
1 

MULTIPLE STRUCTURE ALIGNMENT BY OPTIMAL RMSD  

IMPLIES THAT THE AVERAGE STRUCTURE IS A CONSENSUS 

Xueyi Wang* and Jack Snoeyink 

Department of Computer Science, University of North Carolina at Chapel Hill 

Chapel Hill, NC, 27599-3175, USA 

Email: {xwang*, snoeyink}@cs.unc.edu 

Root mean square deviation (RMSD) is often used to measure the difference between structures. We show mathematically that, for 
multiple structure alignment, the minimum RMSD (weighted at aligned positions or unweighted) for all pairs is the same as the RMSD 
to the average of the structures. Thus, using RMSD implies that the average is a consensus structure.  We use this property to validate 
and improve algorithms for multiple structure alignment. In particular, we establish the properties of the average structure, and show that 
an iterative algorithm proposed by Sutcliffe and co-authors can find it efficiently –– each iteration takes linear time and the number of 
iterations is small.  We explore the residuals after alignment and assign weights to positions to identify aligned cores of structures. 
Observing this property also calls into question whether global RMSD is the right way to compare multiple protein structures, and guides 
the search for more local techniques. 

                                                           
* Corresponding author. 

1.   INTRODUCTION 

Although protein structures are uniquely determined by 
their sequences1, protein structures are better conserved 
through evolution than the sequences2. Proteins with 
similar 3D structures may have similar functions and 
are often evolved from common ancestors3. As 
structural biologists classify proteins, how should they 
compare structures? 

Pairwise comparisons are commonly performed by 
measuring the root mean squared deviation (RMSD) 
between corresponding atoms in two structure, once a 
suitable correspondence has been chosen and the 
molecules have been translated and rotated as rigid 
bodies to the best match4–6.  Corresponding atoms may 
also be given weights so that core atoms have the 
greatest influence on the matching and weighted RMSD 
score.  

Pairwise comparison can be extended to multiple 
structure alignment in several ways.  In this paper we 
look at ways to extend RMSD (weighted at aligned 
positions or unweighted) after a correspondence 
between atoms has already been chosen. Multiple 
structure alignment is an important tool to identify 
structurally conserved regions, to provide clues for 
building evolutionary trees and finding common 
ancestors, and to determine consensus structures for 
protein families.   

For multiple structure alignment, first we need to 
choose a score function to measure the goodness of the 

alignment.  Examples from the literature include the 
sum of all pairwise squared distances7,8, which we also 
use, or the average RMSD per aligned position9. If we 
consider the protein structures as rigid bodies, then 
problem of multiple structure alignment is to translate 
and rotate these structures to minimize the score 
function.  Several methods also choose a consensus 
structure to represent the whole alignment.  

Many algorithms have been presented to solve this 
multiple structure alignment problem. Some first do 
pairwise structure alignments and then use heuristic 
methods to integrate the structures. Gerstein and 
Levitt10 choose the structure that has minimum total 
RMSD to all other structures as the consensus structure 
and aligns other structures to it. Ochagavia and Wodak9 
and Lupyan et al.7 present a progressive algorithm that 
chooses one structure at a time and minimizes the total 
RMSD to all the already aligned structures until all the 
structures are aligned. Other researchers use non-
deterministic methods. Sali and Blundell11 use 
simulated annealing to determine the optimal structure 
alignments and Guda et al.12 use Monte Carlo 
optimization. 

Other algorithms align all the structures together 
instead of aligning each pair separately.   Two iterative 
algorithms by Sutcliffe et al.8 align protein structures to 
their average structure, also done by Verboon and 
Gabriel13 and Pennec14. We will focus most of our 
attention on this approach.  MUSTA15 use geometric 
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hashing and finds a consensus structure of Cα atoms. 
MultiProt16 iteratively chooses each structure as a 
consensus structure, aligns all other structures to the 
consensus structure, and detects the largest core among 
aligned molecules. MASS17 and CBA18 first align 
secondary structure and then align tertiary structure. 

In this paper, we show that if you use the root of 
total squared deviation to score multiple structure 
alignment, then mathematically you obtain the same 
result by taking the average structure as a consensus 
structure, and doing pairwise alignment to this 
consensus. We can use this to establish properties of the 
Sutcliffe et al.8 algorithms, including a better stopping 
condition.  In our tests on protein families from 
HOMSTRAD19, this algorithm quickly reaches the 
optimum alignment and consensus structure.  By 
modeling deviations from the average positions as 3-
dimensional Gaussian distributions, we can also 
determine weights for well-aligned positions that can 
determine the aligned core. We also raise the question, 
"If the average is not the right consensus structure then 
what scoring function should replace wRMSD?" 

2.   METHODS 

We define the average of structures and weighted 
RMSD for multiple structures for position weights, and 
then establish the properties of wRMSD. 

2.1.   Average structure and weighted 

root mean square deviation 

We assume there are n  structures each having m points 
(atoms), so that structure iS  for (1 ≤ i ≤ n) has points 

pi1, pi2,…, pim. For a fixed position k, the n points pik for 
( )ni ≤≤1  are assumed to correspond. We define the 

average structure S  to have points ∑
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(1 ≤ k ≤ m). 
We may assign a position weight wk ≥ 0 to each 

aligned position k and define the weighted root mean 
squared deviation (wRMSD) as the weighted sum of all 
squared pairwise distances between structures, i.e. 
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allow us to emphasize some positions in the alignment 
(e.g., an aligned core) and reduce or eliminate the 

influence of other positions; we obtain the standard 
RMSD by setting wk = 1 for (1 ≤ k ≤ m).   

Note there are n(n–1)/2 structure pairs, and each 
structure pair has m squared distances. If we want to 
transform the atom positions to minimize wRMSD, 
then, because m and n are fixed and the square root 
function is monotone increasing, we can instead 
minimize the weighted sum of all squared pairwise 

distances ∑∑∑
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The following technical lemma on weighted sums 
of squares allows us to make several observations about 
the average structure under wRMSD. 

Lemma 1. For any aligned position k, the total 
squared distance from p1k, p2k, …, pnk to any point qk 
equals the total to the average point kp  plus from kp  

to qk: 
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Proof. To establish the Lemma, we subtract the 
second term from both sides, expand the difference of 
squares, then apply the definition of kp  in the 

penultimate step. 
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Our first theorem says that if wRMSD is used to 
compare multiple structures, then what is really 
happening is that all structures are being compared to 

the average structure – that the average structure S  is a 

consensus, whether we recognize it or not.  It is better 
computationally to recognize this, because it reduces the 
number of pairs of structures that must be compared 
from n(n–1)/2 to n.  

Theorem 1. The weighted sum of squared distances 
for all pairs equals the weighted sum of squared 

distances to the average structure S : 
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Proof. In Lemma 1, replace qk by pjk, then multiply 
by the weight wk, and sum over all j and k to obtain: 
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We can re-arrange the order of summation on the 
left, noticing that terms with i = j cancel and every other 
term appears twice.  The resulting equation gives the 
desired result after dividing out the extra factor of two:  
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Two more theorems suggest how to choose the 
structure closest to a given set of structures.  If you can 

choose any structures, then chose the average S ; if you 

must choose from a limited set, then choose the 

structure closest to the average S . 

Theorem 2. The average structure S minimizes the 

weighted sum of squared distances from all the 
structures, i.e. for any structure Q with points q1, q2, …, 

qm, ∑∑∑∑
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equality holds if and only if kk pq =  for all positions 

with wk > 0. 
Proof. This follows immediately from Lemma 1 

since 0
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Theorem 3. The structure from a set Q1, …, Qm that 
minimizes the weighted sum of squared distances from 
all the structures Si is the one whose wRMSD is closest 

to S . 
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2.2.   Minimizing wRMSD 

In structure alignment, we translate and rotate structures 
in 3D space to minimize wRMSD. We define Ri as a 
3×3 rotation matrix and Ti as a 3×1 translation vector 
for structure Si. We aim to find the optimal Ti and Ri for 
each structure to minimize the wRMSD. The target 
function is: 
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We can fix one of the rotations to be the identity, 
and one of the translations to be zero. When there are 
only two structures, then the minimization reduces to a 
linear equation in R and T.  Horn5 showed that these can 
be found separately: the minimum wRMSD for the pair 
can be found by translating each structure so its origin 
is the weighted center of mass, i.e. 0

1

=∑
≤≤ mk

ikk pw , then 

applying an optimum rotation found with quaternions.   
To minimize wRMSD with more than two 

structures, we can combine Theorem 1 with Horn's 
analysis to show that wRMSD is minimized when the 
centroids (weighted centers of mass) of each structure is 
the centroid of the average structure, i.e. each structure 
may be translated so the origin is the centroid. 

Finding optimum rotations for several structures is 
harder than for a pair because the minimization problem 
no longer reduces to a linear equation. We can use the 
fact that the average is the best consensus (Theorem 1), 
and modify a simple iterative algorithm of Sutcliffe et 
al.8 to converge to the minimum wRMSD.  Instead of 
directly finding the optimal rotation matrices, we align 
each structure to the average structure separately to 
minimize wRMSD.  Because rotating structures also 
changes the average structure, we repeat until the 
algorithm converges to a local minimum of wRMSD. 

Algorithm: Given n structures with m points 
(atoms) each and weights wk at each position, minimize 
wRMSD to within a threshold value ε (e.g. ε = 1.0×10–
5). 
1. Translate the weighted centroid of each structure Si 

for (1 ≤ i ≤ n) to the origin. (optionally align each 
structure to a randomly chosen  Si for a good initial 
average.) 

2. Calculate the average S , with points 
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3. For each (1 ≤ i ≤ n), align Si  to S  using Horn’s 
method to calculate optimum rotation matrix Ri that 

minimizes ∑
=

−
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kikik ppRw
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 and replace 

iii SRS ⋅= . 

4. Calculate new average newS  and deviation 
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2newnewnew . 

5. If SD – SDnew < ε, then the algorithm terminates; 

otherwise, set SD = SDnew and newSS =  and go to 
step 3. 
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Horn's method and our theorems imply that the 
deviation SD decreases monotonically in each iteration. 
From theorem 1, we know that minimizing the deviation 
SD to the average minimizes the global wRMSD. From 
Horn5, in step 3 we have 
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From theorem 2, in step 4 we have  
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So SDnew ≤ SD and SD decreases in each iteration. 
We stop when this decrease is less than the threshold ε; 
this will be a local minimum of SD.  

Horn’s method calculates the optimal rotation 
matrix for two m-atom structures in O(m) operations, so 
initialization and each iteration take O(n m) operations. 
Our experiments show that for any start positions of all 
n structures, the algorithm converges in a maximum of 
4–6 iterations when ε = 1.0×10–5. The number of 
iterations is one fewer when the proteins start with a 
preliminary alignment from the optional initialization in 
step 1. Because the lower bound for aligning n 
structures with m points per structure is O(n m), this 
algorithm is close to the optimum. 

We must make two remarks about the paper of 
Sutcliffe et al.8, which proposed the algorithm above.  
First, they actually give different weights to individual 
atoms, which they change during the minimization. We 
can establish analogues of Theorems 1–3 for individual 
atom weights if the weight of a corresponding pair of 
atoms is the half-normalized product of the individual 
weights. To minimize wRMSD for such weights, 
however, we have observed that it is no longer 
sufficient to translate the structure centroids to the 
origin.  We believe that this may explain why Sutcliffe's 
algorithm can take many iterations for convergence –– 
the weights are not well-grounded in mathematics. We 
plan to explore atom weights more thoroughly in a 
subsequent paper. 

Second, their termination condition was when the 
deviation between two average structures was small, 
which is actually testing only the second inequality on 
the decrease of SD above. It is a stronger condition to 
terminate based on the deviation of SD.  

While preparing the final version of this paper, we 
found two papers with similar iterative algorithms13,14. 
Both algorithms use singular value decomposition 
(SVD) as the subroutine for finding an optimal rotation 
matrix; quaternions should be used instead because they 
preserve chirality. Pennec14 presented an iterative 
algorithm for unweighted multiple structure alignment 
and our work can be regarded as the extension of his 
work. Verboon and Gabriel13 presented their iterative 
algorithm as minimizing wRMSD with atom weights 
(different atoms having different weights), but in fact it 
works only for position weights because the 
optimization of translation and of rotation cannot be 
separated with atom weights. 

3.   RESULTS AND DISCUSSION 

3.1.   Performance 

We test the performance of our algorithm by 
minimizing the RMSD for 23 protein families from 
HOMSTRAD19, which are all the families that contain 
more than 10 structures with total aligned length longer 
than 100. We set ε = 1.0×10–5 and run the experiment 
on a 1.8GHz Pentium M laptop with 768M memory. 
The code is written in MATLAB and is downloadable 
at http://www.cs.unc.edu/~xwang/. 

We run our algorithm 5,000 times for each protein 
family. Each time we begin by randomly rotating each 
structure in 3D space and then minimize the RMSD. We 
expect that the changes in RMSD will be small, since 
these proteins were carefully aligned with a 
combination of tools, but want to make sure that our 
algorithm does not become stuck in local minima that 
are not the global minimum. The results are shown in 
Table 1. 

For each protein family’s 5,000 tests, the difference 
between maximum RMSD and minimum RMSD is less 
than 1.0×10–8, so they converge to the same local 
minimum. Moreover, the optimal RMSD values found 
by our algorithm are less than the original RMSD from 
the alignments in HOMSTRAD in all cases. In three 
cases the relative difference is greater than 3%; in each 
of these cases there is an aligned core for all proteins in 
the family, but some disordered regions allow our 
algorithm to finds alignments with better RMSD. These 
cases clearly call for weighted alignment.  
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Table 1.  Performance of the algorithm on different protein families from HOMSTRAD. We report n, the number of 
proteins, m, the number of atoms aligned, RMSD from the HOMSTRAD Alignment (HA), the RMSD for the optimal 
alignment from our algorithm, statistics on iterations and time (milliseconds) for 5,000 runs of each alignment. 

 

Protein family n m 
RMSD 

HA(Å) 

optim. 

RMSD  

% rel. 

diff 

Iterations 

avg,med,max 

Time (ms) 

avg,median,max 

immunoglobulin domain - V set - 

heavy chain 
21 107 1.224 1.213 0.91 3.8,   4,   4 11.7,   10,   30 

globin 41 109 1.781 1.747 1.95 4.0,   4,   5 24.4,   20,   40 

phospholipase A2 18 111 1.492 1.478 0.95 3.9,   4,   4 10.5,   10,   41 

ubiquitin conjugating enzyme 13 114 1.729 1.714 0.88 4.0,   4,   5  7.9,   10,   11 

Lipocalin family 15 118 2.881 2.873 0.28 4.0,   4,   5  9.3,   10,   30 

glycosyl hydrolase family 22 

(lysozyme) 
12 119 1.357 1.342 1.12 3.9,   4,   4  7.3,   10,   11 

Fatty acid binding protein-like 17 122 1.825 1.824 0.05 4.0,   4,   5 10.5,   10,   40 

Proteasome A-type and B-type 17 148 3.302 3.032 8.91 4.8,   5,   6  9.3,   10,   21 

phycocyanin 12 148 2.188 2.077 5.34 4.0,   4,   5 11.0,   10,   40 

short-chain 

dehydrogenases/reductases 
13 177 1.971 1.954 0.87 4.0,   4,   5  8.8,   10,   11 

serine proteinase - eukaryotic 27 181 1.454 1.435 1.32 3.8,   4,   4 17.4,   20,   40 

Papain fam cysteine proteinase 13 190 1.396 1.383 0.94 3.9,   4,   5  8.9,   10,   30 

glutathione S-transferase 14 200 2.336 2.315 0.91 4.0,   4,   5  9.8,   10,   20 

Alpha amylase, catalytic dom. 23 201 2.327 2.293 1.48 4.0,   4,   5 16.1,   20,   40 

legume lectin 12 202 1.302 1.287 1.17 3.8,   4,   4  8.0,   10,   30 

Serine/Threonine protein kinases, 

catalytic domain 
15 205 2.561 2.503 2.32 4.0,   4,   5 10.6,   10,   21 

subtilase 11 222 2.279 2.268 0.49 4.0,   4,   5  8.1,   10,   30 

Alpha amylase, catalytic and C-

terminal domains 
23 224 2.668 2.602 2.54 4.0,   4,   5 16.6,   20,   40 

triose phosphate isomerase 10 242 1.398 1.386 0.87 3.7,   4,   4  7.0,   10,   11 

pyridine nucleotide-disulphide 

oxidoreductases class-I 
11 262 3.870 3.420 13.16 4.7,   5,   6 10.1,   10,   21 

lactate/malate dehydrogenase 14 266 2.036 2.024 0.59 4.0,   4,   5 10.9,   10,   21 

cytochrome p450 12 295 2.872 2.861 0.38 4.0,   4,   5  9.8,   10,   30 

aspartic proteinase 13 297 1.932 1.877 2.93 4.0,   4,   4 10.5,   10,   30 
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(a) Average running time vs. number of atoms                                (b) Average running time vs. number of structures 

Fig. 1. Average running time vs. the number of atoms or the number of structures 
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The maximum number of iterations is 6 and the 
average and median number of iterations is around 4, so 
I is a small constant and the algorithm achieves the 
lower bound of multiple structure alignment, which is 
Q(n m). All of the average running time is less than 25 
milliseconds and all of the maximum running time is 
less than 40 milliseconds, which means our algorithm is 
highly efficient. 

Figure 1a and 1b show the relationship between the 
average running time and the number of atoms (n×m) 
and the number of structures (n) in each protein family. 
The average running time shows linear relation with the 
number of structures but not the number of atoms, 
because the most time-consuming operation is 
computing eigenvectors and eigenvalues of a 4×4 
matrix in Horn’s method, which takes O(n) in each 
iteration.  

3.2.   Consensus structure 

For a given protein family, one problem is to find a 
consensus structure to summarize the structure 
information. Altman and Gerstein20 and Chew and 
Kedem21 propose to use the average structure of the 

conserved core as the consensus structure. In fact, by 
Theorems 1 and 2, the wRMSD is minimized by 
aligning to the average structure, and no other structure 
has better wRMSD with all structures.  Thus, we claim 
that the average structure is the natural candidate for the 
consensus structure. 

One objection to this claim is that the average 
structure is not a true protein structure – it may have 
physically unrealizable distances or angles due to the 
averaging.  This depends on the intended use for the 
consensus structure –– in fact, some other proposed 
consensus structures are even more schematic: Taylor et 
al.22, Chew and Kedem21, and Ye and Janardan23 use 
vectors between neighboring Cα atoms to represent 
protein structures and define a consensus structure as a 
collection of average vectors from aligned columns.  

But a more significant answer comes from 
Theorem 3: if you do have a set of structures from 
which you wish to choose a consensus, including the 
proposal of Gerstein and Levitt10 to use the true protein 
structure that has the minimum RMSD to all other 
structures, or POSA of Ye and Godzik24, which builds a 
consensus structure by rearranging input structures 
based on alignments of partial order graphs based on 

           
(a) all 11 aligned proteins                                                                    (b) the consensus structure 

          
(c) Structure with minimum RMSD                                                    (d) Structure with maximum RMSD 

Fig. 2. Multiple structure alignment for pyridine nucleotide-disulphide oxidoreductases class-I 
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these structures, then you should choose from this set 
the structure with minimum wRMSD to the average.  

Figure 2 shows the alignment of conserved core of 
protein family pyridine nucleotide-disulphide 
oxidoreductases class-I, the consensus structure, the 
consensus protein structure with the minimum RMSD to 
all other structures, and the structure with maximum 
RMSD to other structures. 

3.3.   Statistical analysis of deviation 

from consensus in aligned 

structures 

Deriving the statistical description of the aligned protein 
structures is an intriguing question that has significant 
theoretical and practical implications. As a first step, we 
investigate the following question concerning the spatial 
distribution of aligned positions in a protein family. 
More specifically, we want to test the null hypothesis 
that, at a fixed position k, the distances the n atoms can 
be found from the average kp , especially those that are 
in the “core” area of protein structures, are consistent 
with distances from a 3D Gaussian distribution. We 
chose the Gaussian not only because it is the most 
widely used distribution function, due to the central 
limit theorem of statistics, but also because previous 
studies hint that Gaussian is the best model to describe 
the aligned structures25. If, by checking our data, we can 
establish the fact that aligned positions are distributed 
according to the Gaussian distribution in 3D, the set of 
aligned protein structures can be conveniently described 
by a concise model that is composed by the average 
structure and the covariance matrix specifying the 
distribution of the positions.  

To test the fitness of our data to the hypothesized 
3D Gaussian model, we adopted the Quantile-Quantile 
Plot (q-q plot) procedure26, which is commonly used to 

determine whether two data sets come form a common 
distribution. In our procedure, the y-axis is the distances 
from each structure to the average structure for each 
aligned position, and the x-axis is the quantile data from 
3D Gaussian. Figure 4a shows the q-q plot for the best 
aligned position. The correlation coefficient R2 is 
0.9632, which suggests that the data fits the 3D 
Gaussian model pretty well. We carried the same 
experiments for all the aligned positions and the 
collected the histogram of the correlation coefficient R2 

is shown in figure 4b. We identify that more than 79% 
of the positions we check have R2 > 0.8.  

The types of curves in q-q plots reveal information 
that can be used to classify whether a position should be 
deemed part of the core.  The illustrated q-q plot has the 
last two curves above the line, which indicates that the 
two corresponding structures have larger errors in this 
position than would be predicted by a Gaussian 
distribution.  Most position produce curves like this, or 
with all or almost all points on a line through the origin.  
Low slope indicates that they align well, and that the 
residuals may fit a 3D Gaussian distribution with a 
small scale. A few plots begin above the line and come 
down, or stay on a line of higher slope, indicating that 
such positions are disordered and should not be 
considered part of the core. 

3.4.   Determining and weighting the 

core for aligned structures 

There are many ways in which we can potentially use 
this model of the alignment in a family to determine the 
structurally conserved core of the family, and help 
biologist to compare protein structures. Due to space 
constraints, we briefly demonstrate one heuristic for 
determining position weights to identify and align the 
conserved core of two of our structure families.  
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(a) Distribution of the best aligned position (b) histogram of R2 for all aligned positions 

Fig. 3. 3D Gaussian Distribution analysis of the distances from each atom to corresponding points on the average structure 
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We use the following iterative algorithm to assign 
weights.  
1. Align the protein structures by RMSD using the 

algorithm of Section 3.2. 
2. For each aligned position k, calculate distance 

kikik ppd −=  for (1 ≤ i ≤ n), and the correlation 

coefficient Rk
2 by assuming that deviations have a 

3D Gaussian distribution, and the average squared 

distance ∑
=

=
n

i

ikk d
n

a
1

21
. Then calculate the mean 

a  and standard deviation σ  of ka . 

3. If all σ3+≤ aak ,  then exit the algorithm;  

Otherwise set all weights 





 +≤

=
.otherwise

aaifa/R
w kkk

k
0

32 σ , align structures by 

wRMSD, and go to step 2. 
The term 1/ak in the weights encourages the 

alignment in the positions where the average squared 
deviations are small, and the term Rk

2 encourages those 
positions where the distances to the average structure 
are close to 3D Gaussian distribution. Figure 3 shows 
two examples of alignments, where the black is the core 
and gray are portions that are eliminated by being given 
weight zero, often due to divergence in of some or all 
members in the family.  

4.   CONCLUSION 

In this paper, we analyzed the problem of minimizing 
the multiple structure alignment using weighted RMSD 
with weights at aligned positions, which includes 
RMSD as a special case. While directly minimizing 
wRMSD is hard in multiple structure alignment, we 
show that this problem is the same as minimizing the 

wRMSD to the average structure. Thus, the average 
structure is the natural choice for a consensus structure.  

Based on this property, we create an efficient 
iterative algorithm for minimizing the wRMSD and 
prove its convergence and other properties. Each 
iteration takes time proportional to the number of atoms 
in the structures. We tested the algorithm on the protein 
families from HOMSTRAD database that have more 
than 10 proteins with total aligned length longer than 
100 atoms. The results show our algorithm minimizes 
the wRMSD in less than 50 milliseconds in Matlab for 
any protein family. Regardless of the starting positions 
of structures, the tests show that the algorithm 
converges to the same local minimum, which is most 
probably the global minimum. The tests also show that 
the number of iterations is a small constant whenever 
the input does not have near symmetry, so the algorithm 
achieves the linear lower bound for multiple structure 
alignment. 

The algorithm in the paper is for aligning protein 
structures after sequence alignment. We plan to extend 
our work to weighted multiple structure alignment with 
atom weights at different atoms (which includes gapped 
structure alignment as a special case). We plan to devise 
new algorithms to achieve better aligned structures for 
multiple structure alignment by combining the sequence 
and structure alignments together and build 3D Hidden 
Markov Models for protein structure classification. 
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