

Computational Method for Temporal Pattern Discovery

in Biomedical Genomic Databases

Mohammed I. Rafiq, Martin J. O’Connor, and Amar K. Das
Stanford Medical Informatics, MSOB X233, Stanford, California 94305

{mirafiq, das}@stanford.edu

Abstract

With the rapid growth of biomedical research
databases, opportunities for scientific inquiry have
expanded quickly and led to a demand for
computational methods that can extract biologically
relevant patterns among vast amounts of data. A
significant challenge is identifying temporal
relationships among genotypic and clinical
(phenotypic) data. Few software tools are available
for such pattern matching, and they are not
interoperable with existing databases. We are
developing and validating a novel software method for
temporal pattern discovery in biomedical genomics.
In this paper, we present an efficient and flexible
query algorithm (called TEMF) to extract statistical
patterns from time-oriented relational databases. We
show that TEMF—as an extension to our modular
temporal querying application (Chronus II)—can
express a wide range of complex temporal
aggregations without the need for data processing in a
statistical software package. We show the expressivity
of TEMF using example queries from the Stanford
HIV Database.
Keywords: temporal pattern recognition, statistical
aggregation, biomedical genomics, HIV genotype
testing

1. Time in Biomedical Databases

In the past decade, there has been unparalleled
expansion in the volume, scope and complexity of
research data accumulating through microarray studies
and other high-throughput biological technologies.
Databases are a prerequisite component of any
biomedical research application that needs to maintain,
integrate and share data. Relational databases, in
particular, are employed in many large-scale
bioinformatics projects. By archiving the results of
completed experiments and observational studies,
these relational databases serve as vital resources for

ongoing data analysis by the scientific community.
Although the variety of projects that use relational
databases shows how flexible its simple tabular format
is for data storage, users of relational databases are
frequently limited in their ability to manipulate such
two-dimensional representations for complex types of
data analyses. Researchers must develop additional
computational programs and user interfaces to support
the semantics of relationships among study results that
the relational database model cannot capture.

In this paper, we focus on the challenges of
verifying temporal patterns among results stored in
relational databases. Time stamps are prerequisite
measurements in studies that involve repeated
measurements and longitudinal observations; such
values can be difficult to manage and query in large
databases that store time-course data or patient
histories. The ability to examine the temporal
components of such data is central to the investigation
of causal relationships and dynamic processes in
biological research [1]. Global clustering methods of
expression data are commonly used by investigators to
identify gene or protein co-expression at a given time
point [2]. Other methods [3-6] have been introduced
to find time-delayed and periodic correlations that may
be the result of one gene activating or controlling
another gene downstream in a regulatory network.
Although statistical methods to support time-course
studies continue to be proposed and validated,
database methods for such studies have not been
concomitantly advanced to support the temporal
dimensions of data resulting from microarray
experiments.

Methods for the maintenance and querying over
time-course relationships among biomedical data were
introduced nearly thirty years ago, and there has been
tremendous research since on the management and use
of time-oriented computational methods in clinical
medicine [7]. However, these methods have not been
incorporated into the data-management and data-
analytic tools that investigators use in genomic and
other research databases. We propose that database
methods that can support temporal data analysis will

provide researchers the essential ability to explore,
visualize, and infer biologically relevant associations
of a contextual, time-delayed, or periodic nature.

2. Genomic Database Example

We have collaborated closely with developers of
the Stanford HIV Drug Resistance Database to
advance the data-analytic needs of investigators
studying HIV drug resistance, which remains a major
obstacle to the successful treatment of HIV type 1
(HIV-1) infections. Genotypic resistance testing,
which involves sequencing the molecular targets of
anti-HIV therapy—the HIV reverse transcriptase (RT)
and protease enzymes—is now routinely used by
physicians before selecting antiretroviral drug
regimen. However, the interpretation of these test
results is difficult given uncertainties about how
HIV-1 genotype relates to drug susceptibility and
treatment history. To address this data-analytic
problem, the HIV Drug Resistance Database group has
developed an on-line relational database
(http://hivdb.stanford.edu) to archive HIV RT and
protease sequences [8]. The database (abbreviated
HIVDB) currently contains over 2000 subjects with
time-stamped data on drug regimens, HIV genetic
sequence, and HIV viral load. Its schema is based on a
temporal linkage of sequence changes in HIV RT and
protease enzymes to antiretroviral drug histories of the
individual from whom the isolate was obtained; drug
susceptibility data on sequenced isolates when
available; and clinical outcome data—plasma HIV
RNA levels (or, viral load) and CD4+ cell counts.
Figure 1 provides an integrated view of data for a
subject in the database, and indicates the complexity
of temporal data obtained from research and clinical
cases.

Our work with the HIVDB users has found a
common need for statistical data aggregation and
temporal pattern extraction. An example of a typical
query on the HIV database is to

Retrieve data to analyze statistical correlations
between genotype and the virologic response to a
regimen, using a ‘baseline’ viral load and viral
loads at other time points of interest after the start
of a new treatment regimen.

Since data in the HIVDB comes from treatment
settings, the timing of viral load measurements varies
after during a treatment. As a result, HIVDB
investigators may try to identify a measurement at
particular time points after the start of a regimen (such
as 8 weeks later) by retrieving the measurement which
is temporally closest to that time point and that falls
within a window (such as 4 to 12 weeks) around that
time point. Alternatively, investigators may want the
average value in the time window. This data

processing requires pattern matching (finding all
values within a time window) and statistical
aggregation (finding the closest value to a midpoint or
the average value over the time window). Expressing
these temporal patterns in a database query language
like SQL requires significant user effort and may lead
to code that is at least a few hundred lines long.
Statistical aggregation is not a feature of standard
database technology, and is done typically through
data processing with statistical software tools. Thus,
current approaches to temporal querying frequently
lead to code that is hard to reuse in data analysis. We
have addressed these problems by building a temporal
querying method (called Chronus II), which is
efficient and expressive for defining temporal patterns
found in biomedical database applications.

Figure 1. Longitudinal view of patient data from
a single subject in the Stanford HIV Drug
Resistance Database. The time graph indicates
the complexity of inferring the relationship of
clinical response—viral load (top line) and CD4
count (bottom line)—to mutations in HIV gene
sequence (listed in bottom boxes) and treatment
history (bars with drug name abbreviations).

3. Chronus II Querying Method

Chronus II [9] is a temporal querying method that
has been designed to express complex queries over
time-oriented values. It uses a querying language,

called Chronus Querying Language (CQL), and is
based on the proposed temporal standard TSQL2 for
the relational query language SQL, which has few
temporal features. Chronus II is implemented in Java
and is designed to operate as a modular program above
existing relational databases using JDBC as its access
layer. The Chronus II interface takes a CQL
command, generates standard SQL statements for the
non-temporal part of the command, and completes the
processing of temporal operations in memory. An
example temporal query in CQL might look like:

TEMPORAL SELECT P.Patient, P.Problem, D.Drug
FROM PROBLEMS AS P, DRUGS AS
 D(Patient,Drug)
WHERE P.Patient=D.Patient
WHEN DURATION(D, ‘weeks’) > 2 AND
 DURATION(START(P), ‘now’, ‘years’) < 1
 AND BEFORE(START(D), START(P))
As the example query shows, CQL syntax resembles
standard SQL with additional clauses (in bold).The
most significant addition is the WHEN clause. This
clause is the temporal equivalent of the WHERE
clause and supports specifications of temporal
conditions, such as the DURATION and BEFORE
operators. An equivalent SQL query would be far less
concise, would need to be written as multiple queries,
and would require temporary tables to hold
intermediate results. Although Chronus II is well
equipped to deal with queries relating to temporal
patterns, it does not support statistical aggregate
functions, like CLOSEST, INCREASING and
DECREASING, over time windows that are needed
by users of HIVDB. We have thus developed a
computational method that adds such features to
Chronus II.

4. Temporal EMF Algorithm

Large scale data analysis in relational databases
typically requires specification of statistical
aggregation functions, but the standard SQL query
language only supports a small number of such
functions, such as sum, count, minimum, and
maximum. To develop a general computational
method to summarize data over groups of time-
stamped data and to formulate an arbitrarily complex
aggregation directly in a database query, we use a
proposed modification to SQL called extended multi-
feature (EMF) syntax [10]. In our work, we have
extended the EMF syntax to express temporal
aggregation in a generalized and succinct manner. We
have incorporated this extended EMF syntax into
CQL, taking advantage of Chronus II’s rich ability to
handle time values. Our extension, called Temporal
EMF (TEMF) required the following functionalities to
be added to previous work on EMF:

i) Supporting multiple database tables in the FROM
clause (the original EMF syntax only allows for a
single table to be queried)

ii) Implementing the temporal equivalent of the basic
aggregate operators available in SQL to specify
arbitrarily complex temporal aggregate queries.

iii) Defining grouping variables over rows of data
based on temporal conditions, such as duration
operators, over stored time values.

iv) Allowing nested aggregation to be used in
defining temporal aggregate queries. The nested
aggregates can support combinations of both
duration operators and basic temporal aggregate
operators defined in (ii).

Our implementation of TEMF involves additional data
processing in the Chronus II program. A table
structure is created in memory for which the columns
are and aggregates of each grouping variable.
Chronus II parsing of a TEMF specification in a CQL
query separates the two constituents, the CQL syntax
and the EMF syntax. The CQL syntax is processed by
Chronus II as before. The output of this query fills the
rows of a memory-resident table structure (called mf-
table) the rows of which correspond to the user-
defined grouping attributes. Then, for each grouping
variable defined in the query, we compare each row in
the source table to each entry in the mf-table, and, if
the defining condition of the grouping variable is
satisfied, we update the aggregates of that grouping
variable in the mf-table for that row. At the end of our
computational algorithm, we make one scan through
the mf-table and for each row which satisfies the
HAVING condition, we output the corresponding data
required in the SELECT clause.

Since the defining condition of a grouping
variable may contain aggregates of previously defined
variables, the order in which the variables are scanned
is essential for the correctness of the algorithm. Hence,
we undertake a dependency analysis [10] over the
grouping variables as a first step. This involves
running a topological sort algorithm, implemented
using depth first search, on the grouping variables.
Our algorithm requires one pass for each grouping
variable. The dependency analysis can be used to
reduce this number of passes by computing multiple
variables in a single pass and by selecting those that
do not depend on each other.

To illustrate the expressivity of our method, we
provide the schemas of three tables of time-stamped
data from HIVDB and an example TEMF extension to
CQL to express the query example in Section 2.

TEMPORAL TABLE Treatment (ID, Regimen) AS VALID
STATE ‘days’;
TEMPORAL TABLE Sequence (ID, SeqName);
TEMPORAL TABLE RNA (ID, VLoad) AS VALID EVENT
‘days’;

TEMPORAL SELECT T1.ID, T2.Regimen,
LAST(START(T2)) AS newRegimenStart, LAST(FINISH(S))
AS baselineSequenceDate, LAST(VALID(V1)) AS
baselineVLoad, V2 .Vload, V3 .Vload
FROM Treatment AS T1, // pre baseline non-DDI regimen

Treatment AS T2, // new DDI regimen
Sequen AS S, // sequence data
RNA AS V1, // viral loads within 12 wks
RNA AS V2, // viral loads between 4 and 12 wks
RNA AS V3 // viral loads between 16 and 32 wks

WHERE S.ID = T1.ID AND S.ID = T2.ID AND S.ID = V1.ID
AND T1.Regimen NOT LIKE '%DDI%' AND
T2.Regimen = ‘DDI' AND V1.VLoad >= 500

WHEN DURATION(T2, 'weeks') >= 12 AND
BEFORE(S1,T2) AND DURATION(FINISH(S1),
START(T2),'weeks') < 12 AND BEFORE(V1, T2)
AND DURATION(V1, START(T2), 'weeks') < 12
AND CONTAINS(PERIOD(START(T2) +
‘weeks(4)’, START(T2)+’weeks(12)’), V2) AND
CONTAINS(PERIOD(START(T2) + ‘weeks(16)’,
START(T2)+’weeks(32)’), V3)

GROUP BY ID; X, Y
SUCH THAT X .ID = ID, Y .ID = ID
HAVING MIN(DURATION (X .VALID (V2) ,

X.FIRST(START(T2)) + ‘weeks(8)’)) OR
MIN(DURATION (Y .VALID (V3) ,
Y.FIRST(START(T2)) + ‘weeks(24)’))

This query finds patients who satisfy the following
criteria: the patient was changed to a new regimen
containing DDI, continued for at least 12 weeks, and
was not previously on a regimen containing DDI; a
viral load was measured within 12 weeks of the start
of the new regimen and the value was higher then 500;
an HIV genotype test was done less than 12 weeks
prior to the new regimen. The TEMF specification (in
bold) returns the viral load measurements, if available,
that are closest to the midpoints of a 4-to-12 and a 16-
to-32 week time window after start of the new
regimen. The TEMF clauses could easily be changed
to find the FURTHEST or the AVERAGE value
within that window by changing the MIN operator to
MAX or AVG, respectively. Users thus can select the
appropriate type of temporally aggregated results to
determine patterns of responses to treatment and how
such outcomes correlate with mutations in genotype-
test results present at the start of the treatment. The
flexibility of the TEMF temporal aggregation method
provides an essential querying feature that is lacking
in the SQL language for relational databases.

5. Discussion

As the number of research data grows rapidly,
investigators urgently need computational methods
that can enable them to manage the complexity of such
data, to learn from those data, and to advance

scientific knowledge as a result. Since biological
phenomena are inherently dynamic in nature, many
researchers need pattern recognition methods that can
identify important temporal relationships among large-
scale data sets. In this paper, we have provided a
novel method for temporal aggregation and shown its
applicability for a particular biomedical genomic
database. Our method gives users an advantage over
using separate software for temporal data analysis by
allowing them formulate and modify statistical
aggregate functions in a few lines of query syntax.
Investigators can thus undertake data exploration by
specifying aggregations over time-stamped values at
the same time they are querying the primary data
results. Such flexibility may hasten advancements in
research through more rapid discoveries of previously
hidden temporal relationships in genomic and other
biomedical research databases.

6. References

[1] Nicholson JK, Holmes E, Lindon JC, Wilson ID. The
challenges of modeling mammalian biocomplexity. Nat
Biotechnol 2004; 22:1268-74.

[2] Svrakic NM, Nesic O, Dasu MR, Herndon D, Perez-Polo
JR. Statistical approach to DNA chip analysis. Recent Prog
Horm Res 2003; 58:75-93.

[3] Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M.
Beyond synexpression relationships: local clustering of
time-shifted and inverted gene expression profiles identifies
new, biologically relevant interactions. Mol Biol 2001;
314:1053-1066.

[4] Park T, Yi S-G, Lee S, Lee SY, Yoo D-H, Ahn J-K, Lee
Y-S. Statistical tests for identifying differentially expressed
genes in time-course microarray experiments.
Bioinformatics 2003; 19: 694-703.

[5] Guo X, Qi H, Verfaille CM, Pan W. Statistical
significance analysis of longitudinal gene expression data.
Bioinformatics 2003; 10: 1628-1635.

[6] Wichert S, Fokianos K, Strimmer K, Identifying
periodically expressed transcripts in microarray time series
data. Bioinformatics 2004; 20: 5-20.

[7] Combi C, Shahar Y. Temporal reasoning and temporal
data maintenance in medicine: issues and challenges.
Comput Biol Med 1997; 27: 353-368.

[8] Kuiken, C., Korber, B., and Shafer R.W. HIV sequence
databases. AIDS Rev 2003; 5: 56-65.

[9] O'Connor MJ, Tu SW, Musen MA. The Chronus II
temporal database mediator. Proc AMIA Annual Symp
2002, pp. 567-571.

[10] Chatziantoniou, D. The PanQ tool and EMF SQL for
complex data management. International Conference on
Knowledge Discovery and Data Mining (KDD-99), pp. 420-
42.

