiments also demonstrated an even more significant ad-
vantage of the algorithm over the CM based searching in
computation time when the profiled RNAs contain pseudo-
knots. As a test of the model on real genomes, we used
the algorithm to search for the tmRNA gene in two bacte-
rial genomes, and the telomerase RNA gene on two yeast
genomes. Both the tmRNA and the telomerase genes were
very accurately detected on both genomes in days, a task
that would have needed months of computation time if a
CM based searching model has been used.

2. Methods and Models

We view the consensus secondary structure of an RNA
family as a topological relation among basic structural units,
each of which is a stem or a loop. Our new structure model
consists of two components: a conformational graph that
represents the relationship among all basic structural units,
and a set of simple CMs and profile HMMs, each modelling
a stem or a loop.

In the conformational graph H, each vertex defines ei-
ther of the base pairing regions of some stem. The graphis a



mixed graph containing both directed and undirected edges.
Each undirected edge connects two base pairing regions that
form a stem. Two base regions are connected with a directed
edge (from 5’ to 3’) if they are the two ends of a loop. Tech-
nically, we add two additional vertices s (called source) and
t (called sink) to the graph. Figure 1(a) and (b) show the
consensus structure of an RNA family and the correspond-
ing conformational graph. A consensus structure is usually
obtained from a multiple structural alignment of a family
of RNAs whose structure information is known. Therefore,
in addition to the conformational graph, statistical models
such as CMs and profile HMMs can be constructed for all
stems and loops involved in the structure.

In this framework, a target sequence is a segment in a
(possibly long) genome sequence. We use the profile of
each stem to scan the target sequence to identify all pairs of
regions in the target sequence that have statistically signif-
icant scores of (structural) alignment with the stem profile.
These pairs of regions are called images of the stem. We de-
fine parameter % to be the maximum number of images of
a stem over all stems in the structure. & has two interesting
properties. First, k is a function of a statistical cut-off value.
For example, for any stem, the number of images scored
above certain Z-score threshold is inversely proportional to
the threshold value. Second, the value & is generally small
in nature, especially when a more effective statistical cut-off
is applied (see section 4).

Given the set of images of all profiled stems in the struc-
ture, an image graph can be constructed. Similar to the con-
struction of a conformational graph, each vertex defines one
of the two base pairing regions of some stem and each undi-
rected edge connects two base pairing regions that form a
stem, but now a directed edge connects every two base re-
gions (5’ to 3”) so long as they do not overlap. Based on
the construction, each vertex v in the conformational graph
H can only be mapped to a specific set of & vertices in the
image graph G, each of which is called an image of the
vertex u. Figure 1(c) and (d) illustrate the mapping from
stems to their images and the corresponding image graph
constructed.

The optimal structure-sequence alignment between an
RNA structure profile and a target sequence is equivalent
to the following generalized subgraph isomorphism prob-
lem: given a conformational graph H and an image graph
G, find an one-to-one mapping f from vertices in H to their
images in a subgraph S of G such that

1. (u,v)isanedge in H if and only if (f(u), f(v)) is an
edgein S,

2. for any set of vertices in G representing overlapping
regions on the target sequence, at most one of them
can be selected to the subgraph .S, and

3. the total score achieves the maximum when calculated

from the score sum of the simultaneous alignment of
all regions selected by the mapping to the stems and
loops in the profile.

The defined problem is an optimization problem, differ-
ent from the classical subgraph isomorphism decision prob-
lem. Section 3 gives an optimal algorithm for this optimiza-
tion problem.

Searching a genome for a desired structure is accom-
plished by scanning through it with a window of a length
determined by the size of the profiled structure. For a target
sequence within the window frame, the optimal structure-
sequence alignment is performed. Locations of the window
with statistically significant scores are considered hits.

3. Algorithms

In this section, we present the details of a tree decom-
position based efficient parameterized algorithm for the op-
timal alignment of a target sequence to an RNA structure
profile. For this purpose, we first review the concepts of
tree decomposition and tree width.

Definition 3.1 ([26]) Let G = (V, E) be a graph, where V
is the set of vertices in G, E denotes the set of edges in G.
Pair (T, X) is a tree decomposition of graph G if it satisfies
the following conditions:

1. T = (I, F) defines a tree, the sets of vertices and edges
in T are I and F respectively,

2. X ={X;liel,X; CV} andVu € V, 3 € Isuch
thatuEXi,

3. Y(u,v) € E,3i € I suchthatu € X; andv € X,

4. Vi, j, k € I, if k is on the path that connects 7 and j in
tree T', then X; N X; C Xj.

The tree width of the tree decomposition (T, X) is defined
as max;ey | X;| — 1. The tree width of the graph G is the
minimum tree width over all possible tree decompositions
of G.

Intuitively, in a tree decomposition of a graph, vertices
are placed into a number of bags, each of which is repre-
sented by a node in the tree. A valid tree decomposition re-
quires that every edge in the graph is “covered” by at least
one tree node, and nodes that contains the same vertex must
form a connected subtree of the tree. Figure 2 gives an ex-
ample of a tree decomposition.

The notion of tree decomposition can be used to investi-
gate the “tree-like” property of graphs. For graphs of small
tree width ¢, many optimization problems can be solved
via dynamic programming over tree decomposition in time



Figure 1. (a) An RNA structure that contains both nested and parallel stems. (b) The corresponding
conformational graph. (c) A secondary structure (top), and the mapped regions and images for its
stems on the target sequence (bottom). The dashed lines specify the possible mappings between
stems and their images. (d) The image graph formed by the images of its stems on a target sequence.
(ily,4r1) and (jly, jry) for stem 1, and (ils, ir2) and (jls, jr2) for stem 2.

o
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Figure 2. (a) An example of a graph. (b) The optimal tree decomposition for the graph in (a).



Figure 3. (a) The tree decomposition for secondary structure that contains an outer stem formed by
s and t'. (b) The tree decomposition for secondary structure that contains a leading structure unit

with an outer stem (sq,t1).

O(2tn) for graphs of size n [1]. For the subgraph iso-
morphism problem, unfortunately, such efficient algorithms
only exist for very small fixed guest graph H and host graph
G with a small tree width ¢ or being planar [21, 8], thus are
not applicable to the RNA structure-sequence alignment in-
vestigated in this paper.

3.1 Tree Decomposition of Conformational

Graphs

Although finding the optimal tree width and tree decom-
position for a general graph is NP-hard [3], the conforma-
tional graph of a pseudoknot-free structure is simply an
outer-planar graph which has tree width 2 [3]. We describe
briefly in the following a linear time recursive algorithm to
find an optimal tree decomposition for such conformational
graphs.

A pseudoknot-free structure can only be either of the fol-
lowing two cases: a single outermost stem “containing” all
other stems within, and parallel stems. The tree decompo-
sition algorithm just needs to deal with these two situations
recursively.

(a) If the graph has a single outmost stem (s’, '), the al-
gorithm generates two connected tree nodes {s, s’,t} and
{s',t',t}. Then it recursively produces a subtree (decom-
position) for the part in between s’ and ¢’, and connects the
root of the subtree to node {s',¢',¢}, as shown in Figure
3(a). It returns the node {s, s’t} as the root of the tree de-
composition.

(b) If the graph consists of parallel stems, as shown in
Figure 3(b), the algorithm generates a tree node {s1,t1, 52}
for the first stem (s1,¢1) and connect it to another tree node
{s1, s2,t}. Recursively, it produces a subtree for the part in
between s; and ¢; and connects the root of the subtree to

node {s1,t1,s2}. Similarly, it creates a subtree for the part
in between s, and ¢ and connects the root of the subtree to
node {si, s2,t}. It further connects the {s;, s2,t} to the
third node {s,t} which is returned as the root of the tree
decomposition.

Now we consider pseudoknot structures, which are sec-
ondary structures with as least two stems that structurally
cross. Tree decomposition for the conformational graph
of a pseudoknot structure can be obtained by extending
a tree decomposition for the conformational graph of a
pseudoknot-free structure, since a pseudoknot structure can
be viewed as the combination of a maximal pseudoknot-free
structure with some additional crossing stems. Adding an
edge (u,v) that represents one of the crossing stems (Fig-
ure 4(a)) to the conformational graph of the pseudoknot-free
structure, called the primary conformational graph, may
only increase the tree width by 1. This can be achieved
by first including the two disconnected vertices u and v into
the conformational graph and finding a tree decomposition
using the algorithm specified earlier in this section (Figure
4(b)). The tree decomposition is then extended by includ-
ing v in every tree node on the path of the tree from the
node containing u to the node containing v, thus accommo-
dating the additional edge (u,v). (Figure 4(c)). Theoreti-
cally, if there are ¢ crossing stems in a pseudoknot structure,
the tree width of the corresponding conformational graph
has tree width at most 2 + ¢. Real RNA pseudoknots have
a much smaller tree width. For example, Figure 6 shows
the structure of tmRNA that contains 4 pseudoknots. It is
a pseudoknot-free structure combined with crossing stems
(H,h),(N,n), (S,s), (W,w),(X,2), (Z,2), and (#,3).
The tree width of the corresponding conformational graph
is at most 4 since only crossing stems (W, w) and (X, z)
are not independent of each other, increasing the tree width
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Figure 4. (a) The conformational graph of a pseudoknot structure. The dashed edge (u, v) represents
one of the crossing stems. (b) A tree decomposition of the graph with vertices v and v disconnected.
(c) A tree decomposition of the graph by adding v to tree nodes on the path connecting 4 and v to

cover the additional edge (u,v).

by 2.

The above technique can be improved by considering
adding one “stack” of nested crossing stems, instead of one
crossing stem, to the primary conformational graph at a
time. Theoretically, we can prove that the tree width can
only increase at most by 4 for the addition of a “stack” of
crossing stems independent of the number of stems in this
“stack”. Assume that there are d such “stacks”, each with [;

d
nested stems such that " I; = ¢, the total number of cross-

i=1
ing stems. Then the tree width of the conformational graph
of the pseudoknot is bounded by 2 + d x f?-iild{li’ 4}. The

technical details of the proof are omitted.

3.2 Tree Decomposition Based Optimal Align-
ment Algorithm

An alignment between a structure profile and a target se-
quence is essentially an isomorphism between the confor-
mational graph H for the structure profile and some sub-
graph of the image graph G for the target sequence. To
find such an isomorphism, we adopt the general dynamic
programming technique [1] over the tree decomposition of
H. However, because the general technique can only di-
rectly be applied to the subgraph isomorphism on small
fixed graph H and graph G of a small tree width [21], we
introduce some additional techniques to solve the problem
in our setting. We present a summary and some details of
the new optimal alignment algorithm in the following.

The dynamic programming over the tree decomposition
to find an optimal alignment is based on the maintenance of

a dynamic programming table for each node in the tree. An
entry inatable includes a possible combination of images of
vertices in the corresponding tree node and the validity and
partial optimal alignment score associated with the combi-
nation. The table thus contains a column allocated for each
vertex in the node and two additional columns V" and S to
maintain validities and partial optimal alignment scores re-
spectively.

In a bottom up fashion, the algorithm first fills the entries
in the tables for all leaf nodes. Specifically, for vertices in
a leaf node, a combination of their images is valid if the
corresponding mapping satisfies the first two conditions for
isomorphism (see section 2) and the partial optimal align-
ment score for a valid combination is the sum of the align-
ment scores of loops and stems induced by images of ver-
tices that are only contained in the node. For an internal
node X; in the tree, without loss of generality, we assume
X and X}, are its children nodes. For a given combination
e; of images of vertices in X;, the algorithm checks the first
two conditions for isomorphism (see section 2) and sets e;
to be invalid if one of them is not satisfied. Otherwise, the
algorithm queries the tables for X; and X. e; is set to be
valid if and only if there exist valid entries e; and e; from
the tables of X; and X}, such that e; and e, have the same
assignment of images as that of e; for vertices in X; N X;
and X; N X respectively. The partial optimal alignment
score for a valid entry e; includes the alignment scores of
stems and loops induced by images of vertices only in X;
and the maximum partial alignment scores over all valid en-
tries e;’s and e, ’s with the same assignment of images for
vertices in X; N X; and X; N X, as that of e; in tables for
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Figure 5. A sketch of the dynamic programming approach for optimal alignments. The algorithm
maintains a dynamic programming table in each tree node. Starting with leaves of the tree, the
algorithm follows a bottom-up fashion. In computing the table for a parent node, only combinations
of the images of the vertices in the node are considered. In every such combination, only one locally
best combination (computed in the children tables) is used for vertices that occur in the children

nodes but not in the parent node.

X; and X, respectively. Figure 5 provides an example for
the overall algorithm. In particular, nodes 1 and 2 are leaf
nodes and their dynamic programming tables are computed
by enumerating all possible combinations of images of ver-
tices in them. For internal node 3, to determine the validity
and partial optimal alignment scores of entry x, y, z, the al-
gorithm needs to query the table in node 1 for all entries that
assign image z to vertex band y to ¢ since X3NX; = {b, c},
and the table in node 2 for all entries that assign y to vertex
¢. We omit the column for validities in Figure 5 for sim-
plicity, since we can mark a combination to be invalid by
setting its partial optimal alignment score to be —oco. The
optimal overall alignment score can thus be obtained from
the table in the root of the tree by selecting the entry with
the maximum partial alignment score. A recursive process
starting with this entry can be used to trace back the optimal
alignment.

Some steps in the algorithm need to be elaborated. First,
let a tree node contain ¢ vertices {v1, v, ..., v} from con-
formational graph H. If the number of images of v; in the
image graph G is at most k, a dynamic programming table
of the size O(k?) is sufficient to accommodate all possible
combinations of the images since exactly one image is cho-
sen for every vertex v; for the isomorphism. Second, when
computing the table, the algorithm uses information from
the tables of its children nodes but only partial alignment
scores associated with vertices {vy,vs,...,v:} can be di-
rectly used. This way, the size of a dynamic programming
table for each node is always bounded by O(k?). Third, it
is easy to see that the algorithm satisfies the isomorphism
condition (1) (given in section 2) for alignment. The satis-

faction of the condition (2) by the algorithm can be proved
inductively based on the transitivity of the partial order de-
fined by the directed edges. We omit the proof from this
paper.

The alignment score is the sum of the scores for align-
ing individual stems and loops in the structure profile. The
alignment score for a stem is calculated between the stem
profile and a chosen image in the target of the stem. Since
any loop in the structure is between some two stems, the
alignment score for a loop is calculated between its profile
and the sequence segment in the target within the two cho-
sen images for the two stems.

The running time of the dynamic programming process
is O(k'n) over a tree decomposition of tree width ¢ and tree
size n without including the time for alignment. Let N be
the size of the overall structure profile containing m stems

of lengths sq,...,s,, and r loops of lengths Iy,...,1[,..
Then N = )~ 2s; + > I; and n = O(m). Since for each
i=1 =1

stem and loop profile, its optimal alignment to a counterpart
in the target sequence takes a quadratic time, the total time
for the optimal alignment algorithm is O(k* N?).

4 Testsand Evaluation Results

We performed experiments to test the accuracy and ef-
ficiency of the algorithm and compared the performance of
the algorithm with that of the CM-based searching. The
training data was obtained from Rfam database [13], for
each family, we choose up to 60 sequences with their pair-
wise identities lower than 80% from the structural align-
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Figure 6. Diagram of stems in the secondary structure of a tmRNA. Upper case letters indicate base
regions that pair with the corresponding lower case letters. The four pseudoknots constitute the
central part of the tmRNA gene and are labeled as Pk1, Pk2, Pk3, Pk4 respectively.

ment of seed sequences. In practice, to obtain a reason-
ably small value for the parameter &, the upper bound on
the number of images that a stem can map to, we constrain
the images of a stem within certain region, called the con-
strained image region of the stem, in the target sequence.
For this, we assume that, for homologous sequences, the
distances from the pairing region of a given stem to the 3’
end follow a Gaussian distribution. We compute the mean
and standard deviation of distances from its two pairing re-
gions to the 3’ end of the sequence respectively, evaluated
over all training sequences. For training data representing
distant homologs of an RNA family, we can effectively di-
vide data into groups so that a different but related profile
can be built for each group and used for search. This en-
sures a small value for the parameter k in the models.

As a first profiling and searching experiment, we inserted
several RNA sequences from the same family into a random
background generated with the same base compaosition as
the sequences in the family. We then used both our algo-
rithm and a CM-based searching algorithm we previously
developed [19] to search for the inserted sequences. We
compared the sensitivity and specificity of both searching
algorithms on several different RNA families. To test the
performance of the algorithm on real genomes, we used the
algorithm to search for non-coding RNA genes in real bio-
logical genomes.

4.1 Searching for Pseudoknot Free Sequences

We used both the tree-decomposition based and the CM
based algorithm to search for about 30 pseudoknot free
RNA structures inserted in a random background of 10° nu-
cleotides generated with the same base composition. We de-
termined the statistical distribution for the alignment scores
with a random sequence of 3000 nucleotides, which is gen-
erated with the same base composition as that of the se-
quence to be searched, with a method similar to that used
by RSEARCH [14]. An alignment score with a Z-score
greater than 5.0 is reported as a hit in both searching pro-

grams. In our experiments, for each stem, the algorithm se-
lects k images with the maximum alignment scores within
the constrained image region of the stem. In order to eval-
uate the impact of the parameter & on the accuracy of the
algorithm, we carried out the same searching experiments
for each given k.

Table 1 shows that, on tested RNA families, the tree de-
composition based algorithm achieves the same searching
accuracy as that of the CM based algorithm when the pa-
rameter & is equal to or larger than 6. From Table 2, com-
pared to the CM based searching, the tree decomposition
based algorithm requires a significantly reduced amount of
computation time when the parameter & is 6. On most of
the tested families, the tree decomposition based searching
is more than 20 times faster than the CM based searching.

4.2 Searching for Sequences with Pseudoknots

We also performed searching experiments on several
RNA families that contain pseudoknot structures. For each
family, we inserted about 30 structures that contain pseudo-
knot structures into a background randomly generated with
the same base composition as that of the inserted sequences.
The training data was also obtained from the Rfam database
[13] where we selected up to 40 sequences with pair wise
identity lower than 80% from the seed alignment for each
family. We used both the tree decomposition based algo-
rithm and the CM based algorithm to identify the inserted
sequences. For both algorithms, the threshold of alignment
scores for reporting a hit is determined by a Z-score value
5.0.

Tables 3 and 4 show the comparisons of both searching
accuracy and computation time for both algorithms. It is
evident that, on families with pseudoknots, the tree decom-
position based algorithm achieves the same accuracy as that
of the CM based algorithm when the parameter k reaches
a value of 7. In particular, the computation time needed by
the algorithm is about 66 and 38 times less than that of the
CM based algorithm on Alpha_RBS and Tombus_3_1V, the



RNA LE CM based Tree decomposition based

k=5 k=6 k=7 k=38
SE SP SE SP SE SP SE SP SE SP
Entero_.CRE 61 | 80.65 | 100 | 74.19 | 100 | 80.65 | 100 | 80.65 | 100 | 80.65 | 100
Entero_OriR 73 | 100 100 100 100 100 100 100 100 100 100

Let_7 84 100 100 95.8 100 | 95.8 100 100 100 100 100

Lin_4 72 100 100 100 88.9 100 | 94.11 | 100 | 94.11 | 100 | 94.11
Purine 103 | 93.10 | 100 | 93.10 | 96.43 | 93.10 | 96.43 | 93.10 | 96.43 | 93.10 | 96.43
SECIS 68 100 | 9730 | 100 | 97.30 | 100 | 97.30 | 100 | 97.30 | 100 | 97.30
S_box 112 | 100 100 100 | 92.86 | 100 | 92.86 | 100 | 96.30 | 100 | 96.30

Tymo_tRNA-like | 86 100 | 96.67 | 100 | 96.67 | 100 | 96.67 | 100 | 96.67 | 100 | 96.67

Table 1. A comparison of the searching accuracy of the tree decomposition based and CM based
algorithms in terms of sensitivity and specificity. LE is the average length of sequences in the family,
SE and SP are sensitivity and specificity in percentage respectively.

RNA CM based Tree decomposition based
k=5 k=6 k=7 k=38
RT RT SuU RT SuU RT SuU RT SuU

Entero_CRE 57.96 2.60 | 22.2x | 2.85 | 20.3x | 3.21 | 181x | 3.38 | 17.2x
Entero_OriR 103.08 4.77 | 21.6x | 491 | 21.0x | 5.26 | 19.6x | 542 | 19.0x
Let.7 157.11 13.94 | 11.3x | 14.97 | 10.5x | 16.38 | 9.6x | 16.92 | 9.3x
Lin4 132.51 245 | 54.1x | 3.22 | 41.2x | 4.25 | 31.2x | 5.10 | 26.0x
Purine 179.29 6.61 | 27.1x | 7.09 | 25.3x | 849 | 21.1x | 9.61 | 18.7x
SECIS 185.21 848 | 21.8x | 9.14 | 20.3x | 10.23 | 18.1x | 10.89 | 17.0x
S_box 756.27 26.10 | 29.0x | 29.76 | 25.4x | 34.76 | 21.8x | 41.01 | 18.4x
Tymo_tRNA-like 185.056 4.34 | 42.6x | 5.01 | 37.0x | 6.10 | 30.3x | 7.07 | 26.2x%

Table 2. The computation time for both searching algorithms on all pseudoknot free RNA families.
RT is the computation time in minutes, SU is the amount of speed up compared to the CM based
searching algorithm.

RNA LE | CM based Tree decompostion based

k=5 k=6 k=17 k=38

SE SP SE SP SE SP SE SP SE SP
Alpha_RBS 110 | 100 | 96.00 | 91.67 | 88.00 | 95.80 | 92.00 | 100 | 96.00 | 100 | 96.00

Antizyme_FSE | 55 | 100 | 100 | 92.86 | 100 | 96.43 | 100 | 100 | 100 | 100 | 100

HDV _ribozyme | 95 | 100 | 100 100 | 97.37 | 100 | 97.37 | 100 | 97.37 | 100 | 97.37
IFN.gamma | 170 | 100 | 100 100 100 100 100 | 100 | 100 | 100 | 100

Tombus_3_IV | 95 | 100 | 100 | 92.31 | 100 100 100 | 100 | 100 | 100 | 100
corona_pk3 65 | 100 | 94.80 | 100 | 97.37 | 100 | 97.37 | 100 | 97.37 | 100 | 97.37

Table 3. The searching accuracy for both tree decomposion based and CM based algorithms on RNA
sequences containing pseudoknots.

two families that contain more than 100 nucleotides. This sition based algorithm over the CM based searching method
demonstrates the promising advantage of the tree decompo- in computation time when the structural pattern for which



RNA CM based Tree decomposition based
k=5 k=6 k=7 k=8
RT RT SuU RT SU RT SU RT SU
Alpha_RBS 27.85 0.24 | 116.0x | 0.31 | 90.1x | 0.42 | 66.3x | 0.55 | 50.6x
Antizyme_FSE 0.94 0.10 | 94x | 0.13 ] 7.2x | 0.18 | 5.2x | 0.23 | 4.1x
HDV _ribozyme 6.54 0.22 | 29.7x | 0.34 | 19.2x | 0.52 | 12.6x | 0.79 | 8.3x
IFN_gamma 31.24 0.47 | 66.5x | 0.72 | 43.4x | 1.07 | 29.2x | 1.52 | 20.6x
Tombus_3_1V 15.45 0.17 | 90.9x | 0.27 | 57.2x | 0.40 | 38.6x | 0.57 | 27.1x
corona_pk3 2.89 0.12 | 24.1x | 0.15 | 19.3x | 0.20 | 14.5x | 0.26 | 11.1x

Table 4. The computation time for both searching algorithms on all RNA families that contain pseu-

doknots. The amount of RT is in hours.

one is searching contains more than 100 nucleotides.
4.3 Search on Biological Genomes

To test the peformance of the algorithm on real genomes,
we used the algorithm to search biological genomes for
structural patterns that contain pseudoknots. For example,
the secondary structure formed by nucleotides in the 3’ un-
translated region in the genomes of the corona virus family
contains a pseudoknot structure. This pseudoknot was re-
cently shown to play important roles in the replication of the
viruses in the family [5]. We selected four genomes from
the corona virus family and used the algorithm to search for
this pseudoknot. For bacteria, the tmRNA is essential for
the trans-translation process and is responsible for adding a
new C-terminal peptide tag to the incomplete protein prod-
uct of a broken mMRNA [11]. The secondary structure of
tmRNA contains four pseudoknots and Figure 6 provides a
sketch of the stems that constitute the secondary structure
of a tmRNA. The tree decomposition based algorithm was
also used to search for tmRNA genes on the genomes of
two bacteria organisms, Haemophilus influenzae and Neis-
seria meningitidis. Both of the genomes contain more than
108 nucleotides. Among the bacteria containing tmRNAs,
these two are relatively distant from each other evolutionar-
ily. To test the accuracy and efficiency of the algorithm on
genomes with a significantly larger size, we used the algo-
rithm to search for the telomerase RNA gene in the genomes
of two yeast organisms, Saccharomyces cerevisiae and Sac-
charomyces bayanus, both of which contain more than 107
nucleotides. Telomerase RNA is responsible for the addi-
tion of some specific simple sequences onto the chromo-
some ends [7].

The parameter &k used in the tree decomposition based
algorithm for searching all genomes is 7. Table 5 provides
the real locations of the searched patterns, the locations an-
notated by the tree decompostion based and CM based al-
gorithms respectively. The table clearly shows that, com-

pared with CM based searching, the tree decomposition
based model and searching algorithm are able to achieve
the same accuracy with a significantly reduced amount of
computation time. Both our new program and the CM base
program have 100% sensitivity and specificity for searches
in genomes. Searching a genome of moderate size for a
structural pattern as complex as tmRNA gene only needs
days of computation time, instead of months.

5 Conclusions

In this paper, we introduce a novel graph theoretical
model for profiling RNA structures including pseudoknots.
This approach profiles the fundamental structural units that
form the secondary structure of an RNA family separately,
and the structural relations among the structural units are
described with a conformational graph. Based on this
generic framework, an image graph can be constructed by
determining the possible locations of each stem on a target
sequence. The target sequence can be efficiently aligned to
the profiling model by computing the maximum valued sub-
graph isomorphic to the conformational graph in the image
graph. Our experiments demonstrated that this approach is
able to achieve the same searching accuracy as CM based
methods while requiring only a small fraction of the compu-
tation time needed by them. Based on this profiling model
and the optimal alignment algorithm, we are able to ac-
curately determine the locations of ncRNAs with complex
structural patterns in genomes of a moderate size in days.

The time complexity of the alignment is O(kt* N?), for
an RNA family that contains N nucleotides and has a con-
formational graph with tree width ¢. Parameter & is an upper
bound of the number of images of each stem on a target se-
quence and can be effectively determined with a statistical
cut-off value based on the constrained mapped regions of
a stem. Our experiments also showed that, on most tested
RNA families, a value of 7 is sufficient for achieving the
same accuracy as that of the CM based searching methods.



OR NcRNA Tree decomposition based

CM based Real location GL

Left Right RT Left Right RT Left Right
BCV 3’PK 30798 30859 | 0.053 | 30798 30859 | 1.24 | 30798 30859 0.31
MHV | 3'PK 31092 31153 | 0.053 | 31092 31153 | 1.27 | 31092 31153 0.31
PDV 3’PK 27802 27882 | 0.048 | 27802 27882 | 1.17 | 27802 27882 0.28
HCV | 3'PK 27063 27125 | 0.047 | 27063 27125 | 1.12 | 27063 27125 0.27

HI tmRNA | 472209 | 472574 | 44.0 | 472210

472575 | 1700 | 472210 | 472575 | 18.3

NM | tmRNA | 1241197 | 1241559 | 529 | 1

241197

1241559 | 2044 | 1241197 | 1241559 | 22.0

SC | TLRNA | 307688 | 308429 | 492.3

- - 307691 | 308430 | 103.3

SB | TLRNA | 7121529 | 7122284 | 550.2

- - 7121532 | 7122282 | 114.8

Table 5. A comparison of the accuracy and efficiency for both algorithms on searching biological
genomes. OR is the name of the organism; GL is the length of the genome in multiples of 10°
nucleotides. BCV is Bovine corona virus; MHV is Murine hepatitus virus; PDV is Porcine diarrhea
virus; HCV is Human corona virus; Hl and NM represent Haemophilus influenzae and Neisseria meningitidis
respectively. SC and SB represent Saccharomyces cerevisiae and Saccharomyces bayanus respectively. RT
is the single CPU time needed to identify the ncRNA in hours. For tmRNA and telomerase RNA
searches, RT is estimated from the time needed by a parallel search with 16 processors.
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