
May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

1

TOWARD AN ALGEBRAIC UNDERSTANDING OF HAPLOTYPE INFERENCE BY PURE

PARSIMONY

Daniel G. Brown and Ian M. Harrower

David R. Cheriton School of Computer Science, University of Waterloo,
200 University Avenue W.,

Waterloo, Ontario, Canada N2L 3G1
Email: {browndg,imharrow}@cs.uwaterloo.ca

Haplotype inference by pure parsimony (HIPP) is known to be NP-Hard. Despite this, many algorithms successfully
solve HIPP instances on simulated and real data. In this paper, we explore the connection between algebraic rank and
the HIPP problem, to help identify easy and hard instances of the problem. The rank of the input matrix is known
to be a lower bound on the size an optimal HIPP solution. We show that this bound is almost surely tight for data
generated by randomly pairing p haplotypes derived from a perfect phylogeny when the number of distinct population
members is more than (1+ǫ

2
)p log p (for some positive ǫ). Moreover, with only a constant multiple more population

members, and a common mutation, we can almost surely recover an optimal set of haplotypes in polynomial time.

We examine the algebraic effect of allowing recombination, and bound the effect recombination has on rank. In the
process, we prove a stronger version of the standard haplotype lower bound. We also give a complete classification
of the rank of a haplotype matrix derived from a galled tree. This classification identifies a set of problem instances
with recombination when the rank lower bound is also tight for the HIPP problem.

Keywords. Haplotype inference, phylogenetic networks, galled tree, probabilistic analysis of algorithms

1. INTRODUCTION

Haplotype inference is the process of attempting

to identify the chromosomal sequences that have

given rise to a diploid population. Recently, this

problem has become increasingly important, as re-

searchers attempt to connect variations to inherited

diseases. The simplest haplotype inference problem

to describe is haplotype inference by pure parsimony

(HIPP), introduced by Gusfield1. The goal is to iden-

tify a smallest set of haplotypes to explain a set of

genotypes. This objective is partly justified by the

observation, now made in several species2, 3, that in

genomic regions under strong linkage disequilibrium,

few ancestral haplotypes are found.

The problem is also interesting purely com-

binatorially; it is NP-hard1, and its only known

polynomial-time approximation algorithms have ex-

ponentially bad performance guarantees4. In prac-

tice, though, it is surprisingly easy to solve, espe-

cially when applied to synthetically generated test

instances arising from standard evolution models.

Several authors have developed integer programming

or branch-and-bound algorithms that have shown

fast performance1, 5–7, and some real-world prob-

lems have readily solved exactly or near-exactly7.

To help resolve this conflict between theoretical

complexity and practical ease of solution, we explore

the algebraic structure of the problem. We focus on

problem instances resulting from random pairing of

haplotypes generated by standard evolution models.

Our results focus on the algebraic rank of the geno-

type matrix. This is known to be a lower bound to

the optimal solution size of the HIPP problem8. We

show this bound is almost surely tight for data gener-

ated by (1+ǫ
2)p log p random pairings of p haplotypes

from a perfect phylogeny (for positive ǫ).

In Section 5, we strengthen our results by ex-

ploring population models that allow for recombina-

tion. Here, we show that for haplotypes with few

recombinations, the rank bound is near-exact, and

we show in particular the conditions under which it

is exact for galled trees, the simplest kind of phylo-

genetic networks that include recombination. In ad-

dition, this study of algebraic rank allows us to prove

a new variation of the “haplotype lower bound”9 on

the number of recombinations required to explain a

haplotype matrix.

The rank lower bound is important: when tight,

it verifies for branch-and-bound procedures that they

have found an optimum; moreover, computing the

size of the HIPP solution is NP-hard in general.

However, we can go one step further for some HIPP

instances, to compute an optimal set of haplotypes

in polynomial time. Our second theorem, in Sec-

211

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

2

tion 4, shows a constructive algorithm that almost

surely runs in polynomial time on instances derived

from perfect phylogenies with a constant factor more

genotypes than for our first theorem. Our result re-

quires that there be a mutation found in at least an α

fraction of the genotypes. We connect this theorem

to the standard coalescent model from population

genetics in Section 4.1, where we show that for hap-

lotypes generated by this model, we can guarantee

such a common mutation exists with probability at

least 1− ǫ when the mutation parameter θ of the co-

alescent model is at least a constant depending on ǫ

and α.

Our results identify structure in HIPP instances

and show how to easily solve HIPP in such cases,

despite its theoretical hardness. Although we do not

show why previous haplotype inference algorithms

often run surprisingly quickly, we do show that many

of the instances upon which they are run have spe-

cial structure, which reduces the complexity of the

problem.

2. BACKGROUND AND RELATED

WORK

We begin by briefly reviewing existing work on haplo-

type inference, particularly with the parsimony ob-

jective, and on a phase transition for haplotyping

problems.

2.1. Haplotype inference and notation

The input to a haplotype inference algorithm is a

genotype matrix, G. Each of its n rows represents the

genotype gi of population member pi; the m columns

represent sites in the genome. G(i, j) is the genotype

of population member pi at site sj .

We assume there are two alleles, 0 and 1, at each

site, and thus three choices for G(i, j): G(i, j) = 0

if both parent chromosomes of pi have allele 0 at sj ,

G(i, j) = 1 at positions where one parent has each

allele, and G(i, j) = 2 if both have allele 1. (Note:

this is not the standard notation, which exchanges

the meanings of 1 and 2.)

Haplotype inference consists of explaining G

with a 0/1 haplotype matrix, H . The k rows of H

represent possible chromosome choices and their al-

leles at the m sites. Genotype gi is explained by H if

there exist two rows (possibly the same) of H whose

sum is gi. We can represent this pairing by an n× k

pairing matrix, Π, where row ri of Π has value 1

in the two columns corresponding to the two parent

haplotypes of gi, and 0 elsewhere. (If two copies of

the same haplotype explain genotype gi, the row of

Π has a 2 in that column and 0 elsewhere.) In our

formulation, haplotype inference consists of finding

a haplotype matrix H and a valid pairing matrix Π

such that G = Π ·H . (The simplicity of this formula-

tion explains our notational choice; it is inspired by

a formulation of He and Zelikovsky10.)

2.2. Pure parsimony

In haplotype inference by pure parsimony (HIPP), in-

troduced by Gusfield1, we seek the smallest set of

haplotypes to explain G. This corresponds to find-

ing the smallest H such that a proper pairing matrix

Π exists where G = Π · H . It is NP-hard1, and its

known approximation algorithms have only exponen-

tial approximation guarantees4.

Still, many instances of this problem have been

easy to solve. Gusfield1 gave an integer linear pro-

gramming formulation for the problem that, though

theoretically exponential in size, often solved very

quickly. Halldórsson et al. found a polynomial-

sized IP formulation for the problem11; we inde-

pendently identified and extended it with further

inequalities5, 7. Our experiments demonstrated that

even on large instances, the optimal solution can be

found easily. Why are HIPP instances often solvable

in practice?

2.3. Haplotypes and genotypes

To answer this question, we examine some models

for generating HIPP instances: where do haplotypes

come from, and how are they paired to make geno-

types?

The simplest generative model for haplotypes is

perfect phylogeny. In this model, all m sites evolve

according to a rooted phylogenetic tree, with the root

at the top of the tree. Without loss of generality,

we assume that at every sampled site sj , the com-

mon ancestor of all haplotypes had allele 0. Each

site is assigned to a single edge of the tree, which

represents when the unique mutation of that site oc-

212

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

3

curred. Leaves descendant from that point have al-

lele 1 at site sj ; other leaves have allele 0. A matrix

H compatible with this framework is a PPH matrix

(for perfect phylogeny haplotype; we can also relax

the all-zero ancestor requirement). For ease of cal-

culation, we also include a single non-polymorphic

site s0, where all haplotypes have value 1; this has

no effect on any solution, since any haplotype pairing

gives the same genotype, 2, at that site.

More complex generative models for haplotypes

allow for recombination, breaking the rule that ev-

ery site derives from the same single phylogenetic

tree. We discuss recombination in Section 5. We can

also allow a probabilistic process for generation of the

haplotype matrix; the simplest of these is described

in Section 4.1, where we consider model parameter

settings that make the conditions of our second ma-

jor theorem (Theorem 4.1) likely to hold.

Haplotypes pair to form genotypes. The sim-

plest process is random pairing: each genotype re-

sults from pairing two haplotypes sampled with re-

placement. This corresponds to n edges being picked

from a random multigraph model; every edge (i, j)

has probability 2/k2, and every loop (i, i) has prob-

ability 1/k2. A haplotype or genotype may occur in

multiple copies.

2.4. A phase transition for haplotyping?

In 2003, Chung and Gusfield12 examined the num-

ber of distinct PPH solutions to a genotype matrix

obtained by randomly pairing 2n haplotypes from

a perfect phylogeny without replacement n times.

This model of data generation is not the same as

the model studied in this paper, but their observa-

tions are clearly related. Let k be the number of

distinct haplotypes. There seems to be a phase tran-

sition: when n ≪ k log k, there are many PPH solu-

tions; when n ≫ k log k, there is typically only one.

Cleary and St. John13 then studied the structure of

random pairing graphs; they showed that if there

are o(k log k) population members, with high prob-

ability there are multiple PPH solutions. They also

show experimentally, but do not prove, that above

this bound, there is usually a unique PPH solution.

Note that the number of sites and the number of

distinct haplotypes are directly correlated in the coa-

lescent model. This observation explains the depen-

dence on length of the sequences observed in their

experiments.

3. LINEAR ALGEBRAIC STRUCTURE

AND A FIRST BOUND

Our work focuses on the rank of the genotype ma-

trix, which Kalpakis and Namjoshi8 have previously

noted is a lower bound on the size of the solution to

the HIPP instance.

Lemma 3.1. The number of haplotypes in the solu-

tion to the HIPP instance G is at least k∗ = rank(G).

If there exist a k∗ × m haplotype matrix H and an

n × k∗ pairing matrix Π such that G = Π · H, then

H forms an optimal set of haplotypes for G.

Proof. Since H is a valid set of haplotypes for

G only if there exists a pairing matrix such that

G = Π · H , H must have rank at least rank(G),

and must have at least that many rows. If G = Π ·H

and H has exactly k∗ rows, then it matches the lower

bound and is optimal.

Corollary 3.1. If Π is an n × k∗ pairing matrix of

rank k∗, H is a k∗ ×m haplotype matrix of rank k∗,

and G = Π ·H, then k∗ = rank(G) and (Π, H) is an

optimal HIPP solution for G.

Proof. This follows since if both Π and H are full

rank, so is their product.

3.1. The rank of the pairing and

haplotype matrices

We now consider when we can expect G to be created

from full-rank matrices H and Π.

3.1.1. The rank of the pairing matrix

Lemma 3.2. If Π is a random pairing matrix for k

haplotypes with more than (1+ǫ
2)k log k pairings, for

some constant ǫ > 0, then rank(Π) = k almost surely

as k → ∞.

Proof. Π is the node-edge incidence matrix of the

pairing multigraph. A standard graph theory result

shows that Π is full rank if all connected compo-

nents of the graph are non-bipartite14. For example,

213

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

4

if the graph is connected and contains a triangle,

then rank(Π) = k.

If the graph has 1+ǫ
2 k log k pairings, then almost

surely as k → ∞ it has at least ℓ = 1+ǫ′

2 k log k dis-

tinct non-self pairings, for some constant ǫ′ > 0. As

such, it contains a subgraph G′ from the random

graph model G(k, ℓ), with k nodes and ℓ edges, and

each possible edge equally likely. The classic Erdős-

Rényi Theorem15 shows that for such ℓ, G′ is con-

nected almost surely, and a standard textbook exer-

cise (see, for example, Bollobas’s textbook16) gives

that such a graph contains a triangle almost surely,

as k → ∞. As such, Π is rank k almost surely as

k → ∞.

3.1.2. Pairing in non-uniform haplotype

pools

We may also be sampling from a non-uniform pop-

ulation, where some haplotypes are more common

than others. If there is a pool of p different haplo-

types being randomly paired to form genotypes, but

only k distinct haplotypes, we may require substan-

tially more genotypes in order to be confident that

we have paired all of the haplotype kinds.

In this representation, we can assume that H ,

the haplotype matrix used to create G is a p × m

matrix, and Π, the pairing matrix, is n × p. If the

matrix Π is rank p and the matrix H is rank k, then

their product G = Π · H is also of rank k.

The Erdős-Rényi Theorem shows that as long as

the number of distinct non-self pairings is at least
1+ǫ
2 p log p (which is true, again, almost surely if the

number of genotypes is 1+ǫ′

2 p log p, for some ǫ′ > 0),

the pairing graph on the p nodes represented by

the pool of p haplotypes is connected, and again, it

will also contain a triangle as a subgraph as before.

Hence, Π will be full rank (of rank p).

3.2. The haplotype matrix

Now we consider the haplotype matrix. It is of rank

k when it comes from a perfect phylogeny.

Lemma 3.3. If H is a p × n haplotype matrix with

k distinct haplotypes and can be realized by a perfect

phylogeny, with one column s0 of all ones, then H is

rank k.

Proof. Each distinct haplotype hi corresponds to a

different leaf in the phylogenetic tree, and has value 1

at positions corresponding to mutations on the path

from leaf to root. Consider two neighbouring leaves

i and j in the subtree induced by haplotypes of H .

Their sequences are distinct, so at least one of i or

j has a mutation on the path from their common

ancestor to it; suppose it is i. Then hi has a one

found in no other haplotype, and is thus linearly in-

dependent of all other haplotypes. Remove hi and

repeat this process for all k haplotypes. The column

s0 prevents a row of all zeros being the last row left,

ensuring the matrix is of rank k, not k − 1. Elemen-

tary column operations allow us to extend to the case

where the root has allele 1 at other sites than s0.

3.3. Putting it together: a first bound

If the data are generated by a perfect phylogeny, and

there are enough population members, then the rank

of the genotype matrix is the optimal number of hap-

lotypes.

Theorem 3.1. Let G be a genotype matrix produced

by random pairing of a pool of p haplotypes (not nec-

essarily unique) that are generated by a perfect phy-

logeny (with a column of all ones). If G has at least
1+ǫ
2 p log p pairings, then the size of the optimal so-

lution to the HIPP instance G is rank(G), almost

surely as p → ∞.

Proof. The pairing matrix is almost surely of full

rank, p, by Lemma 3.2, and the rank of the haplo-

type matrix equals its number of distinct haplotypes,

by Lemma 3.3. Hence, Corollary 3.1 shows that the

initial set of haplotypes found in H is an optimal set

for this HIPP instance.

Thus, for many instances, the general NP-

hardness of HIPP is partly ameliorated: we can eas-

ily compute the size of the optimum, if not the actual

haplotypes. In the next section, we see that for PPH

instances with a few times more pairings can be ex-

actly solved.

4. WHEN CAN WE FIND THE

ACTUAL HAPLOTYPES?

For instances of the problem with a constant factor

more genotypes than the bound of Theorem 3.1, and

214

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

5

with a “common” mutation, we can almost surely

identify the optimal haplotypes for PPH instances.

We do this by connecting to a variant of the HIPP

problem, where we restrict the haplotype matrix to

be a PPH matrix. Our main result is the following

constructive theorem.

Theorem 4.1. Let G be derived from randomly

pairing p haplotypes compatible with a perfect phy-

logeny, represented by the haplotype matrix H, with

k distinct haplotypes. Suppose there exists a column

of H (without loss of generality, s1) with at least αp

of both zeros and ones, for some α > 0. If G arises

from at least max(1+ǫ
2 p log p, 2+ǫ

α p log k) pairings of

members of H, then we can solve HIPP in polyno-

mial time almost surely as k → ∞ (and consequently

as p → ∞).

For example, if p = k and there is a site with

minor allele frequency at least 25%, Theorem 4.1

says that if the number of rows of G is at least

(8 + ǫ)k log k, the optimal set of haplotypes can be

found almost surely in polynomial time as k → ∞.

We prove Theorem 4.1 through several steps.

Our first lemma notes that we can restrict ourselves

to PPH matrices H . The Min-PPH problem, stud-

ied by Bafna et al.17, is the HIPP problem subject

to this restriction on H . (Bafna et al. have shown

that Min-PPH is NP-hard.)

Lemma 4.1. If the conditions of Theorem 4.1 hold,

then almost surely, the set of unique haplotypes in

H is an optimal HIPP solution, and also an optimal

solution to the Min-PPH instance G.

Proof. The number of distinct population members

is greater than (1+ǫ
2)p log p, so Theorem 3.1 applies,

and rank(G) = k almost surely and the unique hap-

lotypes of H form an optimal HIPP solution for G.

Since they satisfy a perfect phylogeny, they are also

a smallest PPH solution.

Lemma 4.1 allows us to restrict our search to

PPH solutions. Lemma 4.2 shows there exists only

one, with high probability; Corollary 4.1 shows it can

be found in polynomial time. This will complete the

proof of Theorem 4.1.

Lemma 4.2. Given a genotype matrix G satisfying

the conditions of Theorem 4.1, almost surely there

exists only one set of haplotypes that satisfies a per-

fect phylogeny and can generate G.

Proof. We prove the lemma via a property of the

DPPH algorithm of Bafna et al.18. This algorithm

constructs a graph with one vertex for each column

of G. The main result we use is that the number of

PPH solutions for G is 2c−1, where c is the number

of connected components in a specific subgraph18 of

this graph. We show that if G satisfies the conditions

of Theorem 4.1, then with high probability, c = 1,

and there is only one PPH solution.

Graph D(G) has one vertex for each distinct col-

umn in genotype matrix G and an edge between two

vertices s and s′ if there exists a row g of G with value

1 in columns s and s′, and the resolution of g at sites

s and s′ is restricted by the perfect phylogeny con-

dition. Recall from Section 2 that in our notation,

1 represents a heterozygous site. More precisely, we

connect s and s′ if we can find three genotypes g1, g2

and g3 such that the 3 × 2 submatrix of G induced

by these genotypes and sites has one of the forms in

Figure 1. In each of these forms, one possible resolu-

tion of sites s and s′ violates the perfect phylogeny

condition, so the possible space of PPH solutions is

restricted. The total number of PPH solutions for

G equals 2c−1, where c is the number of connected

components of D(G)18.

a) 1 1

1 x

y 1

b) 1 1

0 0

2 2

c) 1 1

2 0

0 2

Fig. 1. Patterns of 3×2 submatrices which cause an edge to
be added between the vertices representing the sites in D(G).

The values x and y are each either 0 or 2.

To show D(G) is almost surely connected, we

show that almost surely, there is an edge between

each node and the node for s1, the site with the

common mutation. For any site, let ei be the tree

edge containing the mutation at site si, let Ai be the

set of haplotypes below ei and Bi be all other hap-

lotypes. When considering the random pairings to

make genotypes, we use 〈X, Y 〉 to denote a pairing

of a haplotype from class X with a haplotype from

class Y .

215

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

6

Consider a site s. We consider a few cases on

s, depending on whether es is below e1 or not, and

on the size of As. First, suppose es is not below e1.

If As has fewer than αp
2 haplotypes, we will have an

edge between s and s1 in D(G) if the events 〈As, A1〉,

〈As, B1 \ As〉 and 〈B1 \ As, A1〉 occur, since these

events produce a submatrix of type (a) in Figure 1.

In a random pairing, each event has probability at

least α
2p . If |As| > αp

2 , the events 〈As, A1〉, 〈As, As〉

and 〈A1, A1〉 produce a submatrix of type (c) in Fig-

ure 1. Again, all events have probability at least α
2p .

Suppose instead es is below e1. If |As| < αp
2 , the

events 〈As, B1〉, 〈As, A1\As〉 and 〈B1, A1\As〉 give a

submatrix of form (a), while if |As| ≥
αp
2 , the events

〈As, B1〉, 〈As, As〉 and 〈B1, B1〉 give a submatrix of

form (b). The needed events always have probability

at least α
2p .

Therefore, for each column s, three events each

with probability at least α
2p , will connect s and

s1. This totals less than 6k events, since there

are at most 2k − 2 distinct columns in a perfect

phylogeny with k distinct leaves. By the coupon-

collector lemma19, after (2+ǫ
α)p log k random pair-

ings, the probability that a needed event has not yet

occurred is less than 6(k−ǫ/2).

Thus, if the conditions of Theorem 4.1 are satis-

fied, then almost surely, D(G) is connected and the

DPPH results of Bafna et al.18 show that there exists

a unique PPH solution for G.

Corollary 4.1. A Min-PPH instance G satisfying

the conditions of Theorem 4.1 can be solved in poly-

nomial time with high probability.

Proof. The algorithm DPPH of Bafna et al.18 gives

a representation of all PPH solutions for a given

genotype matrix G in polynomial time, and allows

their enumeration in time polynomial in the input

matrix size and proportional to the number of PPH

solutions. Lemma 4.2 shows that there is a unique

PPH solution almost surely, and it can be recovered

in polynomial time.

4.1. A bound on finding a common

mutation in a coalescent model

Our theorems show that almost surely, if there ex-

ists a mutation with minor allele frequency at least

α in our data, we will likely be able to solve HIPP if

the number of genotypes is above a relatively small

bound. How often does such a common mutation oc-

cur? One would likely not study a population if all

mutations were rare, but we can also give a partial

answer to this question probabilistically, in a sim-

ple version of the coalescent model from population

genetics.

Our results show that to guarantee that with

probability 1 − ǫ there is a site chosen with minor

allele frequency at least α, one needs to set the pa-

rameter θ in the coalescent process to a constant de-

pending only on α and ǫ; hence, the number of poly-

morphic sites needs only increase as the logarithm of

the population sample’s size. Our bounds are coarse,

but again prove that one can have provably high suc-

cess in solving synthetic HIPP instances.

The question of how many mutations with mi-

nor allele frequency α can be expected to exist has

been studied by theoretical population geneticists;

see, for example, Fu20. However, the work of these

authors has mostly concerned the expected number

of mutations with minor allele frequency α; we need

to determine how large θ must be in order to be con-

fident that a mutation of the type we desire exists

almost surely.

4.1.1. An introduction to the coalescent

model

Infinite-site constant-population coalescent models

are a standard population genetics model to pro-

duce haplotypes. We describe them briefly, focus-

ing on details we need; for full detail, see Hein et

al.21. In particular, we focus on the event order, not

the time between events; see Hudson22 for justifica-

tion of this approach. The coalescent approach is

used, for example, in the program ms
23, which has

been used by several groups to generate HIPP prob-

lem test instances, by randomly pairing the resultant

haplotypes1, 5, 7.

The coalescent model describes the descent of

a population under neutral evolution. We use it to

generate rooted trees with p leaves, where each leaf

represents a haplotype. We will describe the model

going backward in time: we begin with the p leaves,

and coalesce them to their common ancestor. Two

216

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

7

kinds of events can occur as we move backwards in

time: mutations and coalescences; the parameter θ

governs which of these is more likely to happen. (In

population genetics, θ = 2Nµ depends on both µ, the

mutation rate, and N , the effective population size.)

If k lineages are active at a point in time, a coales-

cence is the next event with probability k−1
k−1+θ , and a

mutation with probability θ
k−1+θ . When a mutation

is indicated, one of the active lineages is uniformly

chosen, a mutation at a new polymorphic site is as-

signed to it. When a coalescence is indicated, two

lineages are uniformly chosen and joined into a com-

mon ancestor. The process continues until only one

lineage remains, which is the common ancestor for

all sites. All random choices are independent. We

establish haplotypes for the sequences, as in Section

2.3.

We can sample from the same distribution of tree

topologies by thinking about the coalescent process

by moving forward in time, not backward. The stan-

dard way to do this is as a branching process, where

we start with one lineage, and then whenever a di-

vergence event is indicated, a lineage is chosen from

all of the i lineages, and it bifurcates to produce i+1

lineeages; this process is continued until there are n

lineages present. (Mutations occur in this process

as in the backward conception of the coalescent, but

we can ignore this here. We will use the forward

branching process model only to estimate the num-

ber of lineages at a time when a mutation occurring

on one lineage in particular would be sufficient to cre-

ate a mutation of our desired type; we then switch

to the backward coalescent version of the process,

conditioned on having a lineage of our desired type.)

For our purposes, however, it is actually easier

to use a non-standard forward-in-time way to sample

from this distribution. A fact about the branching

process is that if we pick one of the two lineages

that result from the initial bifurcation, its number

of eventual descendants in the n-member population

is uniformly distributed over {1, . . . n − 1} (see, e.g.

Ref 22.) Moreover, the structure of the two trees

that result from this bifurcation, one with i eventual

descendants and the other with n− i, are themselves

chosen independently from the coalescent distribu-

tion with those number of nodes.

As such, we can generate trees from the coales-

cent distribution in a somewhat different-appearing

formulation that is still equivalent, by annotating

each lineage with the number of eventual descen-

dants that it will have; the initial lineage is anno-

tated to have n eventual descendants. We still pick

our branching lineage uniformly at random from the

active lineages, but a lineage is only active if it has

more than one eventual descendant; those with only

one descendant will never bifurcate again. When we

choose a lineage with i eventual descendants to bi-

furcate, we sample the number of descendants that

one of the new lineages will have uniformly from

{1, . . . , i − 1}, with the other new lineage resulting

form the bifurcation having i minus that many de-

scendants. After n−1 such bifurcations, we will have

chosen the topology of our coalescent tree. Since we

are successively conditioning according to the proba-

bilities of the traditional forward coalescent process,

the tree we choose by this procedure is chosen from

the same probabilistic distribution as for the classic

model.

4.1.2. Common mutations

We now connect the coalescent model to our HIPP

theorems. If we use the model to generate p haplo-

types, we can apply Theorem 4.1, if we have a poly-

morphic site with minor allele found in at least αp

haplotypes.

Theorem 4.2. Suppose that we produce p haplo-

types by the coalescent model of Section 4.1.1. For

any ǫ > 0, if we choose the parameter θ of the coa-

lescent model to be at least 1−ǫ
ǫ (ǫ1/(2α−1) − 1), then

with probability at least 1 − 2ǫ, we will have a site

with minor allele frequency at least α. Also, if θ is

ω(1) as a function of p, such a site is chosen almost

surely as p → ∞.

We prove Theorem 4.2 by focusing on finding one

edge with between αp and (1 − α)p descendants (a

“good”edge) with a mutation. Our bounds are likely

coarse as a consequence. First, we show that there

is likely a good edge reasonably high in the tree.

Lemma 4.3. Consider a coalescent tree with p

leaves, and assume 0 < α < 1/3 . The probabil-

ity that the top of a good edge exists in the tree at

or before the ℓth bifurcation from the top is at least

217

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

8

1−ℓ2α−1. Given ǫ > 0, with probability at least 1−ǫ,

there is such an edge with start at or above the ℓ∗α,ǫ-th

bifurcation, for ℓ∗α,ǫ = ǫ1/(2α−1).

Proof. At each step, there exists a lineage with the

most descendants. If it has fewer than (1 − α)p de-

scendants, we have already seen a good edge. To see

this, consider the first time this happens: we divided

a value greater than (1 − α)p into two parts, both

smaller than (1− α)p. Since α < 1/3, one is at least

αp.

Thus, we can concern ourselves with bifurcations

on the lineage with the most descendants. At step

i in the coalescent process, going forward, this lin-

eage has probability at least 1/i of being chosen to

bifurcate; it may be more if there are lineages with

only one descendant haplotype. If it bifurcates, the

probability of a good edge being produced is at least

1−2α. Since all bifurcations are independent, we can

upper bound the probability of no good edges occur-

ring by level ℓ by
∏ℓ

i=1(1 − 1−2α
i) <

∏ℓ
i=1 e

2α−1

i <

e(2α−1) log ℓ = ℓ2α−1. The bound as a function of the

probability 1− ǫ of a good edge at or above level ℓ∗α,ǫ

is easily shown by arithmetic.

Now, we can finish the proof of Theorem 4.2.

Proof. By Lemma 4.3, with probability at least

1 − ǫ, there is a period in the coalescent history of

the sequences during which there are fewer than ℓα,ǫ

lineages, and where a mutation on one lineage would

be a good mutation. Sticking to such instances, and

now working backward in time, the next event on

that lineage is a mutation with probability at least
θ

ℓα,ǫ−1+θ ; if there are more coalescences of other parts

of the tree before an event on our good lineage, it

only increases the probability of mutation preceding

coalescence on the lineage of interest. Setting this

probability equal to 1− ǫ and solving for θ gives that

if θ ≥ (1−ǫ)
ǫ (ℓα,ǫ − 1), then the probability of a mu-

tation of minor allele frequency at least α is at least

1 − 2ǫ.

Our bounds, while perhaps odd, are constant as

a function of p. They indicate how far down in the

tree one must look in order to be guaranteed a high

probability of having found a good edge, and this

depends solely on α. Since the expected number of

mutations in the tree is approximately Poisson dis-

tributed with mean θ log p (see Ref 21), we note that

if the number of mutations accumulated is ω(log p),

then a common mutation exists almost surely (for

any α) as p grows.

4.2. Applicability to small populations

The previous theorems are asymptotic results de-

pending on the value of p. However, a small experi-

ment shows that they apply for small p as well. For

a variety of values of p, we used Hudson’s program

ms
23 to generate a PPH matrix with varying values of

the mutation parameter θ, and paired the haplotypes

randomly to generate n distinct genotypes. Shown in

Table 1 are the number of genotypes needed so that

in 200 experiments, the generating set of haplotypes

(after removing duplicates) was always optimal for

HIPP and was the unique Min-PPH solution. (We

verified the number of PPH solutions using Ding,

Filkov and Gusfield’s LPPH24.) Even for moderate

values of p and θ, 1.1p logp genotypes satisfied these

conditions.

Table 1. The smallest number of genotypes n for
which all 200 trials passed the rank and PPH tests.

Number of haplotypes p

θ 10 15 30 50 75 100 150 200

5 25 45 60 75 130 115 150 185
10 25 40 85 130 155 195 260 310
20 35 45 90 160 220 260 440 515
40 35 55 110 200 295 395 540 675

5. THE ALGEBRAIC RANK OF

NON-PPH INSTANCES

For PPH instances, rank(H) exactly equals its num-

ber of unique haplotypes. If Π is full rank, then

the unique rows of H form an optimal solution to

the HIPP instance G = Π · H with exactly rank(G)

haplotypes. For instances generated by models that

include recombination, the situation is more compli-

cated: H may not be full rank, and the rank of G

may not equal the size of its optimal solution. We

now study ranks of haplotype matrices in such mod-

els, assuming always that Π is of full rank. We use

the rank of H to prove a lower bound on the number

of recombinations in a phylogenetic network that ex-

218

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

9

plains a set of haplotypes, which is provably at least

as strong as the commonly used “haplotype lower

bound”9. For galled trees, a class of recombination

networks, we give a full characterization of the rank.

One interesting feature of our findings is that esti-

mating the number of recombinations and perform-

ing haplotype inference by pure parsimony seem op-

posed to each other. We discuss this more in Section

5.4.

5.1. Phylogenetic networks with

recombination

We first give a combinatorial description of this do-

main. A phylogenetic network is a rooted directed

acyclic graph with edges pointing away (“down”)

from the root. The leaves (indegree 1 and outde-

gree 0) correspond to current haplotypes. Coales-

cent nodes (indegree 1 and outdegree 2) correspond

to the most recent common ancestor of their descen-

dant haplotypes. Recombination nodes (indegree 2

and outdegree 1) correspond to when two incoming

lineages recombine to form a single lineage, a prefix

of one lineage followed by a suffix of the second lin-

eage. The node is labelled to indicate which parental

lineage takes each role and the discrete recombination

breakpoint where the recombination occurs.

Mutations are assigned to edges of the network.

Each mutation has a chromosomal position, which

mutates once, from allele 0 to allele 1, in the net-

work. We assume that the haplotype at any position

in the network identifies the allele found at that net-

work position for every site with a mutation in the

network. Without loss of generality, we assume that

at the top of the network, the haplotype is all ze-

ros, except for a one in a special site s0 that never

mutates. At a coalescent node or a leaf, the haplo-

type is the haplotype at the parent of the node, with

zeros changed to ones at positions corresponding to

any mutations on the edge separating them. At re-

combination nodes, labelled with position k, the first

k sites of the haplotype come from the parent cor-

responding to the prefix edge into the node and the

remainder comes from the other parent.

An important element of a phylogenetic network

are the recombination cycles between recombination

nodes and coalescent nodes. For any network, we can

give a partial order over recombination cycles, when

the recombination node of one is a descendant of an-

other, and then identify an order from the bottom of

the network to the top.

Gusfield et al.25 defined a simple kind of recom-

bination network, galled trees, in which every edge

is found in at most one recombination cycle. We will

focus our attention on the rank of data coming from

a galled tree, but first give a general rank bound.

5.2. The rank of data from phylogenetic

networks

We can easily relate the data rank to the number of

recombinations in the network.

Theorem 5.1. Let H be a haplotype matrix with k

unique rows derived from a phylogenetic network with

r recombinations. Then rank(H) ≥ k−r. Stated an-

other way, r ≥ k − rank(H).

Proof. We prove this by induction on the number

of recombinations in the network. If the network has

no recombinations, it is a tree and has a column of

all ones, so Lemma 3.3 applies. If not, consider a

lowest recombination node. Below it is a tree; sup-

pose its leaves have p unique haplotypes. If there is

a mutation found only in all p haplotypes, then the

lemma applies and removing the p haplotypes drops

the rank by p. If no such mutation exists, removing

the p haplotypes drops the rank by at least p − 1,

but not necessarily p. In either case, we remove that

recombination node and its descendants, and have a

network with one fewer recombination.

This rank bound may be surprisingly useful; it

is similar in spirit to the “haplotype lower bound”9

on the number of recombinations required to explain

a haplotype matrix, which equals k − c + 1, where

c is the number of unique columns in the matrix H .

The haplotype bound is often negative, because there

may be many different columns, but k − rank(H) is

always non-negative, and thus may be stronger. We

also note that this bound applies for unknown ances-

tral sequence, as it can be adjusted in the standard

way to apply to the case of a known ancestral se-

quence. Of course, rank(H) is slower to compute

than the number of distinct columns of H , but use

of the bound may still be interesting to explore.

219

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

10

5.3. The algebraic rank of galled trees

The rank of the haplotype matrix can decrease from

full rank by at most the number of recombinations in

the network that gives rise to the haplotypes. In the

case of galled trees, we can identify for each recom-

bination whether it actually does reduce the rank or

not.

We will inspect recombination cycles from the

bottom of the network up, and identify them as rank-

decreasing, rank-maintaining, or rank-confounding.

For rank-confounding cycles, all haplotypes in the

cycle are independent, but there may be a depen-

dency between them and the other haplotypes in the

tree, so we add a new haplotype to determine this.

There are three types of node in the recombina-

tion cycle. The coalescent node and recombination

node that together define the recombination cycle

will simply be referred to as the coalescent node and

recombination node, respectively. The other nodes in

the cycle (although marking coalescence events) will

be referred to as cycle nodes. In a recombination cy-

cle, a node is included if it represents a haplotype in

H , and no higher node on the cycle also represents

that haplotype. The sides of the cycle are the two

directed paths from the coalescent node to the re-

combination node. Consecutive included nodes are

nodes on either side of the cycle that have only unin-

cluded nodes between them. Let hc be the haplotype

at the coalescent node and hr be the haplotype at the

recombination node.

Theorem 5.2. A recombination cycle is rank-

maintaining if:

• the recombination node is not included, or

• the recombination node is included and has a mu-

tation found in no other included node in the cycle,

or

• between the coalescent node and the first included

cycle node on either side of the cycle, or between

any two consecutive included nodes on the cycle

are found two mutations on either side of the

recombination breakpoint of the cycle (a “rank-

maintaining pair”).

A recombination cycle is rank-decreasing if it is

not rank-maintaining, and the coalescent node of the

cycle is included.

A recombination cycle is rank-confounding if it

is neither rank-maintaining nor rankdecreasing. The

rank of H will be the same as that of H with hr re-

moved and hc added.

Proof. We need to detect whether the haplotype hr

at the recombination node is independent of all other

haplotypes. We begin with the rank-maintaining

cases. The case where hr is not included is trivial. If

there is a mutation j unique to hr among cycle nodes,

that column is independent of all other columns, so

the recombination node is independent; other haplo-

types may possess mutation j, but they also possess

other mutations not found in hr. If there is a rank-

maintaining pair, then every included haplotype that

possesses one mutation from the pair also possesses

the other, except hr, so hr is independent.

If there is no rank-maintaining pair, all muta-

tions on the cycle can be individually isolated by sub-

tracting haplotypes at consecutive included nodes.

Elementary row operations can thus transform hr

into hc. If hc is already in H , then hr is not inde-

pendent of the other haplotypes in H ; if it is not, it

may or may not be independent. Wwe must add hc

to our set of haplotypes find out.

Going through each cycle obeying the partial or-

der, we can identify its effect on the rank, and thus

compute the overall rank of H .

5.4. Consequences of the rank bounds

for phylogenetic networks

In the standard variation of the coalescent process

that includes recombination, the relative rates of re-

combination and mutation are given by two param-

eters ρ and θ. When ρ is large relative to θ, recom-

bination is common, whereas when θ is large, recom-

bination is rare.

The bounds from Theorems 5.1 and 5.2 can be

read to say that if mutation is common relative

to recombination, the rank of H (and consequently

G = Π ·H , if Π is full rank) is likely to be close to its

number of unique haplotypes; many mutations will

make it likely that the haplotype at a recombination

node is linearly independent of the other haplotypes.

When rank is high, the most parsimonious set of hap-

lotypes to produce the genotype matrix G is likely to

220

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

11

have close to the same number of distinct haplotypes

as does H .

By contrast, when recombination is more com-

mon than mutation, we may start to accumulate

many rank-decreasing cycles. This may mean that

for the genotype matrix G, the rank bound on the

HIPP solution may be far from optimal. But, in-

terestingly, for the haplotype matrix H , the lower

bound on the minimum number of recombinations

to explain H will be increasingly accurate, since this

bound goes up as the rank goes down.

This suggests a tension between the HIPP prob-

lem and estimating the number of recombinations:

for instances with few recombinations, we get lit-

tle information about the minimum number of re-

combinations, but may obtain a close match on the

minimum number of haplotypes. For instances with

lots of recombinations, we get no information about

the minimum number of haplotypes, but may get

some information about the number of recombina-

tions. Unfortunately, we cannot identify which of

these bounds we have, just from the rank of G.

6. CONCLUSION

We have presented several results about algebraic

rank and HIPP instances, studying HIPP instances

generated by randomly pairing haplotypes generated

from two important models from population genet-

ics. For data generated by a perfect phylogeny on

p haplotypes, when the number of distinct popula-

tion members is more than (1+ǫ
2)p log p, the size of

the optimal solution equals the rank of the genotype

matrix. Moreover, with only a few times more geno-

types and a common mutation, we can recover the

haplotypes in polynomial time.

We studied more closely data generated by the

coalescent model often studied in population genet-

ics; this is relevant, for example, for data generated

with Hudson’s popular ms package23. We showed

that the constant value for the mutation parameter

θ, to guarantee a common mutation with probability

1 − ǫ.

Finally, we examined the effect of adding recom-

bination to generative model. Here we derive two

interesting results. First, we provide an interesting

variant of the “haplotype lower bound”. This shows

that rank is still a close bound when the model allows

recombination. Second, we completely classify the

algebraic rank of haplotype matrices derived from

galled trees, the simplest type of phylogenetic net-

work with recombination. The algebraic structure of

HIPP instances will likely have other fruitful conse-

quences as well.

Acknowledgements

This research has been supported by the Natural Sci-

ences and Engineering Research Council of Canada,

through a Discovery Grant to D.B. and Postgradu-

ate and Canada Graduate Scholarships to I.H. We

would like to thank Katherine St. John for sending

us a copy of her paper with Sean Cleary13, and Dan

Gusfield, Yun Song and Brian Golding for helpful

conversations.

References

1. D. Gusfield. Haplotype inference by pure parsimony.
In Proceedings of CPM 2003, pages 144–155, 2003.

2. The International HapMap Consortium. A hap-
lotype map of the human genome. Nature,
437(7063):1299–1300, 2005.

3. K. Lindblad-Toh et al. Genome sequence, compara-
tive analysis and haplotype structure of the domestic
dog. Nature, 438(7069):803–809, 2005.

4. G. Lancia, C. M. Pinotti, and R. Rizzi. Haplotyping
populations by pure parsimony: Complexity of exact
and approximation algorithms. INFORMS Journal
on Computing, 16:348–359, 2004.

5. D. G. Brown and I. M. Harrower. A new integer pro-
gramming formulation for the pure parsimony prob-
lem in haplotype analysis. In Proceedings of WABI
2004, pages 254–265, 2004.

6. L. Wang and Y. Xu. Haplotype inference by maxi-
mum parsimony. Bioinformatics, 19(14):1773–1780,
2003.

7. D.G. Brown and I.M. Harrower. Integer program-
ming approaches to haplotype inference by pure par-
simony. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 3(2):141–154, 2006.

8. K. Kalpakis and P. Namjoshi. Haplotype phasing
using semidefinite programming. In Proceedings of
BIBE 2005, pages 145–152, 2005.

9. S.R. Myers and R.C. Griffiths. Bounds on the min-
imum number of recombination events in a sample
history. Genetics, 163:375–394, 2003.

10. J. He and A. Zelikovsky. Linear reduction for haplo-
type inference. In Proceedings of WABI 2004, pages
242–253, 2004.

11. B. V. Halldórsson, V. Bafna, N. Edwards, R. Lip-
pert, S. Yooseph, and S. Istrail. A survey of computa-
tional methods for determining haplotypes. In Com-

221

May 9, 2006 11:29 WSPC/Trim Size: 11in x 8.5in for Proceedings main

12

putational Methods for SNPs and Haplotype Infer-
ence: DIMACS/RECOMB Satellite Workshop, vol-
ume 2983 of LNCS, pages 26–47, 2004.

12. R. H. Chung and D. Gusfield. Empirical exploration
of perfect phylogeny haplotyping and haplotypers.
In Proceedings of COCOON 2003, pages 5–19, 2003.

13. S. Cleary and K. St. John. Analyses of haplotype in-
ference algorithms. 2005. Manuscript under review.

14. C. Van Nuffelen. On the incidence matrix of a
graph. IEEE Transactions on Circuits and Systems,
23(9):572–572, Sep 1976.

15. P Erdős and A Rényi. On random graphs. Publica-
tiones Mathematicae Debrecen, 6:290–297, 1959.

16. B. Bollobás. Random Graphs. Cambridge Press, 2nd
edition, 2001.

17. V. Bafna, D. Gusfield, S. Hannenhalli, and
S. Yooseph. A note on efficient computation of hap-
lotypes via perfect phylogeny. Journal of Computa-
tional Biology, 11:858–866, 2004.

18. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph.
Haplotyping as perfect phylogeny: A direct ap-
proach. Journal of Computational Biology, 10:323–

340, 2003.
19. R. Motwani and P. Raghavan. Randomized Algo-

rithms. Cambridge Press, 1995.
20. Y. X. Fu. Statistical properties of segregating sites.

Theoretical Population Biology, 48(2):172–177, 1995.
21. J. Hein, M. H. Schierup, and C. Wiuf. Gene Ge-

nealogies, Variation and Evolution. Oxford Univer-
sity Press, 2005.

22. R. R. Hudson. Gene genealogies and the coales-
cent process. Oxford Surveys of Evolutionary Biol-
ogy, 7:1–44, 1990.

23. R. R. Hudson. Generating samples under a Wright-
Fisher neutral model of genetic variation. Bioinfor-
matics, 18(2):337–338, 2002.

24. Z. Ding, V. Filkov, and D. Gusfield. A linear-time al-
gorithm for the perfect phylogeny haplotyping (pph)
problem. In Proceedings of RECOMB 2005, pages
585–600, 2005.

25. D. Gusfield, S. Eddhu, and C. Langley. Optimal, ef-
ficient reconstruction of phylogenetic networks with
constrained recombination. Journal of Bioinformat-
ics and Computational Biology, 2(1):173–213, 2004.

222

