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Despite recent developments in protein structure prediction, an accurate new fold prediction algorithm remains elusive.
One of the challenges facing current techniques is the size and complexity of the space containing possible structures
for a query sequence. Traditionally, to explore this space fragment assembly approaches to new fold prediction have
used stochastic optimization techniques. Here we examine deterministic algorithms for optimizing scoring functions
in protein structure prediction. Two previously unused techniques are applied to the problem, called the Greedy
algorithm and the Hill-climbing algorithm. The main difference between the two is that the latter implements a
technique to overcome local minima. Experiments on a diverse set of 276 proteins show that the Hill-climbing

algorithms consistently outperform existing approaches based on Simulated Annealing optimization (a traditional
stochastic technique) in optimizing the root mean squared deviation (RMSD) between native and working structures.

1. INTRODUCTION

Reliably predicting protein structure from amino

acid sequence remains a challenge in bioinformatics.

Although the number of known structures continues

to grow, many new sequences still lack a known ho-

molog in the PDB 2, which makes it harder to pre-

dict structures for these sequences. The conditional

existence of a known structural homolog to a query

sequence commonly delineates a set of subproblems

within the greater arena of protein structure predic-

tion. For example, the biennial CASP competitiona

breaks down structure prediction as follows. In ho-

mologous fold recognition the structure of the query

sequence is similar to a known structure for some

other sequence. However, these two sequences have

only a low (though detectable) similarity. In analo-

gous fold recognition there exists a known structure

similar to the correct structure of the query, but the

sequence of that structure has no detectable similar-

ity to the query sequence. Still more challenging is

the problem of predicting the structure of a query

sequence lacking a known structural relative, which

is called new fold (NF) prediction.

Within the context of the NF problem

knowledge-based methods have attracted increasing

attention over the last decade. In CASP, prediction

approaches that assemble fragments of known struc-

tures into a candidate structure 18, 7, 10 have con-

sistently outperformed alternative methods, such as

those based largely on explicit modeling of physical

forces. Fragment assembly for a query protein begins

with the selection of structural fragments based on

sequence information. These fragments are then suc-

cessively inserted into the query protein’s structure,

replacing the coordinates of the query with those of

the fragment. The quality of this new structure is as-

sessed by a scoring function. If the scoring function

is a reliable measure of how close the working struc-

ture is to the native fold of the protein, then opti-

mizing the function through fragment insertions will

produce a good structure prediction. Thus, build-

ing a structure in this manner can break down into

three main components: a fragment selection tech-

nique, an optimizer for the scoring function, and the

scoring function itself.

To optimize the scoring function, all the leading

assembly-based approaches use an algorithm involv-

ing a stochastic search (e.g. Simulated Annealing 18,

genetic algorithms 7, or conformational space anneal-

ing 10). One potential drawback of such techniques

is that they can require extensive parameter tuning

before producing good solutions.

∗Corresponding author.
ahttp://predictioncenter.org/
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In this paper we wish to examine the relative per-

formance of deterministic and stochastic techniques

to optimize a scoring function. The new algorithms

presented below are inspired by techniques originally

developed in the context of graph partitioning 4, and

do not depend on a random element. The Greedy ap-

proach examines all possible fragment insertions at a

given point and chooses the best one available. The

Hill-climbing algorithm follows a similar strategy but

allows for moves that reduce the score locally, pro-

vided that they lead to a better global score.

Several variables can affect the performance of

optimization algorithms in the context of fragment-

based ab initio structure prediction. For example,

how many fragments per position are available to

the optimizer, how long the fragments are, if they

should be multiple sizes at different stages 18 or all

different sizes used together 7, and other parameters

specific to the optimizer can all influence the quality

of the resulting structures.

Taking the above into account, we varied frag-

ment length and number of fragments per position

when comparing the performance of our optimiza-

tion algorithms to that of a tuned Simulated Anneal-

ing approach. Our experiments test these algorithms

on a diverse set of 276 protein domains derived from

SCOP 1.69 14. The results of these experiments show

that the Hill-climbing-based approaches are very ef-

fective in producing high-quality structures in a mod-

erate amount of time, and that they generally out-

perform Simulated Annealing. On the average, Hill-

climbing is able to produce structures that are 6%

to 20% better (as measured by the root mean square

deviation (RMSD) between the computed and its ac-

tual structure), and the relative advantage of Hill-

climbing-based approaches improves with the length

of the proteins.

2. MATERIALS AND METHODS

2.1. Data

The performance of the optimization algorithms

studied in this paper were evaluated using a set of

proteins with known structure that was derived from

SCOP 1.69 14 as follows. Starting from the set of do-

mains in SCOP, we first removed all membrane and

cell surface proteins, and then used Astral’s tools 3

to construct a set of proteins with less than 25%

sequence identity. This set was further reduced by

keeping only the structures that were determined by

X-ray crystallography, filtering out any proteins with

a resolution greater than 2.5Å, and removing any

proteins with a Cα − Cα distance greater than 3.8Å

times their sequential separationb.

The above steps resulted in a set of 2817 pro-

teins. From this set, we selected a subset of 276 pro-

teins (roughly 10%) to be used in evaluating the per-

formance of the various optimization algorithms (i.e.,

a test set), whereas the remaining 2541 sequences

were used as the database from whence to derive the

structural fragments (i.e., a training set).c The test

sequences, whose characteristics are summarized in

Table 1, were selected to be diverse in length and

secondary structure composition.

Table 1. Number of sequences at various length
intervals and SCOP class.

Sequence Length

SCOP Class < 100 100–200 > 200 total

alpha 23 40 6 69
beta 23 27 18 69
alpha/beta 4 26 39 69
alpha+beta 15 36 17 69

2.2. Neighbor Lists

As the search space for fragment assembly is much

too vast, fragment-based ab initio structure predic-

tion approaches must reduce the number of possi-

ble structures that they consider. They accomplish

this primarily by restricting the number of structural

fragments that can be used to replace each k-mer of

the query sequence. In evaluating the various opti-

mization algorithms developed in this work, we fol-

lowed a methodology for identifying these structural

fragments that is similar in spirit to that used by the

Rosetta 18 system.

Consider a query sequence X of length l. For

bNo bond lengths were modified to fit this constraint; proteins not satisfying it were simply removed from consideration.
cThis dataset is available at http://www.cs.umn.edu/
˜deronne/supplement/optimize
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each position i, we identify a list (Li) of n structural

fragments by comparing the query sequence against

the sequences of the proteins in the training set. For

fragments of length k, these comparisons involve the

k-mer of X starting at position i (0 ≤ i ≤ l − k + 1)

and all k-mers in the training set. The n structural

fragments are selected so that their corresponding

sequences have the highest profile-based score with

the query sequence’s k-mer. Throughout the rest of

this paper, we will refer to the list Li as the neighbor

list of position i.

In our study we used neighbor lists containing

fragments of a single length as well as neighbor lists

containing fragments of different lengths. In the lat-

ter case we consider two different approaches to lever-

aging the varied length fragments. The first, referred

to as scan, uses the fragment lengths in decreasing or-

der. For example, if the neighbor lists contain struc-

tural fragments of length three, six, and nine, the

algorithm starts by first optimizing the structure us-

ing only fragments of length nine, then fragments

of length six, and finally fragments of length three.

Each one of these optimization phases terminates

when the algorithm has finished (i.e., reached a local

optimum or performed a predetermined number of

iterations), and the resulting structure becomes the

input to the subsequent optimization phase. The

second approach for combining different length frag-

ments is referred to as pool, and it optimizes the

structure once, selecting fragments from any avail-

able length. Using any single length fragment in iso-

lation, or using either scan or pool will be referred

to as a fragment selection scheme.

2.2.1. Sequence Profiles

The comparisons between the query and the training

sequences take advantage of evolutionary informa-

tion by utilizing PSI-BLAST 1 generated sequence

profiles.

The profile of a sequence X of length l is repre-

sented by two l×20 matrices. The first is its position-

specific scoring matrix PSSMX that is computed di-

rectly by PSI-BLAST. The rows of this matrix cor-

respond to the various positions in X , while the

columns correspond to the 20 distinct amino acids.

The second matrix is its position-specific frequency

matrix PSFMX that contains the frequencies used

by PSI-BLAST to derive PSSMX . These frequencies

(also referred to as target frequencies 13) contain both

the sequence-weighted observed frequencies (also re-

ferred to as effective frequencies 13) and the BLO-

SUM62 6 derived-pseudocounts 1. For each row of a

PSFM, the frequencies are scaled so that they add

up to one. In the cases where PSI-BLAST could not

produce meaningful alignments for a given position

of X , the corresponding rows of the two matrices

are derived from the scores and frequencies of BLO-

SUM62.

For our study, we used the version of the PSI-

BLAST algorithm available in NCBI’s blast release

2.2.10 to generate profiles for both the test and train-

ing sequences. These profiles were derived from the

multiple sequence alignment constructed after five it-

erations using an e value of 10−2. The PSI-BLAST

search was performed against NCBI’s nr database

that was downloaded in November of 2004 and which

contained 2,171,938 sequences.

2.2.2. Profile-to-Profile Scoring Method

The similarity score between a pair of k-mers (one

from the query sequence and one from a sequence

in the training set) was computed as the ungapped

alignment score of the two k-mers whose aligned po-

sitions were scored using profile information.

Many different schemes have been developed

for determining the similarity between profiles that

combine information from the original sequence,

position-specific scoring matrix, or position-specific

target and/or effective frequencies 13, 21, 11. In our

work we use a scheme that is derived from PI-

CASSO 5, 13 that was recently used in developing

effective remote homology prediction and fold recog-

nition algorithms 16. Specifically, the similarity score

between the ith position of protein X ’s profile, and

the jth position of protein Y ’s profile is given by

SX,Y (i, j) =
20
P

l=1

PSFMX(i, l) PSSMY (j, l) +

20
P

l=1

PSFMY (j, l) PSSMX(i, l),

(1)

where PSFMX(i, l) and PSSMX(i, l) are the values

corresponding to the lth amino acid at the ith po-

sition of X ’s position-specific scoring and frequency
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matrices. PSFMY (j, l) and PSSMY (j, l) are defined

in a similar fashion.

Equation 1 determines the similarity between

two profile positions by weighting the position-

specific scores of the first sequence according to the

frequency at which the corresponding amino acid

occurs in the second sequence’s profile. The key

difference between Equation 1 and the correspond-

ing scheme used in 13 (therein referred to as PI-

CASSO3), is that our measure uses the target fre-

quencies, whereas the scheme of 13 is based on effec-

tive frequencies.

2.3. Protein Structure Representation

Internally, we consider only the positions of the Cα

atoms, and we use a vector representation of the pro-

tein in lieu of φ and ψ backbone angles. Our protein

construction approach uses the actual coordinates of

the atoms in each fragment, rotated and translated

into the reference frame of the working structure.

Fragments are taken directly from known structures,

and are chosen from the training dataset using the

above profile-profile scoring methods.

2.4. Scoring Function

As the focus of this work is to develop and evalu-

ate new optimization techniques, we use the RMSD

between the predicted and native structure of a pro-

tein as the scoring function. Although such a func-

tion cannot serve as a predictive measure, we be-

lieve that using this as a scoring function allows for a

clearer differentiation between the optimization pro-

cess and the scoring function. In effect, we assume

an ideal scoring function in order to test the opti-

mization techniques.

2.5. Optimization Algorithms

In this study we compare the performance of three

different optimization algorithms in the context of

fragment assembly-based approaches for ab initio

structure predictions. One of these algorithms,

Simulated Annealing 8, is currently a widely used

method to solve such problems, whereas the other

two algorithms, Greedy and Hill-climbing, are newly

developed for this work.

The key operation in all three of these algorithms

is the replacement of a k-mer starting at a particular

position i, with that of a neighbor structure. We will

refer to this operation as a move. A move is consid-

ered valid if, after inserting the fragment, it does not

create any steric conflicts. A structure is considered

to have a steric conflict if it contains a pair of Cα

atoms within 2.5Å of one another. Also, for each

valid move, its gain is defined as the improvement in

the value of the scoring function between the working

structure and the native structure of the protein.

2.5.1. Simulated Annealing (SA)

Simulated Annealing 8 is a generalization of the

Monte Carlo 12 method for discrete optimization

problems. This optimization approach is designed to

mimic the process by which a material such as metal

or glass cools. At high temperatures, the atoms of a

metal can adopt configurations not available to them

at lower temperatures—e.g., a metal can be a liquid

rather than a solid. As the system cools, the atoms

arrange themselves into more stable states, forming

a stronger substance.

The Simulated Annealing (SA) algorithm pro-

ceeds in a series of discrete steps. In each step it ran-

domly selects a valid move and performs it (i.e., in-

serts the selected fragment into the structure). This

move can either improve or degrade the quality of

the structure. If the move improves the quality, then

the move is accepted. If it degrades the quality, then

the move will still be accepted with probability

p = e

“

Sold−Snew

T

”

, (2)

where T is the current temperature of the system,

qold is the score of the last state, and qnew is the

score of the state in question. From Equation 2 we

see that the likelihood of accepting a bad move is

inversely related to the temperature and how much

worse the new structure is from the current struc-

ture. That is, the optimizer will accept a very bad

move with a higher probability if the temperature is

high than if the temperature is low.

The algorithm begins with a high system tem-

perature which it progressively decreases according

to an annealing schedule. As the optimization must

use finite steps, the cooling of the system cannot be
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continuous, but the annealing schedule can be modi-

fied to increase its smoothness. The annealing sched-

ule depends on a combination of the number of to-

tal allowed moves and the number of steps in which

to make those moves. Our implementation of Sim-

ulated Annealing, following the general framework

employed in Rosetta 18, uses an annealing schedule

that linearly decreases the temperature of the system

to zero over a fixed number of cycles.

Simulated Annealing is a highly tunable opti-

mization framework. The starting temperature and

the annealing schedule can be varied to improve per-

formance, and the performance of the algorithm de-

pends greatly on these parameters. Section 3.2.1 de-

scribes how we arrive at the values for these param-

eters of SA as implemented in this study.

2.5.2. The Greedy Algorithm (G)

One of the characteristics of the Simulated Anneal-

ing algorithm is that it considers moves for insertion

at random, irrespective of their gains. The Greedy

algorithm that we present here selects maximum gain

moves.

Specifically, the algorithm consists of two phases.

In the first phase, called initial structure generation,

the algorithm starts from a structure corresponding

to a fully extended chain, and attempts to make a

valid move at each position of the protein. This is

achieved by scoring all neighbors in each neighbor

list and inserting the best neighbor (i.e. the neigh-

bor with the highest gain) from each list. If some

positions have no valid moves on the first pass, the

algorithm attempts to make moves at these positions

after trying all positions once. This ensures that

the algorithm makes moves at nearly every position

down a chain, and also provides a good starting point

for the next phase.

In the second phase, called progressive refine-

ment, the algorithm repeatedly finds the maximum

gain valid move over all positions of the chain, and

if this move leads to a positive gain—i.e. it im-

proves the value of the scoring function—the algo-

rithm makes the move. This progressive refinement

phase terminates upon failing to find any move to

make. The Greedy algorithm is guaranteed to finish

the progressive refinement phase in at least a local

optimum.

2.5.3. Hill-Climbing (HC)

The Hill-climbing algorithm was developed to allow

the Greedy algorithm to effectively climb out of lo-

cally optimal solutions. The key idea behind Hill-

climbing is to not stop after achieving a local opti-

mum but to continue performing valid moves in the

hope of finding a better local or a (hopefully) global

optimum.

Specifically, the Hill-climbing algorithm works

as follows. The algorithm begins by applying the

Greedy algorithm in order to reach a local optimum.

At this point, it begins a sequence of iterations con-

sisting of a hill-climbing phase, followed by a progres-

sive refinement phase (as in the Greedy approach).

In the hill-climbing phase, the algorithm performs a

series of moves, each time selecting the highest gain

valid move irrespective of whether or not it leads

to a positive gain. If at any point during this se-

ries of moves, the working structure achieves a score

that is better than that of the structure at the begin-

ning of the hill-climbing phase, this phase terminates

and the algorithm enters the progressive refinement

phase. The above sequence of iterations terminates

when the hill-climbing phase is unable to produce

a better structure after successively performing all

best scoring valid moves.

Since the hill-climbing phase starts at a local op-

timum, its initial set of moves will lead to a struc-

ture whose quality (as measured by the scoring func-

tion) is worse than that at the beginning of the hill-

climbing phase. However, subsequent moves can po-

tentially lead to improvements that outweigh the ini-

tial quality degradation; thus allowing the algorithm

to climb out of locally optimal solutions.

Move Locking As Hill-climbing allows negative gain

moves, the algorithm can potentially oscillate be-

tween a local optimum and a non-optimal solution.

To prevent this from happening, we implement a no-

tion of move locking. After each move, a lock is

placed on the move to prevent the algorithm from

making this move again within the same phase. By

doing so, we ensure the algorithm does not repeat-

edly perform the same sequence of moves; thus guar-

anteeing its termination after a finite number of

moves. All locks are cleared at the end of a hill-
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climbing phase, allowing the search maximum free-

dom to proceed.

We investigate two different locking methods.

The first, referred to as fine-grain locking, locks the

single move made. The algorithm can subsequently

select a different neighbor for insertion at this posi-

tion. The second, referred to as coarse-grain locking,

locks the position of the query sequence itself; pre-

venting any further insertions at that position. In

the case of pooling, coarse locking locks moves of all

sizes.

Since fine-grain locking is less restrictive, we ex-

pect it to lead to better quality solutions. How-

ever, the advantage of coarse-grain locking is that

each successive fragment insertion significantly re-

duces the set of fragments that need to be consid-

ered for future insertions; thus, leading to a faster

optimization algorithm.

2.5.4. Efficient Checking of Steric Conflicts

One characteristic of the Greedy and Hill-climbing

algorithms is their need to evaluate the validity of ev-

ery available move after every insertion. This proves

necessary because each insertion can potentially in-

troduce new proximity conflicts. In an attempt to

assuage the time requirement for this process, we

have developed an efficient formulation for validity

checking.

Recall that a valid move brings no two Cα atoms

within 2.5Å of each other. To quickly determine if

this proximity constraint holds, we impose a three-

dimensional grid over the structure being built with

boxes 2.5Å on each side. As each move is made, its

atoms are added to the grid, and for each addition

the surrounding 26 boxes are checked for atoms vi-

olating the proximity constraint. In this fashion we

limit the number of actual distances that must be

computed.

We further decrease the required time by sequen-

tially checking neighbors at each position down the

amino acid chain. All atoms upstream of the inser-

tion point must be internally valid, as they have pre-

viously passed proximity checks. Thus, we need only

examine those atoms at or downstream from the in-

sertion. This saves on computation time within one

iteration of checking all possible moves.

3. EXPERIMENTAL EVALUATION

3.1. Performance of the Greedy and

Hill-climbing Algorithms

To compare the effectiveness of the Greedy and Hill-

climbing optimization techniques, we report results

from a series of experiments in which we vary a num-

ber of parameters. Table 2 shows results for the

Greedy and Hill-climbing optimization techniques

using k-mer sizes of 9, 6, and 3 individually, as well

as using the scan and pool techniques to combine

them. Average times are also reported for each of

these five fragment selection schemes.

Examining Table 2, we see that the Hill-climbing

algorithm consistently outperforms the Greedy algo-

rithm. As Hill-climbing includes running Greedy to

convergence, the result is not surprising, and nei-

ther is the increased run-time that Hill-climbing re-

quires. Both schemes seem to take advantage of the

increased flexibility of smaller fragments and greater

numbers of fragments per position. For example,

on the average the 3-mer results are 9.4%, 12.0%,

and 8.5% better than the corresponding 9-mer re-

sults for Greedy, Hill-climbing (coarse) (hereafter

HCc) and Hill-climbing (fine) (hereafter HCf ), re-

spectively. Similarly, increasing the neighbor lists

from 25 to 100 yields a 23.1%, 31.6%, and 43.6% im-

provement for Greedy, HCc, and HCf , respectively.

These results also show that the search algorithms

embedded in Greedy, HCc, and HCf are progres-

sively more powerful as the size of the overall search

space increases.

With respect to locking, a less restrictive fine-

grained approach generally yields better results than

a coarse-grained scheme. For example, averag-

ing over all experiments, fine-grained locking yields

a 21.2% improvement over coarse-grained locking.

However, this increased performance comes at the

cost of an increase in run-time of 1128% on the av-

erage.

Comparing the performance of the scan and

pooling methods to combine variable length k-mers

we see that pool performs consistently better than

scan by an average of 4.4%. This improvement also

comes at the cost of an increase in run time, which in

this case is 131.1% on the average. Results from the

pool and scan settings clearly indicate that Greedy
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Table 2. Average values over 276 proteins optimized using Hill-climbing and different locking
schemes. Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100

Score Time Score Time Score Time Score Time

Greedy

k = 9 9.07 11 8.20 14 7.77 18 7.38 22
k = 6 8.76 12 7.98 17 7.50 22 7.21 27
k = 3 8.20 15 7.51 22 7.08 30 6.80 39
Scan 7.21 33 6.52 40 6.02 48 5.81 56
Pool 7.06 41 6.34 58 5.94 76 5.57 97

Hill-
climbing
(coarse)
(HCc)

k = 9 6.70 49 5.99 98 5.54 143 5.29 226
k = 6 6.46 65 5.67 124 5.23 221 4.93 279
k = 3 6.07 76 5.35 182 4.92 313 4.68 433
Scan 5.10 120 4.50 216 4.01 333 3.76 517
Pool 5.06 341 4.33 912 3.96 1588 3.74 1833

Hill-
climbing
(fine)
(HCf )

k = 9 5.81 357 4.96 1314 4.53 2656 4.30 4978
k = 6 5.67 352 4.76 1417 4.30 3277 3.99 5392
k = 3 5.56 390 4.60 1561 4.10 3837 3.87 6369
Scan 4.69 748 3.92 2878 3.37 6237 3.17 10677
Pool 4.30 1997 3.56 7101 3.14 18000 2.87 21746

and HCc are not as effective at exploring the search

space as HCf .

Table 3. SCOP classes and lengths for the
tuning set.

SCOP identifier length SCOP class

d1jiwi 105 beta
d1kpf 111 alpha+beta
d2mcm 112 beta
d1bea 116 alpha
d1ca1 2 121 beta
d1jiga 146 alpha
d1nbca 155 beta
d1yaca 204 alpha/beta
d1a8d 2 205 beta
d1aoza2 209 beta

3.2. Comparison with Simulated

Annealing

3.2.1. Tuning the Performance of SA

Due to the sensitivity of Simulated Annealing to spe-

cific values for various parameters, we performed a

search on a subset of the test proteins in an attempt

to maximize the ability of SA to optimize the test

structures. Specifically, we attempted to find values

for two governing factors: the initial temperature

T0 and the number of moves nm. To this end, we

selected ten medium length proteins of diverse sec-

ondary structural classification (see Table 3), and op-

timized them over various initial temperatures. The

initial temperature that yielded the best average op-

timized RMSD was T0 = 0.1 and we used this value

in all subsequent experiments.

In addition to an initial temperature, when us-

ing Simulated Annealing one must select an appro-

priate annealing schedule. Our annealing schedule

decreases the temperature linearly over 3500 cycles.

This allows for a smooth cooling of the system. Over

the course of these cycles, the algorithm attempts

α × (l × n) moves, where α is an empirically deter-

mined scaling factor, l is the number of amino acids

in the query protein, and n is the number of neigh-

bors per position. Note that for the scan and pool

techniques (see Section 2.2), we allow SA three times

the number of attempted moves because the total

number of neighbors is that much larger. In order

to produce comparable run-times to the G, HCc and

HCf schemes, α values of 20, 50 and 100 are em-

ployed, respectively. Finally, following recent work
17 we allowed for a temporary increase in the tem-

perature after 150 consecutive rejected moves.

3.2.2. Results

The Simulated Annealing results are summarized in

Table 4. As we see in this table, Simulated Annealing

consistently outperforms the Greedy scheme. Specif-

ically, the average performance of SA with α = 20

is 15.1% better than that obtained by G. These per-

formance comparisons are obtained by averaging the

25
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Table 4. Average values over 276 proteins optimized using Simulated Annealing. Times are in
seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100

Score Time Score Time Score Time Score Time

α = 20

k = 9 7.88 25 6.99 31 6.54 36 6.28 42
k = 6 7.45 25 6.46 30 6.12 36 6.03 42
k = 3 6.78 25 6.01 31 5.87 37 5.81 43
Scan 6.11 74 5.54 92 5.39 109 5.39 128
Pool 5.93 75 5.84 94 6.00 112 6.13 132

α = 50

k = 9 7.20 34 6.44 48 6.31 65 6.21 80
k = 6 6.69 34 6.13 49 6.06 64 6.11 80
k = 3 6.19 35 5.90 51 6.02 67 6.18 81
Scan 5.68 103 5.48 148 5.50 197 5.48 258
Pool 5.91 103 6.08 150 6.25 203 6.31 251

α = 100

k = 9 6.76 52 6.34 81 6.31 112 6.28 145
k = 6 6.31 50 6.14 81 6.18 115 6.26 146
k = 3 6.05 52 6.21 84 6.34 118 6.40 155
Scan 5.65 148 5.53 241 5.62 348 5.62 439
Pool 5.99 156 6.23 265 6.34 352 6.38 447

The values of α in the above table scale the number of moves Simulated Annealing is allowed to
make. In our case, the total number of moves is α × (l × n) where l is the length of the protein
being optimized and n is the number of neighbors per position.

Table 5. Average values over the longest 138 proteins optimized using Hill-climbing and different
locking schemes. Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

Greedy

k = 9 11.56 17 10.59 23 10.01 29 9.52 37
k = 6 11.15 19 10.29 27 9.77 36 9.52 46
k = 3 10.36 24 9.73 38 9.30 51 8.95 68
Scan 9.52 50 8.62 62 8.08 76 7.78 91
Pool 9.24 64 8.50 95 7.96 126 7.55 164

Hill-
climbing
(coarse)
(HCc)

k = 9 8.44 90 7.48 185 6.89 271 6.46 433
k = 6 8.11 121 7.16 234 6.63 424 6.18 535
k = 3 7.60 142 6.86 347 6.32 602 6.07 833
Scan 6.43 213 5.73 394 5.08 625 4.72 982
Pool 6.42 651 5.55 1773 4.93 3109 4.74 3581

Hill-
climbing
(fine)
(HCf )

k = 9 7.33 672 6.18 2477 5.55 4992 5.23 9396
k = 6 7.23 662 5.92 2690 5.31 6238 4.95 10252
k = 3 7.02 737 5.88 2974 5.24 7360 4.94 12190
Scan 6.03 1376 4.97 5173 4.18 11524 3.94 19818
Pool 5.38 3844 4.45 13717 3.82 34960 3.40 42045

ratios between the two schemes of the correspond-

ing RMSDs over all fragment selection schemes and

values of n. The superior performance of Simulated

Annealing over Greedy is to be expected, as Greedy

lacks any sort of hill-climbing ability, whereas the

stochastic nature of Simulated Annealing allows it a

chance of overcoming locally optimal solutions. In

contrast, both the fine and coarse-locking versions

of Hill-climbing outperform SA. More concretely, on

the average HCc performs 22.0% better than SA with

α = 50, and HCf performs 46.3% better than SA

with α = 100.

Analyzing the performance of Simulated Anneal-

ing with respect to the value of α, we see that while

Simulated Annealing shows an average improvement

of 1.7% when α is increased from 20 to 50, the per-

formance deteriorates by an average of 0.07% when

α is increased from 50 to 100. This indicates that

further increasing the value of α may not lead to

performance comparable to that of the Greedy and

Hill-climbing schemes.

Also note that in some of the results shown in
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Table 6. Average values over the longerst 138 proteins optimized using Simulated Annealing.
Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100

Score Time Score Time Score Time Score Time

α = 20

k = 9 9.97 37 8.92 48 8.38 58 8.16 68
k = 6 9.54 37 8.39 48 7.94 58 7.89 69
k = 3 8.63 38 7.77 49 7.70 59 7.67 70
Scan 7.86 113 7.20 145 7.06 176 7.12 210
Pool 7.76 114 7.80 147 8.07 180 8.18 215

α = 50

k = 9 9.21 53 8.30 80 8.26 109 8.23 135
k = 6 8.58 54 8.01 81 8.06 108 8.16 136
k = 3 7.96 55 7.76 83 7.95 112 8.16 138
Scan 7.31 164 7.18 245 7.25 331 7.24 440
Pool 7.90 163 8.19 248 8.33 341 8.39 427

α = 100

k = 9 8.57 86 8.35 137 8.41 192 8.43 251
k = 6 8.17 83 8.19 138 8.23 197 8.36 254
k = 3 7.90 86 8.20 143 8.30 204 8.37 270
Scan 7.32 243 7.33 411 7.39 592 7.45 760
Pool 8.11 260 8.30 455 8.36 606 8.44 778

The values of α in the above table scale the number of moves Simulated Annealing is allowed to
make. In our case, the total number of moves is α × (l × n) where l is the length of the protein
being optimized and n is the number of neighbors per position.

Table 4, the performance occasionally decreases as

the α value increases. This ostensibly strange result

comes from the dependence of the cooling process

on the number of allowed moves, in which the value

of α plays a role. For all entries in Table 4 the an-

nealing schedule will cool the system over a fixed

number of steps, but the number of moves made will

vary greatly. Thus, in order to keep the cooling of

the system linear we vary the number of moves al-

lowed before the system reduces its temperature. As

a result, different values of α can lead to different

randomly chosen optimization paths.

Comparing the performance of the various opti-

mization schemes with respect to the various frag-

ment selection schemes, we see an interesting trend.

The performance of SA deteriorates (by 9.6% on the

average) when the different length k-mers are used

via the pool method, whereas the performance of

HCf improves (by 4.4% on average). We are cur-

rently investigating the source of this behavior, but

one possible explanation is that Simulated Anneal-

ing has a bias towards smaller fragments. This bias

might result because an insertion of a bad 3-mer will

degrade the structure less than that of a bad 9-mer,

and as a result, the likelihood of accepting the for-

mer move will be higher (Equation 2). This may

reduce the optimizers ability to effectively utilize the

variable length k-mers.

Performance on Longest Sequences In order to

gain a better understanding of how the optimization

schemes perform, we focus on the longer half of the

test proteins. Average RMSDs and times for the

Greedy and Hill-climbing schemes are shown in Ta-

ble 5, and average RMSDs and times for Simulated

Annealing are shown in Table 6.

In general, the trends in these tables agree with

the trends in the average values over all the pro-

teins. However, one key difference is that the rel-

ative improvement of the Hill-climbing scheme over

Simulated Annealing is higher, while Greedy actu-

ally does worse. For example, comparing G and SA

for α = 20, SA performs 15.7% better, as opposed

to 15.1% for the full average. Comparing with SA

for α = 50, HCc performs 27.0% better as opposed

to 22.0% for the full average. Finally, comparing

with SA for α = 100, HCf is 54.6% better, as op-

posed to 46.3% for the full average. These results

suggest that, in the context of a larger search space,

a hill-climbing ability is important, and that the hill-

climbing abilities of HCc and HCf are better than

those of SA.

4. DISCUSSION AND CONCLUSIONS

This paper presents two new techniques for optimiz-

ing scoring functions for protein structure predic-
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tion. One of these approaches, HCc, using the scan

technique, reaches better solutions than Simulated

Annealing in comparable time. The performance of

SA seems to saturate beyond α = 50, but HCf will

make use of an increased time allowance, finding the

best solutions of all the examined algorithms. Fur-

thermore, experiments with variations on the num-

ber of moves available to the optimizer demonstrate

that the Hill-climbing approach makes better use of

an expanded search space than Simulated Anneal-

ing. Additionally, Simulated Annealing requires the

hand-tuning of several parameters, including the to-

tal number of moves, the initial temperature, and the

annealing schedule. One of the main advantages of

using schemes like Greedy and Hill-climbing is that

they do not rely on such parameters.

Recently, greedy techniques have been applied

to problems similar to the one this paper addresses.

The first problem is to determine a set of representa-

tive fragments for use in decoy structure construction
15, 9. The second problem is to reconstruct a native

protein fold given such a set of representative frag-

ments 19, 20. The greedy approaches used for both

these problems traverse the query sequence in or-

der, inserting the best found fragment for each posi-

tion. As an extension, the algorithms build multiple

structures simultaneously in the search for a better

structure. While such approaches have the ability to

avoid local minima, they lack an explicit notion of

hill-climbing.

The techniques this paper describes could be

modified to solve either of the above two problems.

To build a representative set of fragments, one could

track the frequency of fragment use within multi-

ple Hill-climbing optimizations of different proteins.

This would yield a large set of fragments, which could

serve as input to a clustering algorithm. The cen-

troids of these clusters could then be used in decoy

construction. In order to construct a native fold from

these fragments one need only restrict the move op-

tions of Hill-climbing to the representative set. We

are currently working on adapting our algorithms to

solve these problems.
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