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Abstract

PCR, the polymerase chain reaction, is a fundamental
tool of molecular biology. Quantitative PCR is the gold-
standard methodology for determination of DNA copy num-
bers, quantitating transcription, and numerous other ap-
plications. A major barrier to large-scale application of
PCR for quantitative genomic analyses is the current re-
quirement for manual validation of individual PCR reac-
tions to ensure generation of a single product. This typically
requires visual inspection either of gel electrophoreses or
temperature dissociation (“melting”) curves of individual
PCR reactions—a time-consuming and costly process.

Here we describe a robust computational solution to this
fundamental problem. Using a training set of 10,080 reac-
tions comprising multiple quantitative PCR reactions from
each of 1,728 unique human genomic amplicons, we de-
veloped a support vector machine classifier capable of dis-
criminating single-product PCR reactions with better than
99% accuracy. This approach has broad utility, and elimi-
nates a major bottleneck to widespread application of PCR
for high-throughput genomic applications.

1. Introduction

PCR (18) is perhaps the most widely applied technique
in molecular biology and functional genomics, with appli-
cations ranging from gene discovery to microarray probe
synthesis (8; 16). A major difficulty in applying PCR to
large scale genomic analyses is the current lack of tools for
automated validation of PCR reactions. Here we describe
such an automated method based on classifier analysis of
standard, post-amplification PCR product temperature dis-
sociation curves (so-called “melting curves”).

All quantitative applications of PCR require generation
of a single product during the PCR reaction. This is also
true of manufacturing applications such as production of
cDNA microarrays. One approach to validating individ-
ual PCR reactions relies upon measurement of the melting
curve of the amplicon following completion of PCR ther-
mal cycling. Currently, such melting curves are examined
by human operators, who must decide if the reaction was ac-
ceptable. When the number of reactions is large, this man-
ual screening process becomes tedious and time consuming.
Furthermore, manual screening may be error prone due to
the superficial homogeneity of melting curves and the po-
tential for inter-observer variability.

We aim to automate the screening of PCR reactions
based on analysis of melting curves. We use a manually
labeled data set and features derived from amplicon melt-
ing curves to train a support vector machine (SVM) classi-
fier to discriminate between acceptable and aberrant PCRs.
The features include a low-dimensional representation of
the melting curve and information about the representation
error. We then employ the classifier to identify the aberrant
PCR reactions automatically.

Our approach has three significant advantages over man-
ual screening. First, the classifier is vastly faster and more
scalable than human labeling. Second, the classifier pro-
duces quantitative probability estimates of melting curve
abberancy. These probabilities allow the stringency of fil-
tering to be set at the outset. Controlling the stringency of
filtering is important for interpretation of downstream anal-
ysis, where it may be very important to have a minimum
threshold of certainty that analyzed data represents accept-
able reactions. Finally, classifiers can be retrained accord-
ing to new labeling requirements, and thus can rapidly sup-
port different analysis scenarios.

Figure 1 illustrates our method. Our machine learning



Figure 1. Diagram of automated screening method. The melting curve is given as input to the model
optimizer, which fits a model of the melting curve and outputs the model parameters. The melting
curve model parameters and the melting curve are then given as input to the feature extractor, which
produces a vector of features. Finally, the features are given as input to the classifier, which produces
as output the probability that the melting curve is aberrant.

approach relies on two components. First, we use features
derived from the melting curves as input to the classifier.
These features are computed by modelling each melting
curve using a family of functions that can closely approxi-
mate melting curves from acceptable PCRs, and then com-
puting statistics about the data as well as the error of the ap-
proximation. We developed a set of 36 features describing
the model, and the quality of the model’s approximation to
the data, that are presented to the classifier. Second, we use
a support vector machine classifier (20; 2) for discrimina-
tion. The SVM implicitly defines a hyperplane in a vector
space that is used to classify the data points. This hyper-
plane is used to compute a numerical score for each melting
curve based on a nonlinear mapping of the 36 features. This
numerical score is then processed to yield an estimate of the
probability of melting curve aberrance.

Using this machine learning approach, we demonstrate
outstanding accuracy in distinguishing acceptable from
aberrant melting curves, achieving a receiver operating
characteristic (ROC) score of 0.998. We show that high
accuracy can be achieved with a relatively small training
set, and furthermore that SVM outputs can be calibrated for
a priori specification of the decision threshold in terms of
probabilities. This work is significant because it removes a
bottleneck in large scale analysis of genomic DNA by PCR.

Below we describe (i) the melting curve collection pro-
cess; (ii) a melting curve model together with features used
to classify melting curves; (iii) experimental validation of
our approach; and (iv) the overall results.

2. Data Generation

We used real-time quantitative PCR (qPCR) (7) data to
develop our classifier. Quantitative real-time PCR is an ex-
tension of PCR in which a signal from a fluorescent reporter
is monitored throughout the reaction. This fluorescence sig-
nal is used to track the progress of the reaction after each
cycle of amplification. Fluorescence data can in turn be an-
alyzed to determine accurately the initial template concen-
tration. In the dataset we analyze, the dye SYBR Green I
(6) is used as the fluorescent reporter. SYBR Green I’s flu-
orescence increases substantially upon binding to double-
stranded DNA. Reactions were cycled and fluorescence data
acquired using a standard qPCR instrument (ABI 7900, Ap-
plied Biosystems, Foster City, CA).

Use of SYBR Green I has the advantage that melting
curve analysis can be used to validate the RTPCR immedi-
ately after thermal cycling without further sample process-
ing. A melting curve is measured after the last extension
phase of the reaction by first bringing the reaction mixture
to a relatively low temperature, and then slowly heating the
reaction mixture to a temperature at which the DNA strands
are expected to be denatured. The fluorescence signal de-
creases during this process, and usually most of the decrease
occurs over a narrow temperature range. This sudden de-
crease is caused by rapid denaturation of the PCR amplicon
in a cooperative process (15). Typically, PCR amplicons
will denature with one relatively sharp transition, although
some sequences have been shown to denature with more
complex profiles (10). Melting curves showing one transi-



tion are used for downstream analysis, and melting curves
with unusual profiles are reserved for further examination.

Figure 2A shows a typical melting curve. The melting
curve is plotted as the negative of the first derivative of the
SYBR Green I fluorescence signal as a function of temper-
ature. As the temperature increases, SYBR Green I fluo-
rescence decreases slightly due to a temperature dependent
effect that is independent of DNA dissociation. When re-
gions of the amplicon melt out from helix to coil, peaks are
observed in the melting curve due to significant decrease in
SYBR Green I fluorescence. When the amplicon is entirely
dissociated at high temperatures, there is a small decrease
in SYBR Green I fluorescence as the temperature is further
increased.

Melting curves were generated using a standard option
on the ABI 7900 instrument. For each qPCR reaction, we
have measurements of the fluorescence signal at a discrete
set of temperatures. Each melting curve consists of approxi-
mately 95 such measurements taken at temperatures ranging
from 67◦ C to 93◦ C.

3. Algorithms

Although the classifier can be trained on the raw melt-
ing curves, discrimination based on the raw data will not
generalize well for two reasons. First, using raw data intro-
duces sensitivity to the sampling of the temperature axis. In
order to use a classifier on datasets with different tempera-
ture sampling, an interpolation scheme would be necessary.
Second, new data gathered on a different temperature range
would introduce difficulties in applying the classifier, be-
cause data would need to be truncated or extrapolated. For
these reasons, we opted for an approach in which features
were extracted from the raw data.

Given that acceptable amplicon melting curves typically
show a single transition, we choose to model melting curves
as the superposition of a Gaussian function and a linear
function. An example of a melting curve model fit to data
is shown in figure 2A. Although the melting curve transi-
tions have a slight asymmetry, a Gaussian function is able
to fit the transition well. We chose to use a linear function
that terminates at a chosen temperature, because after the
amplicon melts out, the fluorescence decrease is negligible.
The melting curve model we use is motivated by examina-
tion of the melting curve data, rather than the physical pro-
cesses underlying the interaction of the fluorescent dye and
the dissociating DNA duplexes. Because we do not model
the underlying processes, our melting curve will have sys-
tematic biases in the error between the model and the data.
However, because our goal was to reliably identify aberrant
melting curves, our focus was on developing a model that
could be used to extract informative features.

The melting curve approximation M(t;m, b, t0, a, µ, σ)

is a function of the temperature t and parameters of the lin-
ear and Gaussian components of the model,

M(t;m, b, t0, a, µ, σ) = L(t;m, b, t0) +G(t; a, µ, σ)

= (mt+ b)
e−(t−t0)

1 + e−(t−t0)

+ ae−
(t−µ)2

2σ2 .

(1)

The linear component L(t;m, b, t0) is determined by three
parameters, which are the slope m, line intercept b, and lin-
ear component stopping temperature t0. The linear compo-
nent is the product of a line segment and a sigmoidal acti-
vation function. Using the product of these two functions
allows the line segment to terminate continuously. This
family of line segments was chosen to preserve the conti-
nuity of the derivative of the model, so that a nonlinear op-
timization procedure could be used. The Gaussian function
G(t; a, µ, σ) is determined by three parameters consisting
of the mean µ, standard deviation σ, and amplitude a.

Thus, the melting curve model has six parameters. These
parameters are chosen for each melting curve by mini-
mizing the mean squared error between the melting curve
model and the measured melting curve using a Levenburg-
Marquardt (11) optimization procedure.

Based on the model and the data, a total of 36 features
are computed for each melting curve and used as inputs to
the SVM. The features are as follows.

1. The six parameters of the melting curve model.

2. A measure of error relative to the Euclidean norm of
the data,

relative error =
‖data−model‖
‖data‖ .

3. A twelve bin histogram recording the distribution of
melting curve values.

4. A twelve bin histogram recording the distribution of
error values with respect to the model.

5. The absolute error between the second most intense
peak found in the melting curve and the optimized
model.

6. The ratio of the amplitude of the second highest peak
found and the amplitude of the most prominent peak.

7. The absolute error of the linear portion of the curve.

8. The absolute error after the Gaussian peak.
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Figure 2. Examples of data and feature vectors. (A) Melting curve example (plotted in dots) and
model fit (solid line). The melting curve is the negative derivative (-dF/dT) of the SYBR Green I
fluorescence signal as a function of temperature, and characterizes thermally induced dissociation
of the amplicon. (B) Heat map of feature vectors derived from aberrant and acceptable melting
curves. Low numerical values are plotted as dark pixels, and high numerical values are plotted
as light pixels. Each column corresponds to a melting curve, and the 36 rows contain the feature
data for each melting curve. The task of the classifier is to distinguish acceptable from aberrant
curves on the basis of these features. (C) Acceptable melting curves. These curves have a dominant
peak and a relatively linear component before the main peak on the temperature axis. The different
peak locations correspond to different amplicon melting temperatures. (D) Aberrant melting curves.
Curves are classified as aberrant if they have a large secondary peak (bottom three examples) or
some other unusual morphology (top example).

9. The sum of the error in the segment with the maximum
error sum, where tl and th are temperatures at which
the fluorescence of the mixture was measured:

max
tl<th

th∑

t=tl

(data[t]−M [t;m, b, t0, a, µ, σ]).

The heterogeneous nature of these features reflects the
morphological variety of the melting curves. Because there
are a variety of ways in which an acceptable melting curve
can depart from the superposition of a line segment and a
Gaussian peak, a single error statistic does not provide suf-
ficient information for the classifier to reliably identify aber-
rant curves. For instance, many acceptable melting curves
have at least one secondary peak (see figure 2A), but other
curves were classified as aberrant if the secondary peak was
too high in comparison with the dominant peak. For the
subtask of distinguishing aberrant curves from acceptable
curves on the basis of the second peak, features five and six
are informative. Other melting curves have heavy shoulders
that are not distinct peaks (see bottom curve in figure 2C).
These heavy shoulders lead to a high error but are never-

theless acceptable. Feature nine is informative in separating
these curves from the curves in which high error is due to
a prominent secondary peak. The other features were de-
veloped to assist the classifier in correctly identifying other
marginal cases. None of the data used to develop features
was used to evaluate the final classifier performance.

Once features are computed for each curve in the dataset,
we train an SVM classifier to predict the label assigned to
each melting curve on the basis of the computed features.
SVMs provide state-of-the-art classification performance,
and have been used extensively in a wide variety of ma-
chine learning tasks, such as handwriting recognition, face
detection, and text categorization (2). They have also been
applied to a number of problems in computational biology,
such as peptide identification in mass spectrometry data, re-
mote homology detection, and microarray gene expression
analysis (13).

An SVM uses a hyperplane to assign examples to one of
two classes, and thus is similar to a perceptron. The per-
ceptron training algorithm chooses a hyperplane in the vec-
tor space defined by the input features that separates pos-
itive from negative examples in a training set. In contrast,



the SVM incorporates three improvements over the classical
perceptron algorithm. First, motivated by statistical learn-
ing theory (20), the SVM training algorithm chooses the
hyperplane with the maximum distance from the positive
and negative examples near the decision boundary. Second,
the hyperplane is expressed as a weighted combination of
the training data, and thus the complexity of the decision
function is decoupled from the complexity of the feature
space. Finally, the SVM incorporates a generalized measure
of similarity called a kernel function, which allows input
features to be nonlinearly mapped into a higher-dimensional
vector space. An appropriate choice of kernel function can
improve the separation of positive and negative examples as
compared to the native input feature space.

4. Methods

We used a sample of 10,080 manually labeled melting
curves in our study, representing 1,728 primer pairs that
were each run at least three times. The average amplicon
size was 241 bp, typical for quantitative PCR applications.
These melting curves were collected in studies of DNAse I
hypersensitive regions in the human genome (3; 17; 5). The
amplicons from which the melting curves were derived span
a total of half a megabase of human genomic sequence lo-
cated on chromosome 11. Amplicons encompassed a wide
variety of genomic contexts, including CpG islands, repeat
elements, genes, and intergenic regions.

These curves were initially labeled by laboratory tech-
nicians, who examined one of the replicates for an ampli-
con and assigned the category of the examined replicate to
all melting curves of the amplicon. These melting curves
were labelled as acceptable if they had one dominant nar-
row peak. See Figure 2C and 2D for examples of acceptable
and aberrant melting curves. In this dataset, approximately
five percent of the reactions were aberrant. Each individual
curve was then checked prior to any SVM training for cor-
rect categorization by TPM. Upon examination, 47 curves
were relabeled as acceptable and 152 curves were relabeled
as aberrant.

We used the publicly available python package PyML
(pyml.sourceforge.net) to choose the maximum-margin hy-
perplane separating the positive examples from the negative
examples and compute cross-validated ROC 1% scores. Pa-
rameters were selected via cross validation on a training set
as described below.

We used ROC analysis (12) to evaluate the performance
of our classifiers. An ROC curve is generated by plotting the
true positive fraction as a function of the false positive frac-
tion as the decision threshold is swept through the range of
the classifier outputs. The ROC curve provides information
about the ranking of examples induced by the SVM. For the
application described in this paper, we are particularly inter-

ested in the fraction of aberrant examples that appear early
in the ranking of examples from aberrant to acceptable. We
thus used the ROC 1% score, which is the normalized area
under the ROC curve including only the first 1% of false
positives. The ROC 1% score for a perfect classifier would
be 1, and for this data set, the expected ROC 1% score for a
totally random classifier would be 5 · 10−3.

ROC analysis is useful because it provides information
about the total ranking produced by a classifier for a variety
of thresholds. However, in order to use a classifier as a com-
ponent in a larger analysis task, it is necessary to choose
a specific threshold for the classifier outputs, so that data
is separated into acceptable and aberrant groups. In order
to separate the choice of threshold from the output distri-
bution of the specific SVM under consideration, the SVM
outputs are further processed to yield probabilities of aber-
rancy. Although SVMs produce a numerical score which
has no inherent probabilistic interpretation, empirical prob-
abilities can be produced with the use of an appropriate sig-
moid function. The parameters of the sigmoid function are
estimated from hold-out training data (14). This sigmoid
function takes as input the classifier output, and produces
an output that can be interpreted as a probability of aber-
rancy.

5. Results

Our experiments show that our approach can identify
aberrant melting curves with high accuracy. We report an
average ROC score of 0.997 and a ROC 1% score of 0.92
based on three repititions of a five fold cross validation pro-
cedure. A model selection study shows that our method
does not strongly depend on the exact kernel function or
kernel parameters. By training a classifier on different sized
subsets of the data, we also show that we can achieve good
accuracy with 1000 training examples and optimal perfor-
mance with about 3000 training examples. We also demon-
strate that we can accurately assess the probability of melt-
ing curve abberance given an SVM output. An analysis
of the genomic features associated with aberrant melting
curves suggests that a prominant cause of aberrance is over-
lap of the amplicon with a SINE repeat.

5.1. Model Selection

In order to avoid over-fitting the data, we partitioned the
data randomly into two halves. Each half had the same
proportion of positive and negative examples as the entire
dataset. We used one half to develop features and choose
SVM parameters. We then used a cross validation approach
to evaluate the performance of the method on the other half
of the data.
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Figure 3. Heat map showing the results of a
grid search using a polynomial kernel. Each
pixel displays the mean of three different ROC
1% scores produced by five-fold cross vali-
dation for particular values of the polynomial
degree and C parameter. The maximum ROC
1% score of 0.93 was achieved with a poly-
nomial kernel of degree 7 and a C value of
10.

We used cross-validated ROC 1% scores to evaluate fea-
tures and SVM parameters. First, we further partitioned the
model selection data into five random sets, each with the
same proportion of positive and negative examples as the
entire dataset. Next, we used an SVM to classify the ex-
amples in each set after training the SVM on the other four
data subsets. We repeated this entire process three times,
and used the average ROC 1% score as a figure of merit.

One of the most important SVM parameters is the kernel
function used to compare data examples. There are several
kinds of similarity measures appropriate for real valued vec-
tor data. The most commonly used are polynomial kernel
functions and radial basis functions (2). The polynomial
kernel function has one significant parameter, the polyno-
mial degree. The radial basis function also has one signifi-
cant parameter, which controls the width of the radial basis
function. In addition, the SVM learning algorithm has a pa-
rameter C that controls the cost of misclassifying training
examples. In order to select a kernel, we performed a grid
search for both the radial basis function and polynomial ker-
nels. Our grid search procedure evaluated the 5-fold cross
validation ROC 1% score as the parameters C and degree
were varied for the polynomial kernel, and as the parame-
ters C and radial basis function width were varied for the
radial basis function kernel.

We found that the performance of radial basis function

and polynomial kernels was similar, but that polynomial
kernels had slightly better performance. Figure 3 shows
that similar performance was obtained over a range of pa-
rameters for different polynomial degrees and values of C.
Although the classifier performance was numerically better
for some parameter values than others, the overall perfor-
mance wasn’t strongly dependent on the parameter values.
For the final results, we used a polynomial kernel of de-
gree 7 and set C to 10. For these parameters, we achieve
a ROC 1% score of 0.93 on the training data and 0.92
on the testing data. In order to compare the SVM perfor-
mance against another classification method, we employed
the same model selection process on the training data using
a K-nearest neighbor classifier (4), for identical values of
polynomial degree and radial basis width while varying the
number of neighbors used by the K-nearest neighbor clas-
sifier from one to ten. The K-nearest neighbor classifier did
worse than the SVM, with a ROC 1% score of 0.89 on both
the training and testing data.

5.2. Learning Curve

An important issue for practical application of this
method is the determination of the number of PCR reac-
tions necessary to train a successful classifier. To estimate
the number of data points necessary to train a successful
classifier, we performed cross-validation analysis on differ-
ent sized subsets of the hold-out data. For training set sizes
ranging from several hundred to several thousand exam-
ples, we chose 100 non-disjoint subsets of the appropriate
size and performed 5-fold cross validation on each subset,
recording the ROC 1% score as a measure of accuracy.

Figure 4 shows the learning curve, demonstrating that
cross-validated ROC 1% scores of 0.9 are achieved with
3000 training examples. The slight upward trend of the
curve as the training set size is increased suggests that fur-
ther accuracy might be obtained by increasing the training
set size, but that large amounts of additional data are likely
to be required to achieve significant improvement.

5.3. Probabilities

Classification of data into aberrant and acceptable groups
requires application of a threshold to the SVM outputs. The
distribution of SVM outputs will vary from classifier to
classifier, and depends on the training data set. In order
to decouple the thresholding value from the exact classifier
output distribution, we calibrate the SVM outputs to em-
pirical probabilities. After this calibration, thresholds can
be expressed in terms of probabilities and decided a priori
based on the user’s requirements.

We used the method described by (14) to calibrate the
SVM outputs to empirical probabilities. Briefly, we use
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validated ROC performance as training data
size is varied. The solid line with circles plots
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a sigmoidal function σ(x) = 1/(1 + eAx+B) to map the
SVM outputs to the interval (0,1). The parameters A and B
are chosen by Levenberg-Marquardt optimization to max-
imize a log-likelihood function of the data. To assess the
agreement between our calibrated SVM outputs and empir-
ical probabilities, we performed five-fold cross validation,
where two-thirds of the training data was used to train the
SVM and one third was used to estimate values ofA andB.
We then sorted the data based on the assigned probabilities,
and partitioned the data into disjoint and ordered subsets.
For each subset, the mean assigned probability was plot-
ted against the fraction of positives in that subset. Figure
5 shows the results of this comparison of the probabilities
from five different five-fold cross-validation runs. Our ex-
periments show that the estimates of aberrance probability
yielded by the sigmoid function track well with the empiri-
cal aberrance probability. An accuracy of 99% was obtained
for all cross-validation runs by setting the assigned proba-
bility threshold to 0.2.

5.4. Amplicon Analysis

In order to better understand the causes of aberrant melt-
ing curves, we analyzed the distribution of various genomic
features within amplicons that were associated with aber-
rant and acceptable melting curves, respectively. This anal-
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Figure 5. Empirical probabilities and thresh-
old accuracy. (A) Comparison of empiri-
cal probabilities and sigmoided SVM outputs.
The five sets of circles represent five indi-
vidual five-fold cross validation runs. Each
circle represents the mean value of the SVM
decision function for a set of points plotted
against the fraction of examples in that set
that were labeled aberrant. This plot shows
the agreement between the calibrated output
of the SVM and the empirical probability of
aberrancy.

ysis showed that aberrant reactions are more likely to occur
when the amplicons overlap with SINE (short interspersed
element) repeats.

Our data set is derived from amplicons that spanned ap-
proximately 0.5 megabases of human genomic DNA on
chromosome 11. Among the 1,728 distinct amplicons, 71
uniformly aberrant amplicons have all replicates flagged as
aberrant and 1528 uniformaly acceptable amplicons have all
replicates flagged as acceptable. The remaining amplicons
have an intermediate number of acceptable replicates. We
used the 1528+71 consistently flagged examples for further
analysis.

The GC content and the dinucleotide frequencies are
essentially the same in the uniformly acceptable and uni-
formly aberrant amplicons. The abberant amplicons have an
average GC content of 45 percent, and the acceptable ampli-
cons have an average GC content of 44 percent. These GC
contents are similar to the region on chromosome 11 from
which the amplicons were derived, which has an overall GC
content of 44 percent.

Next, we used the UCSC Human Genome Browser (9)
to retrieve annotations for the genomic regions from which



the amplicons were derived. The region of chromosome 11
covered by the amplicons contains 14 genes, six CpG is-
lands, and 982 repeats flagged by the RepeatMasker pro-
gram (19). The 14 genes contain 96 exons and 82 in-
trons. The percentages of acceptable and aberrant ampli-
cons falling within introns, exons, and CpG islands were
similar. LINE repeats also had similar distributions. How-
ever, aberrant amplicons were enriched for overlap with
SINE repeats. Of the uniformly acceptable amplicons, 74
percent were entirely disjoint from SINE repeats and ap-
proximately 20 percent partially overlapped SINE repeats.
In contrast, only 50 percent of the uniformly aberrant ampli-
cons were disjoint from SINE repeats, and about 46 percent
partially overlapped SINE repeats. This situation was simi-
lar for simple repeats (such as (TG)n or (CA)n). 95 percent
of uniformly acceptable amplicons were disjoint from these
simple repeats, whereas only 85 percent of the uniformly
aberrant amplicons were disjoint from the simple repeats.

The association of aberrant amplicons with repeat ele-
ments is not surprising for two reasons. First, because one
of the primers must bind to part of a SINE repeat, it will
have many other strong binding sites in the genome, given
the large number of SINE repeat copies (1). These other
binding sites could lead to multiple amplicons being pro-
duced where multiple Alus are proximal. The second is that
Alu sequences, which are a prominent subset of the SINE
repeats, have high GC content at the 5-prime end. Ampli-
cons that straddle the 5-prime end of an Alu could be ex-
pected to show a multi-modal melting curve if the flanking
sequence was AT-rich due to the difference in GC content
between the Alu sequence and adjoining region.

6. Discussion

We developed a method that can accurately distin-
guish aberrant PCR melting curves from acceptable melting
curves. A critical advantage of this method, in addition to
its speed, is that the outputs can be calibrated so the decision
threshold can be specified without examination of the clas-
sifier’s output distribution. Due to the sparseness enforced
by the SVM optimization, our trained SVMs use relatively
few of the training examples: usually around 100 of the
training data are used to specify the separating hyperplane.
Thus, the procedure produces low complexity models that
can be expected to generalize well. Our classifier reliably
separates aberrant melting curves from melting curves with
one dominant peak.

Some PCR melting curves are expected to generate mul-
tiple peaks. For instance, multiplex PCR, in which multiple
amplicons are amplified, would generate at least one transi-
tion for each amplicon. Another example is PCR genotyp-
ing, where a heterozygote at the amplified locus would gen-
erate two peaks, one for each amplified allele. The model

could be extended for these types of RTPCR data by fit-
ting multiple peaks; this would require a slightly more com-
plex nonlinear optimization procedure and would introduce
more features for analysis by the classifier.

Rejection of a melting curve as aberrant does not imply
that the PCR amplicon was not successfully amplified. An
amplicon that consists of an AT rich segment followed by
a GC rich segment could be expected to generate a multi-
modal melting curve, such as encountered for amplicons
straddling Alu repeat elements. Alternatively, amplifica-
tion of an undesired amplicon due to nonspecific primer hy-
bridization or primer-dimer formation could also generate
multi-modal signals in the melting curve even when the tar-
get amplicon is successfully amplified. However, when us-
ing RTPCR data to estimate initial template concentrations,
the presence of primer-dimers or undesired amplicons will
lead to inaccuracy. Thus, this approach is appropriate for
flagging questionable data that is likely to cause errors in
downstream analysis.

Our method trains a classifier to reproduce human judg-
ments (which is the present gold standard). As such, the
classifier may be subject to the same biases as the techni-
cians who initially labelled the data. However, we have
shown that if humans can reliably distinguish acceptable
from aberrant curves, then so can our classifier. Further-
more, if humans make systematic errors leading to incor-
rect classification of melting curves based on a particular
morphology, then our classifier can easily be adjusted by
retraining.

In summary, this article presents a method for automated
detection of aberrant PCR data based on melting curves.
Our method is fast, accurate, and can be easily adjusted to
account for new acceptability criteria, and is at as reliable
as the judgments of the laboratory technicians who label
the training data. The requirement for manual screening of
sets of replicates represents a significant bottleneck in high
throughput experiments. Our method relieves this bottle-
neck in developing and implementing high-throughput ge-
nomic assays using PCR.
Acknowledgments: The authors thank Paul Tittel for assistance with data
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