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Abstract

A linear programming algorithm is presented to con-
structively compute thermodynamically feasible fluxes and
change in chemical potentials of reactions for a metabolic
network. It is based on physical laws of mass conservation
and the second law of thermodynamics that all chemical re-
actions should satisfy. As a demonstration, the algorithm
has been applied to the core metabolic pathway of E. coli.

1. Introduction

Constraint-based optimization approaches to modeling
metabolic pathways are powerful methods for quantitative
analysis of behavior of cells, since the constraints are based
on fundamental physical laws and allow some predictions
to be made without using any unknown parameters. For a
given system of reactions in steady state, mass balance on
the reactions restricts the space of possible fluxes or rates to
the null space of the stoichiometric matrix [8]. This is a con-
straint that has been used in the flux balance analysis (FBA).
In the absence of detailed knowledge about the kinetic pa-
rameters and enzyme concentrations, the FBA assumes that
the metabolic flux vector in a biological network optimizes
some objective, for example, the production of growth or
biomass, subject to the mass balance constraint. Other ob-
jectives have been used, but the production of biomass can
be easily compared with experiment. Inspite of these con-
straints, the FBA can still give rise to an infinite number of
flux vectors. Hence, we need to further constrain the sys-

tem.

The network structure of metabolic pathways imposes
an additional thermodynamic constraint on the flux vector.
Recently, these constraints have been applied to metabolic
networks to remove fluxes that violate the second law of
thermodynamics. The thermodynamic constraint, applica-
ble to non-equilibrium systems in steady state, is a conse-
quence of the second law of thermodynamics according to
which the direction of a chemical reaction is from a higher
chemical potential to a lower chemical potential [6]. This
is similar to the flow of currents from a higher voltage to a
lower voltage in an electrical circuit. This constraint is also
called the energy balance analysis (EBA) in the literature
[1]. The stoichiometric matrix contains all the information
regarding the flux balance and energy balance constraints.

In [5] it was discussed that the FBA solution can be de-
composed into weightings of three types of pathways. The
Type I pathway for example deals with the cycling of ATP,
which then drives other cellular processes. Type II path-
ways are those that have exchange fluxes corresponding to
metabolites like ATP, NADH, with the rest of the pathway
being an internal cycle. These pathways represent futile
cycles. Type III pathways have no exchange fluxes, and
these represent internal cycles corresponding to the internal
fluxes. It is the presence of these type III loops in the flux di-
rection that violate the second law of thermodynamics [5].
For example, the pyruvate kinase reaction flux could be a
part of the type III loop. A simple solution to satisfy the
thermodynamic constraint is by setting the type III fluxes
to zero [5]. This turns out to be overly restrictive in some
situations and not strictly correct in others. The algorithm



proposed here offers a general method of detecting and re-
moving thermodynamically offending loops.

To test if a particular flux pattern is thermodynamically
feasible, [2] proposed a method based on matroid theory.
Their method has exponential complexity. Also, in [1] a
nonlinear optimization method was presented for this prob-
lem. In [4] a sign test was proposed which is a necessary
condition for testing thermodynamic infeasibility, which
when combined with linear programming (LP) is both nec-
essary and sufficient. This led to a polynomial algorithm
to detect thermodynamically infeasible fluxes and compute
chemical potential changes for any given flux vector. In
this paper we propose a method that relies on the sign test
to constructively produce thermodynamically feasible solu-
tions by modifying the infeasible fluxes of the FBA in poly-
nomial time. This method is different from the previous
approaches, as it is constructive and is based on linear pro-
gramming. We also give a different proof for the sign test
in lemma 1. We illustrate our algorithm by applying it to a
part of the metabolic network of Escherichia coli [3], and
detect the presence of thermodynamically infeasible fluxes.
We modify the infeasible flux vector by our algorithm so
that it becomes thermodynamically feasible. The amount
by which the flux space is reduced can be got by the sign
test introduced in [4], and this is related to the number of
thermodynamically infeasible loops present in the network.

2. Flux Balance Analysis: Law of Flux Conser-
vation

In this section, we outline mathematically the law of flux
conservation which is the starting point of our analysis. It
starts with the metabolic reaction diagram of an organism
constructed from its genome by identifying the genes that
code for the enzymes that catalyze typically several hun-
dred reactions in the cell. In FBA, the law of mass balance
is applied to each metabolite which in steady state implies
that the incoming fluxes or rates should balance the out-
going fluxes. The FBA has been formulated as a LP by
many authors [8], in which there is a linear objective func-
tion Z = dT f to be maximized or minimized. Usually
written as a linear combination of the fluxes, the objective
function could for example be growth rate, ATP production,
or glucose intake. The optimization of the objective func-
tion is subject to the mass balance constraints Sf = 0 and
l ≤ f ≤ u, where, f ∈ Rn is the vector of n fluxes,
S ∈ Rm×n is a stoichiometric matrix, m is the number of
reactants or metabolites in the network. All vectors by de-
fault will be column vectors. Also, d, l and u are vectors
∈ Rn of objective function coefficients, lower and upper
bound constraints on the fluxes respectively, and 0 is a zero
vector of size m. The upper and lower bounds on the flux
vector are taken componentwise. This constraint is got ex-

perimentally. The lower bound constraint in most cases is
either zero or negative infinity. In this paper we will assume
these two lower bounds for the fluxes. The upper bound
constraint for most of the fluxes is infinity, but has a finite
value that is experimentally determined for some boundary
fluxes. Also, the vector of objective function coefficients
has to be determined experimentally. Usually the objective
function depends only on the boundary or exchange fluxes.
For a reversible reaction the flux is unrestricted and can take
on both positive and negative values, but for an irreversible
reaction the flux is constrained to be non-negative. This is
achieved by setting appropriate lower and upper bound con-
straints on the reaction fluxes.

3 Energy Balance Analysis: Second Law of
Thermodynamics

According to the second law, fluxes must flow from reac-
tants of higher chemical potential to ones of lower chemical
potential. This is required by the second law of thermo-
dynamics since the entropy of the reaction is always non-
decreasing [6]. The FBA analysis is underconstrained, and
gives rise to an infinite number of flux vectors. Many of
these fluxes violate the second law and hence are infeasible.
From a network topology point of view, it is the presence of
cycles in the flux direction, that is Type III pathways, that
violate the second law. Applying Kirchhoff’s loop law, one
gets rid of these entropy violating cycles.

From S we remove the columns corresponding to bound-
ary fluxes and keep only the columns of non-redundant in-
ternal fluxes, which is defined as those between metabolites.
The resulting matrix G ∈ Rm×ni , where, ni is the number
of internal fluxes in the network. Using the reduced row
echelon form [7] one can find the null space matrix N of
G. The matrix N ∈ Rni×nl consists of nl basis vectors of
N (G), the null space of G. The dimension of N (G), de-
noted by D(N (G)) gives the number of independent loops
nl in the network [7]. By this we mean that a single basis
loop cannot be decomposed into smaller loops. By taking
linear combinations of these basis loops we can generate
bigger and compound cycles (see Strang, 2003, page 363).
Moreover, there are many loops which can not be decom-
posed into smaller ones (called elementary modes or ex-
treme pathways) but they are all linearly dependent. This
is why constructing a cycle space is computationally hard,
while finding a set of basis vectors for the null space of a
matrix is computationally trivial. This basis is unique since
the reduced echelon form of G is unique, and the unique-
ness is only true for a given form of the G matrix, but not
for a given network.

Associated with each internal flux fi is a chemical po-
tential difference ∆µi. These potential differences satisfy a
law similar to the Kirchhoff’s loop law in electrical circuits,



namely [1]

K∆µ = 0 (1)

where, K = NT ∈ Rnl×ni is a matrix whose rows are
the basis vectors of the null space of G, and ∆µ ∈ Rni

is a column vector of chemical potential differences for the
internal fluxes in the cell, and 0 is a zero vector of size nl.

The second law ensures that the entropy increases in each
internal reaction i and hence the direction of internal flux fi

is from metabolites of higher chemical potential to one of
lower chemical potential, and can be expressed as

{
fi∆µi < 0 for fi �= 0 and ∆µi �= 0,
fi = 0, ∆µi = 0 otherwise.

(2)

This is as nonlinear constraint which when incorporated
into the FBA makes it a nonlinear programming problem.
These inequalities are mathematical statements about heat
dissipation in a chemical reaction, that must be positive. In
non-equilibrium steady state, it is equivalent to the entropy
production rate being non-negative [6]. Moreover, in non-
equilibrium steady state, the chemical potential can be de-
fined for each metabolite [6], that must satisfy equation (2).
Not all flux vectors are consistent with this requirement (see
figure 1 for example). Therefore the existence of the chem-
ical potential imposes a constraint, via equation (2), on the
flux vectors.

In addition to the above constraints one imposes upper
and lower bound constraints on ∆µ

β ≤ ∆µ ≤ α (3)

where, β and α ∈ Rni represent the lower and upper
bounds on the change in chemical potential ∆µ, and the in-
equality is componentwise. The absolute values of the com-
ponents in β and α mean nothing since equations (1), (2)
and (3) can be scaled by a positive constant without chang-
ing the linear programming solution. In this model the role
of the change in chemical potential is just to set the direction
of the flux. Hence, it is the sign of ∆µi that matters for the
flux fi. We need to refine the EBA model such that the ab-
solute value of the chemical potential change is important.
By studying several pathways it should then be possible to
put more tight bounds on the fluxes and chemical potential
changes for different reactions in the network.

Applying the second law of thermodynamics we restrict
the space of metabolic fluxes even further by eliminating
flux vectors that violate this law, since the corresponding
reactions cannot occur in nature. In the EBA model we re-
move the boundary fluxes and apply the second law to the
remaining internal fluxes in the metabolic network, which is
now a closed system. Hence, the entropy of a closed system
of reactions can only increase.

Figure 1. Electric circuit analogy for EBA.
Thermodynamically infeasible and feasible
loops. The current f is the sum of the cur-
rents x1 and x2. Currents in the opposite di-
rection are infeasible whereas those in the
same direction are feasible.

We introduce some notation and definition here that will
be used in the following sections. We will use upper-
case indices to denote sets for example, let F be the
set of all fluxes in the network, R be the set of unre-
stricted fluxes, F≥0 be the set of non-negative fluxes,
F<0, F=0 and F>0 be the set of negative, zero and pos-
itive fluxes respectively. Denote the ith flux component
fi ∈ F , ri is an unrestricted flux, f≥0

i is a non-negative
flux etc. The matrix N can be written in terms of its col-
umn vectors as N = [N∗1, . . . , N∗k, . . . , N∗i, . . . , N∗nl

],
where N∗k is the kth column vector of N . Also N∗k =
[n1k, n2k, . . . , nik, . . . , nnik]T , where nik is the (i, k)th en-
try of the matrix N . An internal flux xi is called non-
overlapping if it belongs to only one basis cycle.

4 No Cycle Feasibility Constraint

We introduce a simple test [4] to detect the presence of
loops in a metabolic network that violate the second law
of thermodynamics. To do so we take advantage of the
directionality of the flow of fluxes in a cycle. In this paper
we give a different proof of lemma 1 that is used in the test.

Lemma 1: (scaling lemma)
Transforming the internal flux ari, for any a ∈ {−1, 0, 1}
to ri scales the ith column K∗i of matrix K by a, and hence



scales ∆µi by a.

Proof: From the flux conservation equation Sf = 0,
one can partition the flux vector f into an internal flux
vector x and a boundary flux vector y. The columns of
the stoichiometric matrix S can likewise be partitioned
into columns G corresponding to the internal fluxes and
columns H corresponding to the boundary fluxes. That
is, S = [G H]. The flux conservation equation can be
rewritten as Gx = −Hy.
Since N is the null space matrix of G, we have GN = 0,
where 0 is a (m × nl) matrix of zeros. Consider the ith
component of the unrestricted internal flux ari, which is
a component of x. In the matrix vector product Gx, ari

multiplies the ith column G∗i of matrix G. The flux ari is
transformed to ri by transferring a to all the elements in
the column of G∗i. By this process the value of the matrix
vector product Gx is unaffected. Hence G∗i becomes
aG∗i. From the equation GN = 0 we have GN =
[G∗1, . . . , G∗i, . . . , G∗ni

] [N∗1, . . . , N∗i, . . . , N∗nl
], where

G∗1, N∗1 are the first columns of the G and N matrix
respectively. This matrix-matrix product can be written

compactly as

[∑ni

j=1 G∗jnj1, . . . ,
∑ni

j=1 G∗jnjnl

]
. In

this summation consider the terms involving j = i, from
which it is clear that transforming G∗i to aG∗i transforms
the ith row of matrix N , that is entries ni1,. . . , ninl

get
multiplied by a. Since by construction K = NT , the ith
row of matrix N corresponds to the ith column K∗i of
matrix K, which then is multiplied by a. Equation (1) can
be written as

∑ni

j=1 K∗j∆µj = 0, where if we consider
the term j = i, it is clear that ∆µi is scaled by a when-
ever K∗i gets multiplied by a to keep the equation invariant.

By use of scaling lemma 1 we transform all the unre-
stricted negative internal fluxes to positive fluxes by putting
a = −1. Also if a = 0 then the ith column K∗i of matrix
K becomes zero.

After application of lemma 1, if any row of K has the
same sign, then the metabolic network is thermodynami-
cally infeasible, and the cycle corresponding to that row
violates the second law, and hence must be removed. This
is only a necessary condition for infeasibility. It can be seen
that the FBA problem with constraints (1) and (2) prevents
the formation of such cycles. Therefore, the nonlinear
constraint in equation (2) can be replaced by the sign test
of lemma 1, which then makes the whole problem linear.

Lemma 2: (pivoting lemma)
Subtracting a multiple of the null space basis vector of the
matrix G from the corresponding internal fluxes in a cycle
does not change the optimal value of the objective function,
but in some cases can impose additional constraints on the

fluxes that make the EBA solution sub-optimal.

Proof: The columns of the stoichiometric matrix S can be
partitioned into columns G corresponding to the internal
fluxes x and columns H corresponding to the boundary
fluxes y. The objective function consists of only the
boundary fluxes and hence can be written as dT

y y, where
dy is a coefficient which in most cases has one non-zero
component corresponding to the boundary flux one is trying
to optimize. The flux conservation equation Sf = 0 can be
written as Gx+Hy = 0 Let bc be a basis vector in the null
space of matrix G corresponding to cycle c. Subtracting a
multiple γ of this vector from x leads to a new flux vector
x

′
= x − γbT

c of internal fluxes, that still satisfies the flux
conservation constraint. The vector bc is the row r(c) of
the K matrix, Kr(c)∗ corresponding to cycle c. We choose
the multiplier γ such that the constraints on the internal
fluxes are not violated.

Since this pivoting step does not change the objective
function and the constraints on the LP, the application of
this step will not change the optimal value of an objective
function, such as production of biomass, that is composed
of throughput fluxes. The examples discussed in [5] are
very restrictive and their flux zeroing method does not
always preserve the optimal value of the objective function,
since they use bc to be a vector of all ones, which may not
always lie in N (G), the null space of G. Moreover, as a re-
sult of this pivoting step some internal fluxes become zero,
and this results in the corresponding ∆µ’s to be zero. From
equation (1), some additional ∆µ’s are inferred to be zero.
These additional ∆µ’s enforce the corresponding internal
fluxes to be zero, in order to maintain thermodynamic
feasibility. It is these additional constraints on the fluxes
that make the EBA solution sub-optimal. In this paper we
use the pivoting lemma 2 to transform thermodynamically
infeasible loops, to thermodynamically feasible loops.
We pivot on a particular flux by making it either zero or
changing its sign.

Definition: An internal flux xi is limiting if by pivoting
on it, the constraints on the other internal fluxes are not
violated.

5 Algorithm

(i) Solve the FBA for the flux vector f . If the FBA cannot
find a solution then the problem has no solution.
(ii) Compute the K matrix from the reduced row echelon
basis. For the fluxes in F<0 and F=0 apply the scaling
lemma to scale the entries of the columns of the K matrix
corresponding to these negative fluxes. Put the fluxes of



F<0 in F>0.
(iii) While the K matrix is infeasible, identify thermody-
namically infeasible cycles, and apply the pivoting lemma
to zero out the limiting flux or change its sign in that cycle.
Update the sets F<0, F=0 and F>0. (It is best to apply the
pivoting lemma to non-overlapping limiting fluxes, if they
are available). Update K matrix by use of scaling lemma 1.
Repeat step (iii).
(iv) The components of the ∆µ vector corresponding to
the zero fluxes in F=0 are constrained to be zero. The ∆µ
vector satisfying constraints (1), (2) and (3) is solved along
with the LP. Due to this some more ∆µ vector components
are inferred to be zero, so the corresponding internal fluxes
are set to zero to preserve thermodynamic feasibility.
Repeat step (iv) until no more additional (fi,∆µi) pair
become zero. In this step the components of the ∆µ vector
corresponding to the non-zero fluxes are constrained to be
negative and the combined LP is solved. If the network
is still thermodynamically infeasible then the reactions
corresponding to the zero fluxes are deleted and step (iv) is
repeated. (Reaction deletion alters the metabolic network.
It makes the flux zero without requiring chemical potential
difference to be zero.)
(v) If the LP in step (iv) is unable to find a solution, then
report thermodynamic infeasibility.

The main complexity of the algorithm is the computa-
tion of the null space matrix K and the linear programming
step. Both these run in polynomial time.

Lemma 3: (correctness lemma)
The EBA algorithm finds a thermodynamically feasible flux
vector if the loop fluxes are permitted to be unrestricted or
can take on zero values and the FBA solution can be found,
otherwise it reports that the network is thermodynamically
infeasible.

Proof: Existence of a FBA solution means that step (i)
of the algorithm is successful. Operations in step (iii),
namely the pivoting step can take place only if the limiting
loop fluxes are permitted to be unrestricted or can take on
zero values. By lemma 2 the pivoting step preserves the
optimum value of the FBA problem, if no additional con-
straints on the fluxes are generated as a result of pivoting.
However, one may be able to find a thermodynamically
feasible flux vector with non-zero components that satisfy
the sign test. In that case the pivoting procedure in step
(iii) is not done. Also if step (iii) cannot be executed due to
the non-zero constraint on the limiting internal fluxes, one
could find other thermodynamically feasible flux vectors
with non-zero components by starting the linear program
at a different initial flux vector. For practical problems,
the loop fluxes are permitted to have zero values, and the

algorithm always proceeds by finding a series of optimal
flux vectors by applying the pivoting step (iii) to remove
all the thermodynamically infeasible loops in the network
by zeroing out or changing sign of the limiting flux. The
algorithm terminates with a thermodynamically feasible
solution. In this case the original infeasible K matrix is
transformed into a feasible one, that satisfies the sign test,
by the repeated application of step (iii) of the algorithm
finitely many times, till a certain number of fluxes have
been transformed. If the network is still thermodynamically
infeasible then in step (iv) the reactions corresponding to
zero internal fluxes are deleted and this ensures that the
algorithm finds a thermodynamically feasible solution.
If after this the algorithm in step (v) is unable to find
a solution, then the solution generated by the FBA is
thermodynamically infeasible. The sign test introduced in
[4] is a necessary condition for thermodynamic infeasibility.

Lemma 4: (basis lemma)
If the network is thermodynamically infeasible or feasible
in one basis then it is thermodynamically infeasible or
feasible in all basis.

Proof: Let B be a basis of the null space of G, and KB be the
matrix whose rows contain the basis vectors (b1, . . . , bnl

).
Consider another basis C with matrix KC . The basis vec-
tors of C are linear combinations of basis vectors of B. It
is therefore possible to go back between the two basis since
the linear operations can be undone. So the map is invert-
ible. Hence,

KC = TCBKB (4)

where, TCB is an invertible transformation matrix. So the
equations, KB∆µB = 0 and KC∆µC = 0 have the same
set of solutions. Hence if ∆µB is infeasible or feasible
then so is ∆µC and viceversa.

6 Application of the EBA Algorithm

6.1 Illustrative Example

In this section we consider the example discussed in [2].
We discuss feasibility and infeasibility of flux vectors using
the simple machinery of linear algebra without resorting to
matroid theory.

The set of reactions are shown below (see figure 2).
rxn 1 (x1): A −− > B
rxn 2 (x2): B −− > C
rxn 3 (x3): C −− > A
rxn 4 (x4): C −− > D
rxn 5 (x5): D −− > B



Figure 2. (A) Illustrative example net-
work from [2] with five internal fluxes
x1, x2, x3, x4, x5 and two boundary fluxes y1, y2.
(B) Three internal cycles corresponding to
type III pathways for the network.

This reaction network has 5 internal fluxes correspond-
ing to the 5 reactions, and associated with each internal flux
is a change in chemical potential. In addition to these there
are 2 boundary or exchange fluxes: y1 transports A into the
network and y2 transports B out of the network. All re-
actions are reversible, but the arrows indicate the positive
direction.

For this reaction network we wish to determine the maxi-
mum steady state production of reactant B, for a given max-
imal input flux of reactant A. This problem only assumes
that A is the only available input substrate, and that its value
is set to the maximum value.

The stoichiometric matrix G for the four metabolites A,
B, C and D corresponding to the four rows respectively and
the five reactions corresponding to the five columns of G
respectively, is

G =



−1 0 1 0 0

1 −1 0 0 1
0 1 −1 −1 0
0 0 0 1 −1




Also, the stoichiometric matrix H for the four metabo-
lites as rows and the two exchange fluxes as columns.

H =




1 0
0 −1
0 0
0 0




The full stoichiometric matrix is S = [G H] and the
flux distribution fT = [xT ,yT ] ∈ R7 that satisfies the flux
conservation constraint Sf = 0. The five internal fluxes
corresponding to the five internal reactions are unrestricted,
and are represented by the vector x ∈ R5, while the two
boundary fluxes are positive, and are represented by the vec-
tor y ∈ R2.

The null space basis vectors from the reduced row eche-
lon form of G are given in [2], and can be easily computed
in MATLAB. They are,

k1
T = [1, 1, 1, 0, 0] (5)

k2
T = [0, 1, 0, 1, 1] (6)

The dimension of the null space of matrix G is 2, hence
there are two basis cycles. The K matrix then consists of
k1

T and k2
T as its rows, corresponding to cycle 1 and cycle

2, which are A −− > B −− > C −− > A and
B −− > C −− > D −− > B respectively (see figure 2).
These two basis cycles can be combined into a single larger
non-basis cycle 3: A −− > C −− > D −− > B −− > A
with the corresponding null space vector [−1, 0,−1, 1, 1]T .
This is got by taking the difference between equations (6)
and (5).

This representation tends to give a clear picture about
shared and non-shared fluxes among cycles. Here flux x2 is
shared among the two cycles, whereas x1 and x3 belong to
cycle 1, corresponding to k1

T , while, x4 and x5 belong to
cycle 2, corresponding to k2

T .

K =
[

1 1 1 0 0
0 1 0 1 1

]

The flux vector f = [xT ,yT ]T ∈ R7 and change in
chemical potential vector ∆µ ∈ R5 can be easily computed
using MATLAB.

Consider y1 = 3 units of A are provided as input to the
network, and we want to maximize the transport flux y2 of
B. This leads to the following optimal flux and change in
chemical potential vectors.

y = [3, 3]T (7)

x = [1,−1,−2, 1, 1]T (8)

∆µ = [−3, 2, 1,−1,−1]T (9)

Transforming the second and third columns of the
K matrix corresponding to the negative flux compo-
nents in x, yields the transformed basis vectors k̄1

T =



[1,−1,−1, 0, 0] and k̄2
T = [0,−1, 0, 1, 1]. Since these

vectors have components that are not of the same sign, the
flux vector is thermodynamically feasible, and it also satis-
fies the flux balance constraints too. It is interesting to note
that this flux vector has all non-zero components.

Now consider another internal flux vector x =
[2, 1,−1, 2, 2]T , that is optimal with respect to FBA with
non-zero internal flux components that satisfies the mass
balance constraint and produces 3 units of B for 3 units of A.
Transforming the third column of K corresponding to the
third negative component in x yields the transformed ba-
sis vectors k̄1

T = [1, 1,−1, 0, 0] and k̄2
T = [0, 1, 0, 1, 1].

Now we observe that all the components of k̄2
T

have the
same sign, hence the presence of cycle 2 makes this inter-
nal flux vector thermodynamically infeasible, even though
it satisfies the flux balance constraints. To make this vector
thermodynamically feasible we identify that x2 is a limit-
ing flux which can be made negative, without making the
other fluxes zero or negative by subtracting 1.5 ∗ k1

T from
x, to give [0.5,−0.5,−2.5, 2, 2]T , which has a similar sign
pattern as the internal flux vector in equation (8), and so is
feasible, the ∆µ vector from equation (9) is the change in
chemical potential that satisfies the nonlinear constaint of
the second law in equation (2) for this transformed internal
flux vector. By this transformation we retain the optimality
of the FBA solution.

If the limiting flux x2 is restricted, then we have to
zero it out and so to make x = [2, 1,−1, 2, 2]T feasible
we subtract k2

T = [0, 1, 0, 1, 1] from x, to yield x̄ =
[2, 0,−1, 1, 1]T , now x̄2 = 0. From the thermodynamic
constraint in equation (2), we have ∆µ2 = 0, this constraint
gets rid of the second column of the K matrix using equa-
tion (1), and we transform the third column of the K matrix
corresponding to the third negative flux component in x̄.
The resulting K matrix indicates that cycle 2 is thermody-
namically infeasible, as all the entries of the second row are
of the same sign. Hence x̄ is thermodynamically infeasible.
In this case we make the second component x̄2 = 0 and do
not remove the reaction corresponding to this flux.

Our criterion for the EBA test is quite robust and we can
immediately tell if the flux vector is thermodynamically in-
feasible, without carrying out any nonlinear optimization.

6.2 Applications of the EBA Algorithm: Analysis
of E. coli Central Metabolism

We use the stoichiometric matrix S of the model E. coli
system from Table 1 [3] for our FBA/EBA analysis. The
reaction network contains 19 metabolites linked by 23 re-
actions (see figure 3). Out of these 23 fluxes there are
3 external or boundary fluxes and the rest 20 are internal
fluxes. The network considered takes glucose as input and
produces acetate and carbon dioxide. The energy and the

metabolites involved in this process are used for the synthe-
sis of proteins, DNA, RNA etc. We applied our algorithm
to maximize the production of biomass flux, which is a lin-
ear combination of the different fluxes with experimentally
determined stoichiometric coefficients. These coefficients
are for the conversion of key metabolites to biomass. In the
FBA optimization the internal fluxes are unrestricted, and
only satisfy the flux balance constraint. The CO2 and ac-
etate fluxes come from the literature (references found in
[3]) Since only the relative rates matter, the glucose flux is
set to 1, and all other fluxes are normalized with respect to
it.

The G matrix is formed by considering the columns of
the following internal fluxes from Table 1 of [3]:
x = [Jpgi, J3, Jpep, Jpyk, Jpdh, Jace, J8, Jict, J11, J12, Jppc,
J14, J15, J16, Jtkt, Jtal, Jresp, Jatp, Jbiomass, Jglyox] and
the H matrix is formed from the columns of the external
fluxes y = [Jgluc, qCO2 , qace].
The null space of the G matrix is of dimension
1, hence the K matrix consists of one row, cor-
responding to a single loop in the network. K =
[0, 0, 0, 1, 1, 0, 0,−1,−1,−1,−1, 0, 0, 0, 0, 0,−1,−3, 0, 1].
From the non-zero entries of the K matrix,
we see the following 9 fluxes form a cycle:
[Jpyk, Jpdh, Jict, J11, J12, Jppc, Jresp, Jatp, Jglyox].

The optimal flux vectors and ∆µ satisfying the flux
balance and thermodynamic constraints computed by our
algorithm are rounded to two decimal places, and are:
y = [1, 2.2, 0.3]T

x = [0.87, 0.85, 1.58, 1.92, 2.71, 0.27, 0.56,−1.03,−1.11,−1.11,
−1.38, 0.12, 0.09, 0.03, 0.03, 0.03, 1.80, 2.95, 0.0001, 1.59]T

∆µ = [−8.25,−8.25,−8.25,−6.27,−6.27,−8.25,−8.25,
10.95, 10.95, 10.95, 10.95,−8.25,−8.25,−8.25,
− 8.25,−8.25,−10.74,−17.30,−8.25,−6.27]T

The optimized biomass flux is Jbiomass = 7.27 ×
10−5 ≈ 0.0001 per unit of glucose consumed. To see if
the vector of internal fluxes x, is thermodynamically feasi-
ble, we transform columns 8, 9, 10 and 11 of the K matrix
corresponding to the negative flux components x8, x9, x10

and x11, and see that the K matrix satisfies the feasibility
criteria. We now compute the ∆µ vector by solving the
combined linear program in step (iv) of the EBA algorithm,
after imposing additional constraints that ∆µ8, ∆µ9, ∆µ10

and ∆µ11 must be positive and the other components of ∆µ
are to be negative. This example illustrates that to satisfy
the thermodynamic constraints one does not always have to
zero out internal fluxes, which are part of a loop.

Now consider the following optimal internal flux vector
that satisfies FBA, but is thermodynamically infeasible.
x = [0.87, 0.85, 1.58, 48.51, 49.31, 0.27, 0.56,−47.63,
− 47.71,−47.71,−47.98, 0.12, 0.09, 0.03, 0.03, 0.03,



− 44.80,−136.84, 0.0001, 48.19]T

To see that it is thermodynamically infeasible, we transform
columns 8, 9, 10, 11, 17 and 18 of the K matrix correspond-
ing to the negative flux components to get a transformed
K matrix [0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 3, 0, 1],
and see that all components have the same sign, so it is
infeasible. To convert it to a feasible flux vector we identify
x20 as a limiting flux that we want to make negative by
subtracting 48.25 ∗ KT from x to give
[0.87, 0.85, 1.58, 0.26, 1.06, 0.27, 0.56, 0.62, 0.55, 0.55, 0.27,
0.12, 0.09, 0.03, 0.03, 0.03, 3.45, 7.91, 0.0001,−0.0654]T

We see that this is feasible after changing the sign of the
20th column in the K matrix, the non-zero components
of the K matrix have different signs, so we calculate
∆µ satisfying the second law of thermodynamics by
constraining all its components except the last one to be
negative, and is
[−80.93,−80.93,−80.93,−138.85,−138.85,−80.93,
−80.93,−45.83,−45.83,−45.83,−45.83,−80.93,−80.93,
−80.93,−80.93,−80.93,−45.83,−0.10,−80.93, 48.26]T

There is another way of transforming the infeasi-
ble x to be thermodynamically feasible, by making the
limiting flux x20 = 0, by subtracting x20∗KT from x to get
x̄ = [0.87, 0.85, 1.58, 0.33, 1.12, 0.27, 0.56, 0.48, 0.48, 0.21,
0.12, 0.09, 0.03, 3.38, 7.71, 0.0001, 0]T

Since x20 = 0, we can delete the 20th column of the K
matrix, and we see that this transformed internal flux vector
is thermodynamically feasible since the other components
of the K matrix have different signs, and we calculate
the ∆µ vector by solving the combined linear program
after imposing the constraints that all its components are
negative, since all the flux components in x̄ are positive, in
order to satisfy equation (2). The feasible ∆µ vector is
∆̄µ = [−80.23,−80.23,−80.23,−121.70,−121.70,−80.23,
−80.23,−47.65,−47.65,−47.65,−47.65,−80.23,−80.23,
− 80.23,−80.23,−80.23,−47.65,−1.73,−80.23, 0]T

We applied our algorithm to the full network of E. coli
and found several cycles that violated the second law of
thermodynamics.

7 Conclusion

In this paper we give a simple linear programming
algorithm for flux and energy balance analysis. It uses
the sign of the null space to decide if the flux vector
computed by flux balance analysis satisfies the second law
of thermodynamics. This technique is different from the
previous approaches, as it is constructive, and can generate
several solutions for the metabolic network. The method
terminates when it finds a thermodynamically feasible
solution. We applied the method to a part of the metabolic

Figure 3. E. coli central metabolism



network of E. coli and computed the fluxes and change
in chemical potentials for the internal reactions. It should
however be noted that inspite of the additional thermody-
namic constraint, the metabolic network is still degenerate
and has an infinity of flux and chemical potential difference
vectors that satisfy all the constraints. Hence, more realistic
bounds on the values of fluxes are required to further
constrain the system.
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