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Abstract 

With the rapid growth of biomedical research 
databases, opportunities for scientific inquiry have 
expanded quickly and led to a demand for 
computational methods that can extract biologically 
relevant patterns among vast amounts of data.  A 
significant challenge is identifying temporal 
relationships among genotypic and clinical 
(phenotypic) data.  Few software tools are available 
for such pattern matching, and they are not 
interoperable with existing databases. We are 
developing and validating a novel software method for 
temporal pattern discovery in biomedical genomics.  
In this paper, we present an efficient and flexible 
query algorithm (called TEMF) to extract statistical 
patterns from time-oriented relational databases. We 
show that TEMF—as an extension to our modular 
temporal querying application (Chronus II)—can 
express a wide range of complex temporal 
aggregations without the need for data processing in a 
statistical software package. We show the expressivity 
of TEMF using example queries from the Stanford 
HIV Database. 
Keywords: temporal pattern recognition, statistical 
aggregation, biomedical genomics, HIV genotype 
testing 
 
 
1. Time in Biomedical Databases 

In the past decade, there has been unparalleled 
expansion in the volume, scope and complexity of 
research data accumulating through microarray studies 
and other high-throughput biological technologies.  
Databases are a prerequisite component of any 
biomedical research application that needs to maintain, 
integrate and share data.  Relational databases, in 
particular, are employed in many large-scale 
bioinformatics projects.  By archiving the results of 
completed experiments and observational studies, 
these relational databases serve as vital resources for 

ongoing data analysis by the scientific community.  
Although the variety of projects that use relational 
databases shows how flexible its simple tabular format 
is for data storage, users of relational databases are 
frequently limited in their ability to manipulate such 
two-dimensional representations for complex types of 
data analyses.  Researchers must develop additional 
computational programs and user interfaces to support 
the semantics of relationships among study results that 
the relational database model cannot capture.    

In this paper, we focus on the challenges of 
verifying temporal patterns among results stored in 
relational databases.  Time stamps are prerequisite 
measurements in studies that involve repeated 
measurements and longitudinal observations; such 
values can be difficult to manage and query in large 
databases that store time-course data or patient 
histories.  The ability to examine the temporal 
components of such data is central to the investigation 
of causal relationships and dynamic processes in 
biological research [1].  Global clustering methods of 
expression data are commonly used by investigators to 
identify gene or protein co-expression at a given time 
point [2].  Other methods [3-6] have been introduced 
to find time-delayed and periodic correlations that may 
be the result of one gene activating or controlling 
another gene downstream in a regulatory network.  
Although statistical methods to support time-course 
studies continue to be proposed and validated, 
database methods for such studies have not been 
concomitantly advanced to support the temporal 
dimensions of data resulting from microarray 
experiments.  

Methods for the maintenance and querying over 
time-course relationships among biomedical data were 
introduced nearly thirty years ago, and there has been 
tremendous research since on the management and use 
of time-oriented computational methods in clinical 
medicine [7]. However, these methods have not been 
incorporated into the data-management and data-
analytic tools that investigators use in genomic and 
other research databases.  We propose that database 
methods that can support temporal data analysis will 



provide researchers the essential ability to explore, 
visualize, and infer biologically relevant associations 
of a contextual, time-delayed, or periodic nature. 

 
2. Genomic Database Example 

We have collaborated closely with developers of 
the Stanford HIV Drug Resistance Database to 
advance the data-analytic needs of investigators 
studying HIV drug resistance, which remains a major 
obstacle to the successful treatment of HIV type 1 
(HIV-1) infections.  Genotypic resistance testing, 
which involves sequencing the molecular targets of 
anti-HIV therapy—the HIV reverse transcriptase (RT) 
and protease enzymes—is now routinely used by 
physicians before selecting antiretroviral drug 
regimen.  However, the interpretation of these test 
results is difficult given uncertainties about how 
HIV-1 genotype relates to drug susceptibility and 
treatment history.   To address this data-analytic 
problem, the HIV Drug Resistance Database group has 
developed an on-line relational database 
(http://hivdb.stanford.edu) to archive HIV RT and 
protease sequences [8].  The database (abbreviated 
HIVDB) currently contains over 2000 subjects with 
time-stamped data on drug regimens, HIV genetic 
sequence, and HIV viral load. Its schema is based on a 
temporal linkage of sequence changes in HIV RT and 
protease enzymes to antiretroviral drug histories of the 
individual from whom the isolate was obtained; drug 
susceptibility data on sequenced isolates when 
available; and clinical outcome data—plasma HIV 
RNA levels (or, viral load) and CD4+ cell counts. 
Figure 1 provides an integrated view of data for a 
subject in the database, and indicates the complexity 
of temporal data obtained from research and clinical 
cases. 

Our work with the HIVDB users has found a 
common need for statistical data aggregation and 
temporal pattern extraction. An example of a typical 
query on the HIV database is to 

Retrieve data to analyze statistical correlations 
between genotype and the virologic response to a 
regimen, using a ‘baseline’ viral load and viral 
loads at other time points of interest after the start 
of a new treatment regimen. 

Since data in the HIVDB comes from treatment 
settings, the timing of viral load measurements varies 
after during a treatment. As a result, HIVDB 
investigators may try to identify a measurement at 
particular time points after the start of a regimen (such 
as 8 weeks later) by retrieving the measurement which 
is temporally closest to that time point and that falls 
within a window (such as 4 to 12 weeks) around that 
time point. Alternatively, investigators may want the 
average value in the time window.  This data 

processing requires pattern matching (finding all 
values within a time window) and statistical 
aggregation (finding the closest value to a midpoint or 
the average value over the time window). Expressing 
these temporal patterns in a database query language 
like SQL requires significant user effort and may lead 
to code that is at least a few hundred lines long. 
Statistical aggregation is not a feature of standard 
database technology, and is done typically through 
data processing with statistical software tools.  Thus, 
current approaches to temporal querying frequently 
lead to code that is hard to reuse in data analysis. We 
have addressed these problems by building a temporal 
querying method (called Chronus II), which is 
efficient and expressive for defining temporal patterns 
found in biomedical database applications. 

 
Figure 1. Longitudinal view of patient data from 
a single subject in the Stanford HIV Drug 
Resistance Database. The time graph indicates 
the complexity of inferring the relationship of 
clinical response—viral load (top line) and CD4 
count (bottom line)—to mutations in HIV gene 
sequence (listed in bottom boxes) and treatment 
history (bars with drug name abbreviations). 
 
3. Chronus II Querying Method 

Chronus II [9] is a temporal querying method that 
has been designed to express complex queries over 
time-oriented values.  It uses a querying language, 



called Chronus Querying Language (CQL), and is 
based on the proposed temporal standard TSQL2 for 
the relational query language SQL, which has few 
temporal features. Chronus II is implemented in Java 
and is designed to operate as a modular program above 
existing relational databases using JDBC as its access 
layer. The Chronus II interface takes a CQL 
command, generates standard SQL statements for the 
non-temporal part of the command, and completes the 
processing of temporal operations in memory. An 
example temporal query in CQL might look like: 

TEMPORAL SELECT P.Patient, P.Problem, D.Drug        
FROM  PROBLEMS AS P, DRUGS AS  
 D(Patient,Drug)                                                
WHERE P.Patient=D.Patient 
WHEN DURATION(D, ‘weeks’) > 2 AND  
 DURATION(START(P), ‘now’, ‘years’) < 1  
 AND BEFORE(START(D), START(P)) 
As the example query shows, CQL syntax resembles 
standard SQL with additional clauses (in bold).The 
most significant addition is the WHEN clause. This 
clause is the temporal equivalent of the WHERE 
clause and supports specifications of temporal 
conditions, such as the DURATION and BEFORE 
operators.  An equivalent SQL query would be far less 
concise, would need to be written as multiple queries, 
and would require temporary tables to hold 
intermediate results. Although Chronus II is well 
equipped to deal with queries relating to temporal 
patterns, it does not support statistical aggregate 
functions, like CLOSEST, INCREASING and 
DECREASING, over time windows that are needed 
by users of HIVDB.  We have thus developed a 
computational method that adds such features to 
Chronus II. 
 
4. Temporal EMF Algorithm 

Large scale data analysis in relational databases 
typically requires specification of statistical 
aggregation functions, but the standard SQL query 
language only supports a small number of such 
functions, such as sum, count, minimum, and 
maximum. To develop a general computational 
method to summarize data over groups of time-
stamped data and to formulate an arbitrarily complex 
aggregation directly in a database query, we use a 
proposed modification to SQL called extended multi-
feature (EMF) syntax [10].  In our work, we have 
extended the EMF syntax to express temporal 
aggregation in a generalized and succinct manner. We 
have incorporated this extended EMF syntax into 
CQL, taking advantage of Chronus II’s rich ability to 
handle time values. Our extension, called Temporal 
EMF (TEMF) required the following functionalities to 
be added to previous work on EMF: 

i) Supporting multiple database tables in the FROM 
clause (the original EMF syntax only allows for a 
single table to be queried) 

ii) Implementing the temporal equivalent of the basic 
aggregate operators available in SQL to specify 
arbitrarily complex temporal aggregate queries. 

iii) Defining grouping variables over rows of data 
based on temporal conditions, such as duration 
operators, over stored time values. 

iv) Allowing nested aggregation to be used in 
defining temporal aggregate queries. The nested 
aggregates can support combinations of both 
duration operators and basic temporal aggregate 
operators defined in (ii).  

Our implementation of TEMF involves additional data 
processing in the Chronus II program.  A table 
structure is created in memory for which the columns 
are and aggregates of each grouping variable.  
Chronus II parsing of a TEMF specification in a CQL 
query separates the two constituents, the CQL syntax 
and the EMF syntax. The CQL syntax is processed by 
Chronus II as before. The output of this query fills the 
rows of a memory-resident table structure (called mf-
table) the rows of which correspond to the user-
defined grouping attributes.  Then, for each grouping 
variable defined in the query, we compare each row in 
the source table to each entry in the mf-table, and, if 
the defining condition of the grouping variable is 
satisfied, we update the aggregates of that grouping 
variable in the mf-table for that row. At the end of our 
computational algorithm, we make one scan through 
the mf-table and for each row which satisfies the 
HAVING condition, we output the corresponding data 
required in the SELECT clause.  

Since the defining condition of a grouping 
variable may contain aggregates of previously defined 
variables, the order in which the variables are scanned 
is essential for the correctness of the algorithm. Hence, 
we undertake a dependency analysis [10] over the 
grouping variables as a first step. This involves 
running a topological sort algorithm, implemented 
using depth first search, on the grouping variables.  
Our algorithm requires one pass for each grouping 
variable. The dependency analysis can be used to 
reduce this number of passes by computing multiple 
variables in a single pass and by selecting those that 
do not depend on each other. 

To illustrate the expressivity of our method, we 
provide the schemas of three tables of time-stamped 
data from HIVDB and an example TEMF extension to 
CQL to express the query example in Section 2. 
 
TEMPORAL TABLE Treatment (ID, Regimen) AS VALID 
STATE ‘days’; 
TEMPORAL TABLE Sequence (ID, SeqName); 
TEMPORAL TABLE RNA (ID, VLoad) AS VALID EVENT 
‘days’;  



TEMPORAL SELECT   T1.ID, T2.Regimen, 
LAST(START(T2)) AS newRegimenStart,  LAST(FINISH(S)) 
AS baselineSequenceDate, LAST(VALID(V1)) AS 
baselineVLoad, V2 .Vload, V3 .Vload 
FROM   Treatment AS T1,  // pre baseline non-DDI regimen 

Treatment AS T2, // new DDI regimen 
Sequen AS S,     //  sequence data 
RNA AS V1,       //  viral loads  within 12 wks  
RNA AS V2,      // viral loads between 4 and 12 wks 
RNA AS V3     //  viral loads between 16 and 32 wks         

WHERE   S.ID = T1.ID AND S.ID = T2.ID AND S.ID  = V1.ID 
AND T1.Regimen NOT LIKE '%DDI%' AND 
T2.Regimen = ‘DDI' AND  V1.VLoad >= 500 

WHEN      DURATION(T2, 'weeks') >= 12 AND 
BEFORE(S1,T2) AND DURATION(FINISH(S1), 
START(T2),'weeks') < 12 AND BEFORE(V1, T2) 
AND DURATION(V1, START(T2), 'weeks') < 12 
AND CONTAINS(PERIOD(START(T2) +        
‘weeks(4)’, START(T2)+’weeks(12)’), V2) AND 
CONTAINS(PERIOD(START(T2) + ‘weeks(16)’, 
START(T2)+’weeks(32)’), V3) 

GROUP BY ID; X, Y 
SUCH THAT X .ID = ID, Y .ID = ID 
HAVING  MIN(DURATION (X .VALID (V2) , 

X.FIRST(START(T2)) + ‘weeks(8)’))  OR 
MIN(DURATION (Y .VALID (V3) , 
Y.FIRST(START(T2)) + ‘weeks(24)’))    

This query finds patients who satisfy the following 
criteria: the patient was changed to a new regimen 
containing DDI, continued for at least 12 weeks, and 
was not previously on a regimen containing DDI; a 
viral load was measured within 12 weeks of the start 
of the new regimen and the value was higher then 500; 
an HIV genotype test was done less than 12 weeks 
prior to the new regimen.  The TEMF specification (in 
bold) returns the viral load measurements, if available, 
that are closest to the midpoints of a 4-to-12 and a 16-
to-32 week time window after start of the new 
regimen. The TEMF clauses could easily be changed 
to find the FURTHEST or the AVERAGE value 
within that window by changing the MIN operator to 
MAX or AVG, respectively.  Users thus can select the 
appropriate type of temporally aggregated results to 
determine patterns of responses to treatment and how 
such outcomes correlate with mutations in genotype-
test results present at the start of the treatment. The 
flexibility of the TEMF temporal aggregation method 
provides an essential querying feature that is lacking 
in the SQL language for relational databases.   
 
5. Discussion 

As the number of research data grows rapidly, 
investigators urgently need computational methods 
that can enable them to manage the complexity of such 
data, to learn from those data, and to advance 

scientific knowledge as a result.  Since biological 
phenomena are inherently dynamic in nature, many 
researchers need pattern recognition methods that can 
identify important temporal relationships among large-
scale data sets.  In this paper, we have provided a 
novel method for temporal aggregation and shown its 
applicability for a particular biomedical genomic 
database.  Our method gives users an advantage over 
using separate software for temporal data analysis by 
allowing them formulate and modify statistical 
aggregate functions in a few lines of query syntax.  
Investigators can thus undertake data exploration by 
specifying aggregations over time-stamped values at 
the same time they are querying the primary data 
results.  Such flexibility may hasten advancements in 
research through more rapid discoveries of previously 
hidden temporal relationships in genomic and other 
biomedical research databases.  
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