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Abstract

In gene network estimation from time series microarray
data, dynamic model s such as differential equationsand dy-
namic Bayesian networks assume that the network struc-
tureis stable through all time points, while the real network
might changes its structure depending on time, affection of
some shocks and so on. If the true network structure un-
derlying the data changes at certain points, the fitting of the
usual dynamic linear models fails to estimate the structure
of gene network and we cannot obtain efficient information
from data. To solve this problem, we propose a dynamic
linear model with Markov switching for estimating time-
dependent gene network structure from time series gene ex-
pression data. Using our proposed method, the network
structure between genes and its change points are automati-
cally estimated. Ve demonstr ate the effectiveness of the pro-
posed method through the analysis of Saccharomyces cere-
visiae cell cycle time series data.

1. Introduction

For estimating gene networks from time series gene ex-
pression data measured by microarrays, a lot of attention
has been focused on statistical methods, including Boolean
networks [1, 11], differential equations [3, 5], dynamic
Bayesian networks [6, 7, 8], state space models [2, 4] and

so on. While these methods have provided many success-
ful applications, a serious drawback for using these method
to estimate gene networks remains to be solved: abasic as-
sumption of these methodsisthat the network structure does
not change through al time points, while the real gene net-
work has time-dependent structure. In this paper, we give a
solution of this problem and establish a statistical method-
ology to estimate gene networks with time-dependent struc-
ture by using dynamic linear models with Markov switch-
ing.

Our model is based on the linear state space model, also
known as the dynamic linear model (DLM). In the DLM,
the high-dimensional observation vector is compressed into
the lower dimensiona hidden state variable vector. For the
microarray analysis, the observation vector corresponds to
the gene expression value vector and the state variables can
be considered as a transcriptional module [9] that is a set
of co-regulated genes. Unlike Boolean networks, differ-
ential equations and dynamic Bayesian networks, we con-
sider the dependency between these state variables in the
DLM. Since microarrays contain much number of genes,
the learning of Boolean networks and other network mod-
elsis often infeasible. On the other hand, in the DLM, the
network of the state variables gives a practical solution to
understand gene regulatory networks based on the possible
transcriptional modules. Furthermore, by considering the
canonical form of the DLM, it implicitly represents a net-
work between genesby thelinear system with thefirst-order



Markov property.

Although, the DLM is advocated for analyzing high-
dimensional time series gene expression data, this model
also assume that the network structure is stable through the
all time points. If the network structure changes drastically
at certain points, the fitting of the DLM to the data should
fail and we cannot obtain efficient information from the es-
timated model. To solve this problem, we use the dynamic
linear models with Markov switching [12] (DLM-MS) that
is an extension of the DLM to capture the change points of
the data. In this approach, the dynamics of the system at a
certain point is generated by one of possible regimes evolv-
ing according to a Markov process. The parameters in the
DLM-MS are estimated by the Bayes approach based on
the Gibbs sampling. Thus, we obtain the posterior distribu-
tion of each parameter that can be used for determining the
network structure between genes. The number of switching
points of the network structure and the number of hidden
state variables are also automatically determined by the es-
timated prediction error.

Therest of thisarticleis organized asfollows: In Section
2, we present the time-dependent dynamic linear models
and elucidate how we estimate a networks between genes.
Section 3 describes the dynamic linear models with Markov
switching. Section 4 will discuss the Bayesian estimation
problem of DLM-MS, mainly, in terms of the computa-
tional aspect. Section 5 provides some analytic tools, in-
cluding the determination of the number of regime switch-
ing and the dimension of state vectors, and the estimation
of the transcriptional modules. In Section 6, the potential
usefulness of our approach will be demonstrated with the
application to Saccharomyces cerevisiae cell cycle time se-
ries data produced by Spellman et al. [13], where a part of
data is synthesized to have a switching structure. Finally,
the concluding remarks are given in Section 7.

2. Dynamic Linear Model

Let y, be avector of d observed random variableswhich
contains expression values of d genes at time point t. The
DLM relatesacollection of y,, t = 1,---, T, to the hidden
k-dimensional state vector . in the following way:

Y = At.’Bt =+ wy. (1)

Here, the A; isad x k measurement matrix and the w; is
the Gaussian white noise as w; ~ N (0, R;). Usually the
dimension of state vector is taken to be much smaller than
that of data, k < d. In DLM, the time evolution of the state
variables are modeled by afirst-order Markov process as

T = Bixi_1 + vy, %)

where B; is k x k dstate transition matrix and the addi-
tive system noise follows form the Gaussian distribution

asv: ~ N(0,Q,). Throughout this article, the noise
covariance matrices are assumed to be diagona, R; =
diag{ris,---,rq:} and Q, = diag{qus, -, qre}, respec-
tively. Notice that the model parameters { A, B, R;, Q. }
depend on the time index. Thisimplies that the underlying
dynamics changes discontinuously at certain undetermined
pointsin time.

The process of the DLM starts with an initial Gaussian
state x that has mean p, and covariance matrix ¥,. In
DLM, thedynamicsof Y (1) = (y;,---,y7) and X () =
(x1,---,zr) aregoverned by thejoint probability distribu-
tion

T

(X(T)7 Hp x| Ti—1)p(Y|Tt).
t=1
The all composition in this representation are the Gaussian
density ¢ inwhich p(zo) = ¢(xo; g, Xo), p(xt|T1—1) =
¢(@e; Beay—1,Qy), and p(y,|x:) = d(y,; Are, Ry).

The DLM, in its canonical form, implicitly assumes an
interesting casual relationship among the d variates (genes).
To see this, consider the generalized singular value decom-
position of A;, namely, R;WAt = L,thVi6 where L;
is a matrix of k£ orthogonal vectors of length d, the diago-
nal matrix D, contains k singular values and V; isak x k
orthogonal matrix. Multiplying the both terms in observed
equation (1) by A = V,D; 'L, from the lefthand-side,
one can obtain an expression as

A RM?

t (Y, — wi) = x4

The canonical variate A" R; /?(y, — w, ) isalinear map-
ping of d-dimensional data onto the subspace R* after re-
moving the effect of measurement noise. The matrix A;" ,
compressesthefiltered data R, 1/2 (y,—w;) into k modules
in the state vector. If (Aj')l-j is positioned significantly far
from zero, the j-th gene captures a large effect on the i-th
module. In contrast, the influence of geneswith the (A;" / )ij
lying aregion closeto zero is removed.

Substituting the canonical variates A" R; /% (y, — w,)
into the system model (2) leads to a causal relationship be-
tween the & modules defined by

ARV (yw) =B A R (g, —wi_1) +o.

This canonical form of DLM characterizes the interaction
between the previous modules to the current ones, that is,
module-module interaction, where the state transition ma-
trix B; captures the intensity of interaction.

The DLM also retains the linear system for describing
the gene regulatory etwork as

R (y,—w,) =

HtR;—ll/2(yt—1 —wi_1) + R;1/2Atvt,



wheretheinteractionmatrices H;,t =1, - - -,
eterized by

T are param-

H,=R;'?A,B. A} .

The H, governsthe gene network fromtimepoint¢ —1to¢
inthe following way: oncethe & modulesin the compressed
data A" R, /*(y, , — w_1) are given, the modules at
time t are constructed through the loading matrix B, and
then the updated & modules regulates the expression value
of d genes with the measurement matrix A;.

To sum up, the time-dependent DLM describes the con-
secutive changes in module sets of genes, module-module
interactions and gene-gene interactions with the underly-
ing canonical form (see Figure 1). After learning A;, B;
and the projection matrix A", we can identify the time-
dependent network structure by testing whether or not these
parameters lie in a region significantly far from zero. This
problem amountsto the classical testing method or the boot-
strap confidential intervals.

3. DLM with Markov Switching

The problem of modeling change in an evolving time se-
ries can be handled by incorporating the dynamics of some
underlying model change discontinuously at certain unde-
termined pointsin time. In view of real biological system,
the structural change might occur in smooth. To incorporate
a reasonable switching structure, we employ the DLM-MS
approach that assumes the y, is generated by one of the
G possible regimes evolving according to a Markov chain.
In this context, the model parameters {A;:, B:, R:, Q,}
are assumed to take one of the G possible configurations
{Ag,Bg,Rg,Q g = , G, a each time point. For
notational convenience, We mtroduce the hidden vector of
G classlabels (c(t))y = c4(t) toindicate the configurations
in the following way:

(1 y,Eregimeg
¢g(t) = { 0  otherwise.

The DLM-MS, in its basic form, assumes that the discrete
variable ¢(t) evolves according to the first-order Markov
chain with the transition probability matrix M of order G x
G where the (h, g) element defines a probability of event
{y, € regime g} U {y,_, € regime h}, thatis,

(M)ng = Pr(cg(t) = 1en(t — 1)).
Each row of M, denoted by m,, is restricted to be

|lmp||?> = 1. Smoothness of change in regimes are con-
trolled by the entropy of my, forh =1,---,G.

4. Bayesian Inference

For some gene expression data, each array contains some
genes with fluorescence intensity measurements that were
flagged by the experimenter and recorded as missing data
points. In such acase, y, isincomplete. To dea with the
missing problem we define the partition of d observed vec-
tory, = (y¢',y"") wherey¢ and y"* contain the observed
and missing components, respectively. Conseguently, the
DLM-MS takes {C 1y, X (1), Y7, Y‘(’T)} as a complete
dataset having the joint distribution

T
pe(Cry, X (1),Y (1)) = Hp (ctlei—1)
t=1

p(xe|Ti—1,C)p(Ys|Te, 1)

The parameters to be learned from the observed dataset are
collected intoaset ® = {A,, B, R;,Q,, M}5_,. The
p(xo) and p(cy) denote the initial distributions to derive
the dynamic system. Each composition in the above joint
distribution is obvious, so the detail s are omitted here.

Our attention turnsto the Bayesian learning of DLM-MS
that requires the prior distribution of all model parameters
p(®) and theinitial distribution of the hidden states p(x)
and p(cp). In this study, we employ the natural conjugate
priors. Let a;, and b;, be the i-th row of A, and B, re-
spectively. A family of the conjugate priors of DLM-MS
that we use are expressed as follows:

aig ~ Ni(0,AT), Vi,g,

Big ~ N(0,\I), Vi, g,
(Rg)ii ~ IG(v0,0:0), Vi, g,
(Qg)ii ~ IG('Vqu‘SqO)? Vi, g,

my ~ Dir(uy,---,ug), Vh.

where IG(v,6) stands for the inverse-gamma distribu-
tion with the shape v and the scale parameter 6, and
Dir(uy, - -, ug) denotesthe Dirichlet distribution with the
prior sample size u1, - - -, ug. Note that the prior distribu-
tion of A, is specified by the truncated Gaussian distribu-
tion N (0, \,I) whose support are restricted to the positive
part a;;, > 0. For DLM setting the underlying dynamical
systemisinvariant under thetransformationsas A, — —A;
and x; — —a;. To avoid the lack of identifiability, we use
the truncated prior distribution.

Oncethe prior distributions are given, the augmented pa-
rameters ©, X 1), C 7y, and Y{’}) are estimated through
the posterior distribution

p(®, X(1),C 1), Y)Y {r))
x pe(Cry, X (1), Y (1)) P(©).

Within Bayesian framework, all inferences are made
based on the marginal posterior distribution, for instance,
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Figure 1. Schematic expression of time-dependent
MS. Change in regime occurs at time point t. The
between previous and current time point in the firs
regime.

p(®[Y (1), and thegoal isto characterize the marginal dis-
tributions by using some quantities, e.g. the posterior mean
O = E(®|YE’T)) and the maximum a posteriori estimator
© = argmaxgp(©|Y ;) and so on. The direct evaluation
of these quantitiesis, however, difficult under the DLM-MS
setting. To overcome such intractability, we perform the
Gibbs sampling a gorithm that approximately computes the
posterior quantities of interest by using simulated random
draws from the posterior distributions. The Gibbs sampling
isalternating conditional samplingwhichisdefinedinterms
of subvector of ®, X (1), C 7y and Y’(’:}). Each iteration of
the sampling scheme cycles through the subvector of draw-
ing each subset conditional on the value of all the other.
With arbitrary starting values QO, X{ry, Cipy and Y'(”;}O),
it proceeds by successive iteration of the following eight
steps:

1. Generate X () conditional on ®, C () and Y (7).

2. Generate A, conditiona on ©_j , X (1), C (1) and
Y(T) forg: 1,---,G.

3. Generate R, conditiond on ©_z , X (1), C (1) and
Y(T)forgzl,---,G. .

module-module networks represented by DLM-
interactions of the two transcriptional modules
t regime are different from those in the second

4. Generate B,, conditional on ©_5 , X (1), C(ry and
Y(T)forgzl,---,G. .

5. Generate Q,, conditiona on ©®_g_, X (1, C (1 and
Y(T)forg =1,---,G.

6. Generate m,, conditionad on ® _,,,, , X (1), C 7y and
Y(T) forh=1,---,G.

~

Generate C (1) conditional on ©, X 1y and Y 7).

8. Generate Y’(’:}) conditional on ®, X 7y, C 1y and
Y (.
(T)

Here, ®_7 stands for all components of ®, except for
Z, a their current values. The Markov structure of DLM-
MS and the assumption of conjugate priors makes it easy
to draw sample from the full-conditional distribution, for
example, the functional form of p(X (7y|®, C (1), Y (1) is
Gaussian where the mean and covariance matrix are suc-
cessively computed by the well-known Kaman filter and
smoother, and p(ay|®_ 4, X (1), C (1), Y (1)) is the pos-
itive part Gaussian distribution where its parameters are
determined by the conventional rule based on the natu-
ral conjugate prior. The above steps are detailed in Ap-
pendix. The method proceeds by alternatively sampling



from these full-conditional distributions. If the iteration
have proceeded |ong enough, the simulationsis grossly rep-
resentative of the target distribution. To diminish the effect
of the starting point, we generally discard the first p sim-
ulated samples and focus attention on the rest n — p. The
set{O;, X (1);, C’(T)J,Y(T)J}] _,+1 ISused to summarize
the posterlor distribution and to compute quantiles, and the
other summaries of interest as needed.

5. Implementations

A basic issue arising in the DLM-MS approach is the
determination of the number of regimes in the switching
system, GG, and the number of modules k. We address this
problem by selecting a particular combination {G*, k*} to
attain the best predictive ability.

To this end, we firstly construct B set of the bootstrap
samples in which B vectors of the quasi-missing observa-
tions, {y;"}£_,, isgenerated by resampling of all elements
in Y {7 with probability o. One intuitive approach is to
select a combination {G*, k*} to minimize the prediction
error

Err(G, k)

BZ llyp" —

where the L, is the number of the quasi-missing observa-
tions contained in the b-th bootstrap set and the 4;" (G, k)
stands for the corresponding posterior mean computed by
the Monte Carlo samples.

In DLM-MS approach, the existing regimes are deduced
from the estimated posterior distribution of the class |abels.
The Bayes rule explores the G regimes by assigning each
time point ¢ to a particular regime as follows:

. _ )1 ifg= hgglmax Z =p+1 cn(t);,
q(t) =
0 otherwise,

b (GBI, 3

where {cx(t);}7_,,; isthe smulated draws generated by
the Gibbs sampling.

Once the model parameters are estimated, the DLM-
MS approach offers a set of consecutive k& modules
A} R;7Y?(y, —w,) dongwiththetimelinet = 1, -, T,
and also their estimated networks. Interpretation of the &
coordinates corresponding to the estimated modules is im-
portant for real dataanalysis. Thistask can be addressed by

investigating the direction of projection matrix A+ A;r

that projects y, onto R¥. In practice, it will be helpful to
list the top L genes to attain the highest positive score of
(A )ij a Qf and the h|ghest negative score at ;, for
]—1 kandg—l -,G. These 2kG sets can be
useful either to visualizethe calibrated networks and also to
elucidate a causal link from the estimated networksto some
biological resources.

6. Computational Experiments

We demonstrate our proposed method through the anal-
ysis of Saccharomyces cerevisiae cell cycle time series data
collected by Spellman et al. [13]. Although the cell cycle
dataset contains two short time series data and four mediam
time series data, we use cdcl5 time series data (24 time
points) in this analysis. Originally, 800 genes were identi-
fied as the cell cycle-related genes by Spellman et al. [13].
From these 800 genes, 43 genesare also complied inthe cell
cycle pathway in KEGG. Therefore, we use these 43 genes
and estimate the network of these genesin this analysis.

First, to select an optimal number of regimes G and the
number of modules, i.e. the dimension of state variable k,
we use diffuse prior distributions for all candidate models
as follows: )\a, )\b = 20, Yroy Vg0 = 10, 57’0: 5q0 = 10,
ug=1forg=1,---,G, py =0, Xy = diag{10, - - -, 10}
and Pr(cy(0) = 1|Zg) = 1/G forg = 1,---,G. Inthe
Gibbs sampling algorithm, the number of discarded draws
is fixed at p = 250000, and total n — p = 50000 samples
are used to compute the posterior quantities.

After fitting a variety of models ranging G = 1,---,3
andk = 1,---,6,themodel of G = 1and k = 5 was
judged to be optimal by using the 10-fold cross validation
criterion (3). Our proposed method provided no evidence
for the presence of the regime switching. However, thisre-
sult is not desirable for demonstrating the performance of
our proposed method and its applicability.

We therefore decided to construct a quasi-cell cycle mi-
croarray data which are synthesized to capture a switching
structure. Datafabrication that we enforced are summarized
in both Figure 2 and below:

For¢ = 11,---,17, the expression values of 43 genes
are interpolated in the following way:

1. Module 1
if i = 1, 27 Yit = —O.4y1t_1 + O.6y2t_1 + Vg,
if 3 >4 <15, Yit = —0.5y1¢—1 + 0.6y2:—1
2. Module2 —0.3y31¢-1 — 0.8y32t 1 + v,
ifi =16, yi =—0.4y160—1+ 11
if 17 Z ) S 30, Yit = 0~7y16t—1 — O.6y2t_1 + v
3. Module 3
if i = 31,32, yi = 0.6y150—1 + 0.7Ty31:-1
—0.4y32t—1 + 14
if 33 >4 <43, yi = 0.6y15.—1 + 0.5y5—1

+0.2y31¢—1 + 0.4y30:_1 + 14

Theorder of genes,ie.i =1, -,
2.

43, followsthat of Figure



In this synthesized regime, three quasi-modules are reg-
ulated by each other, asmodule 1 causesmodule 1 itself and
module 2, module 2 causes module 2 and 3, and module 3
regulates module 1 and 2, respectively. Primitive genes that
drive dynamics in this regime are comprised of 1, y2¢,
Y15t Yi6ts Y31: and ysop. Figure 3 shows a schematic ex-
pression of data synthesis and the resulting expression pat-
terns. The member of each moduleisalso listed at there.

Among a range of candidate models, cross validation
criterion attains the best score at the number of switching
points G = 2 and the number of hidden modules k& = 3 that
is consistent with the existing data structure. Figure 4 sum-
marizes the time evolution of the estimated gene-geneinter-
action matrix H, = R~Y?A, B,A, ,fort =2,..-,T
where the coefficients are computed by averaging the Monte
Carlosamples. Changeintheregimefromt¢ = 11,---,17is
clearly detected while the estimated interaction in the other
regime are stable through the evolving times. Visualizing
time-dependent interaction matrices must be very helpful
for understanding the switching structure and finding the
time points of variation.

Figure 3 displays sets of module transcriptional genes
listed at Q) and Q; fori =1,---,3andg = 1,---,2in
which shown hereis a part of the selected genesin each set,
and the estimated module-modul e interactions are also pre-
sented. The existing two change points were correctly esti-
mated. In the synthesized regime, the calibrated 6 modules
are likely to reflect the quasi-three modules as all members
listed at a set belong to one quasi-module. The estimated
interactionsis also consistent to the true data structure.

7. Discussion

We focused on a time-dependent DLM to dea with
structural change of biological system in gene expression.
As was elucidated in this paper, the DLM, in its canon-
ical form, implicitly represents gene-gene interaction via
module-module interaction. The time-dependent DLM as-
sumes that these interactions change over time. This as-
sumptionis natural intermsof real gene expression process,
but the occurrence of structural change must be smooth. To
incorporate smoothness, we proposed use of the DLM-MS
that represents change in regime evolving according to the
first-order Markov process. We established some analytic
tools associated with DLM-MS; the Bayesian parameter es-
timation based on the Gibbs sampling algorithm; the cross
validation approach for the determination of the number
of switching time points and the number of module tran-
scriptionals; visualization technique for the evolving gene-
gene interactions and the module-module interaction. We
demonstrated its potential usefulness with the application to
Saccharomyces cerevisiae cell cycletime course datawhere
apart of datais synthesized asto have a switching structure

in the gene network.

The Bayesian parameter estimation gives a scope to
overfitting problem occurred due to small sample size and
away of incorporating the biological knowledge to the pa-
rameter estimation procedure. However, in this study, am-
biguity in the determination of hyperparameters of the prior
distributions is remained. In practice, we have to further
explore the robustness of some estimates for any priors in
the class. In a case where no prior knowledges are avail-
able, the hierarchical Bayes method must be useful to avoid
such amibiguity or to model relatively complicated situa-
tions. Alternatively, a family of noninformative priors, e.g.
Jeffery’sprior or uniform prior, isalso incorporated into our
method without loss of generality.

Although sometasksremain to be solved, webelieve that
our proposed method will provide the successful applica-
tions for gene network estimation problem.

Appendix: Gibbs Sampling for DLM-M S

The following steps explain details of the Gibbs sam-
pling algorithm, given arbitrary starting values ©°, X {7,
and C?T). Hereafter, we will use the following notations:

Tt|s = E(x4|Zs)
and

/

Ft\s =F (m - iBt|5)(.’1: - mt|s)

L],
where the set Z, contains all information up to time point s.

1. Generate X (r) conditional on ®, C () and Y (7 ac-
cording to

p(X(1)|©,C (1), Y (1)) < p(x7|©,C(1), Y (1))
T-1
H p(xi|xii1,®,C 1), Y (1y).

t=1

Note that p(z7|®, C (1), Y (1)) takes in the form of
Gaussian which is equivalent to the filtering distri-
bution corresponding to the conventional linear state
space model. Hence the computation of the mean and
the covariance matrix is accomplished via the Kalman
filter.

(@ With initiad conditions xoy = p, and Fo)p =
Yo, run the Kalman filter algorithm for ¢ =
1,---, T:

i. (Prediction)
Btwt—l\t—la

B.F;_1;1B, +Q,,



S. cerevisiae cell cycle time series data

Synthetic data

43 genes x 24 time points Regime Switching (cdc15 140 - cdc15 210)

cde1s_10
cdc15-120
cdc15 220
cdc15 230
cdc15 240
cdc15 250
cdc15 270
cdc15290

30

cde15_10
cdc1s

cdc15 50
cdel5_ 70
cde15 80
cdc15-90
cdc15-100
cdc157110
cdc157120
cdc15 130

240

regime having
switching structurte

cdc15 220
cdc15 230
cdc15 250
cdci5 270
cdc15290

cdcl5,

Module A

Module B

Module C

[ Module A : FARL CLN3 SWI4 CLN1 CLN2 CLB5 CLB6 SIC1 APCL CDC20CDC6 ORC1 MCM2 MCM3 CDC54
[] Module B : CDC46 MCM6 CDCA47CDC45CLB4 MEC3 PDS1 RAD53CDC5 CLBL CLB2 SWEL GIN4 HSL7 HSLL
[ Module C : SWI5 BUB1 SMC1 SMC3 MCD1 SCC3 DBF2 DBF20 MOB1 TEM1 BUB2 PCLL PCL2

Figure 2. Fabrication of synthetic data: Original dataset contains the 43 gene expression values
Saccharomyces cerevisiae cell cycle measured at 24 time points. In the regime from ¢ = 11 to 17, the
quasi-expression values are interpolated by following a time series model. The synthetic gene

expression organizes the three transcriptional modules.

(b)

(©

ii. (Filtering)
Ty = Ty—1 + Ki(y, — Avxep-a),
Fy (I - KiA)F 1,
Ky = R A(AR A+ FL )7

The last iteration of the Kalman filter provide us
with 7 and Fr|7, and 7 can be generated
from

xr ~ N(zr7, F1)1)-

Fort=T7T-1,T7—-2,---,1, generate repeatedly
x; according to

Lt NN(mt,Pt)

where the mean and the covariance matrix are
computed by the updating equation

my = Xy + G (i1 — Bryixyp),
P, = (I—-Gi1Biy1)Fy,
with

Gi1=F;B, (Bt+1Ft\tBt+1+Qt+1)_l-

.Forg=1,---,G, generate A, = (@1, - - - @ay) CON-

ditional on @7‘49, X(T), C(T) and Y(T) in the fol-
lowing way:

6’19 ~ N(T’iga \Ilig)a
where the mean and the covariance matrix are com-
puted by

-1

)\a / ’
Nig = 7:_,[+ XXy (X gYig)
19
Uiy, = (Mad+7, X, X,) "
fori = 1,---,d. Herethe vector y,, contains the i-

th gene expression value (y,); belonging to the g-th
regime, that is, having the current class label ¢, (t) =
1. Each row of the design matrix X, is the current
state vector x; having c4(t) = 1, where the number of
rowsisequal to {num. of time points € regime g} =

S Cqlt).

. Forg =1,---,G, generate R, conditiond on ©_p, ,

X (1), C(ry and Y (1) according to
Tig ~ IG(’lea 57’1)
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Figure 3. The calibrated module genes listed at Q;; and @, fori=1,---,3and g = 1,---,2 and the

module-module interactions. Switching time points are estimated as t = 11 and ¢t = 18. Genes in red
and blue circle are those selected as members in Qj; and € , respectively. Each score represents
the intensity of interaction between two modules.

where
T
Yr1 = Yro + Z cg(t),
t=1
0r1 = dr0 + ||yig - ngigHza
fori=1,---,d.

4. Forg =1,---,G, generate B, conditional on©_5 ,
X (1), C(ry and Y (1) in the following way:

big ~ N(éig? @19)7

where the mean and the covariance matrix are com-
puted by

-1
>\b ’ ’
Eig = (aI—i‘ SgSg> (ngig)
@, = (WI+q,'S,8,)"

Here the response vector «;, contains the i-th element
of x; having the current label ¢,(¢) = 1, and thus the

length S"7_, ¢,(t). Each row of the design matrix S|,
consists of the the corresponding inputs vector a;_; in
the system model.

. Generate @, conditional on ©_g,. X (1), C(r) and

Y () according to

Qik ~ IG(’quv 6q1)

where
T
Yql = Yq0 + Z Cg(t)a
t=1
Sq1 = g0 + ||Tig — Sgl—’inQ;
fori=1,---,k.
. Generate m;, conditiona on ® _,,,, X (1), C () and
Y(T) as
my, ~ Dir(np1 + w1, np2 + u2, - -+, nre + ug),

where ny,, stands for the number of samples having
cg(t) =1lande,(t —1) =1.



7. Generate C 1) conditional on ®, X (1) and Y (1) ac-
cording to

P(C1y|®, X (1), Y (1)) x p(ciiilet, ©)
p(et|®, X 1), Y (1))

To this end, the following steps can be employed:
Starting from an initia distribution p(¢y|Zo) = 1/G,
run the filtering agorithm to calculate p(c:|Z:), t =
L---,TwhereZ; = {©, X (), Y )} s,

(8 Given p(c;—1]Z;—1) a the beginning of time ¢,
the Pr(cy(t) = 1,cp(t — 1) = 1|Z;—,) arecalcu-
lated by

Pr(cy(t) =1,cp(t — 1) = 1|T,_1)
= Pr(cx (t)=1]en (t-1)=1)Pr(cp (t-1)|T;_1).

(b) OnceZ; = Z;_1 U{y,, x: } isobserved at theend
of timet, we can update thefiltered probability as

Pr(c,(t)=1Zt)

G
= Z Pr(cy(t)=1, e, (t-1)=1|1;),

h=1

where

Pr(cy(t) =1,cn(t —1) =1|Z;)
X p(yt|mtvcg(t) = 1)p(mt|mt71acg(t) = 1)
Pr(cy(t)=1,cp(t —1)=1|Zy—1).

8. Generate Y{’}) conditiona on ®, X (1), C (1 and
YE’T) as

Y ~ N(A™Mz,, RI™).

where A{™ and R™ are, respectively, the parti-
tioned measurement matrix and the covariance matrix
of A; and R; corresponding to the missing parts.
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Figure 4. The estimated time-dependent interaction matrices, H,;, t = 2,---,24: Each colored pixel
expresses an intensity of gene-gene interaction from ¢t — 1 (column) to ¢ (row).



