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The genetic analysis of spatial patterns of gene expression relies on the direct visualization of the presence or
absence of gene products (mRNA or protein) at a given developmental stage (time) of a developing animal. The raw
data produced by these experiments include images of the Drosophila embryos showing a particular gene expression
pattern revealed by a gene-specific probe. The identification of genes showing spatial and temporal overlaps in their
expression patterns is fundamentally important to formulating and testing gene interaction hypotheses. Compari-
son of expression patterns is most biologically meaningful when images from a similar time point (developmental
stage range) are compared. In this paper, we propose a computational system for automatic developmental stage
classification by image analysis. This classification system uses image textural properties at a sub-block level across
developmental stages as distinguishing features. Gabor filters are applied to extract features of image sub-blocks. Ro-
bust implementations of Linear Discriminant Analysis (LDA) are employed to extract the most discriminant features
for the classification. Experiments on a collection of 2705 expression pattern images from early stages show that the
proposed system significantly outperforms previously reported results in terms of classification accuracy, which shows
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high promise of the proposed system in reducing the time taken by biologists to assign the embryo stage range.

1. INTRODUCTION

Gene expression in a developing embryo is modulated
in particular cells in a time-specific manner, which
leads to the differentiation of cell fates. Research
efforts into the spatial and temporal characteristics
of gene expression patterns of the model organism
Drosophila melanogaster (the fruit fly) have been at
the leading-edge of scientific investigations into the
fundamental principles of animal development.® 16
These studies have now established that the same
gene (or its product) may be utilized in different ways
at different times during development, and that mul-
tiple genes show similar expression patterns in one
or more developmental stages. The genetic analy-
sis of spatial patterns of gene expression relies on
the direct visualization of the presence or absence of
gene products (mRNA or protein) at a given devel-
opmental stage (time) of a developing animal. The
raw data produced from these experiments includes
images of the Drosophila embryo showing a partic-
ular gene expression pattern revealed by a gene-
specific probe. The knowledge of the spatial overlap

of patterns of gene expression is important to under-
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standing the interplay of genes in different stages of
development.® 16

Estimation of the pattern overlap is most bi-
ologically meaningful when images from a similar
time point (developmental stage range) are com-
pared. Stages in Drosophila melanogaster develop-
ment denote the time after fertilization at which
certain, specific events occur in the developmental
cycle. Embryogenesis is traditionally divided into
a series of consecutive stages distinguished by mor-
phological markers.! The duration of developmental
stages varies from 15 minutes to more than 2 hours;
therefore, the stages of development are differentially
represented in the embryo collections. Some consec-
utive stages, although morphologically distinguish-
able, differ very little in terms of changes in gene ex-
pression, whereas other stage transitions, such as the
onset of zygotic transcription or organogenesis, are
accompanied by massive changes in gene expression.’
The first 16 stages of embryogenesis are divided into
six convenient stage ranges (stages 1-3, 4-6, 7-8, 9-
10, 11-12 and 13-16).
experiments,'® each image is assigned to one of the

In recent high throughput

stage ranges manually.
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In this paper, we examine how image analysis
can be used for automatic stage range determination
(classification). In order to distinguish between dif-
ferent stage ranges of development, we need to use
embryo morphology to extract features. Across the
various developmental stages, a distinguishing fea-
ture is image textural properties at a sub-block level,
because image texture at the sub-block level changes
as embryonic development progresses (Fig. 1). The
staining procedure helps illuminate the morphologi-
cal features of the transparent embryos as well. We
thus apply Gabor filters” to extract the textural fea-
tures of image sub-blocks. Since not all features are
useful for stage range discrimination, we apply ro-
bust implementations of Linear Discriminant Analy-
sis (LDA)® 10, 14 for the extraction of the most dis-
criminant features, which are linear combinations of
the textural features derived from the Gabor filters.
Finally, the Nearest-Neighbor (NN) algorithm and
Support Vector Machines (SVM)?% ¢ 19 are employed
for classification (stage range determination). Our
experiments on a collection of 2705 expression pat-
tern images from early stages show that the proposed
system achieves about 86% accuracy, when less than
10% of the data is used for the training, which is
significantly higher than previously reported result
(about 73%).!!
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Fig. 1. Spatial and temporal view of Drosophila images
across different stages (1-8) of development (of the same gene
Kr). The figure shows the morphological changes at the an-
terior and posterior end of the embryo during stages 4-6 and
the morphological changes in the middle regions of the embryo
during stages 7-8. The textural features (based on the mor-
phology of the embryo) are different from the gene expression,
which is indicted by the blue staining.

1.1. Raw image pre-processing

We used a collection of 2705 embryo images from
three different developmental stage ranges (1-3, 4-6,
and 7-8) in our study. The raw images of Drosophila
Embryo were collected from the Berkeley Drosophila
Genome Project (BDGP).'® Gene expression pattern

images were in different sizes and orientations. The
image standardization procedure from Ref. 16 was
applied and all images were standardized to the size
of 128 x 320.

Next, we applied Histogram Equalization™ to
improve the contrast and obtain approximately an
uniform histogram distribution, while still keeping
the detailed information for the processed images.

Finally, we applied Gabor Filters” to extract the
textural features of image sub-blocks. Gabor Filters
are well-known for texture analysis,? as they are ef-
fective in extracting information in different spatial
frequency ranges and orientations. We found the tex-
tural features obtained via Gabor Filters very effec-
tive in stage range classification (see Section 4). The
number of textural features extracted via Gabor Fil-
ters is 384. Since not all features are useful for stage
discrimination, we applied the Linear Discriminant
Analysis (LDA) for extracting the most discriminant
features before the classification.

2. LINEAR DISCRIMINANT
ANALYSIS

Linear Discriminant Analysis (LDA)% 10 14

is a well-
known method for feature extraction that projects
high-dimensional data onto a low-dimensional space
to maximize class separability. The optimal projec-
tion or transformation in classical LDA is obtained
by minimizing the within-class distance and max-
imizing the between-class distance simultaneously,
thus achieving maximum class discrimination.

Given a training dataset consisting of n data
points (images), {a;}; € IR™, from k different
classes, classical LDA aims to compute the transfor-
mation G € R™** (¢ < m) that maps a; to a vector
y; in the ¢-dimensional space as follows:

G:a,-e]Rm—>y,-:GTaiele.

In classical LDA, the transformation matrix G is
computed so that the class structure is preserved.
The class structure is quantified by three scatter ma-
trices, called the within-class scatter S,,, the between-
class scatter Sy, and the total scatter S;, defined be-
low.

Assume that there are k classes in the dataset.
Suppose ¢;, S;, n; are the centroid, covariance ma-
trix, and sample size of the i-th class, respectively,



and c is the global centroid. Define the matrices

1
Hy = —=l(A1 = i), (Ar = e, (1)

1
Hy = ﬁ[\/’ﬁ(cl =)y V(e — )], (2)

1

Hy = —(A—ce”

p \/ﬁ( ce” ), 3)
where A = [z1,--- ,z,] is the data matrix, A; is the

data matrix of the i-th class, n; is the size of the i-th
class, and e is the vector of all ones. Then the three

scatter matrices are defined as follows:1°

Sy =HyHY, Sy = HyH, and S, = H,H/ .

It follows from the definition that trace(S,) mea-
sures the within-class cohesion, trace(S,) measures
the between-class separation, and trace(S;) measures
the variance of the dataset, where the trace!? of a
square matrix is the summation of all its diagonal
entries . It is easy to verify that S; = S, + S, .

The scatter matrices in the reduced space (pro-
jected by G) are GTS,,G, GTS,G, and GT'S,G, re-
spectively. The optimal transformation G in classi-
cal LDA is computed by maximizing the following

objective function:® 10: 14

f1(G) = trace ((GT$,G) T GTS,G),  (4)

subject to the constraint that GTS,,G = I, where I,
is the identity matrix of size £. The optimal solution
is given by the eigenvectors of S, 'S corresponding
to the nonzero eigenvalues, provided that S, is non-
singular. Since S; = S + Sy, the solution can also
be obtained by computing the eigenvectors of S;” 1Sy,
assuming S; is nonsingular. The reduced dimension,
¢, is no larger than k — 1, where k is the number of
classes, as the rank of S is bounded from above by
k—1. In practice, £ often equals k — 1. Note that the
total scatter matrix is a multiple of the sample co-
variance matrix and is required to be nonsingular. If
a small number of expression pattern images is used
in the training set, all scatter matrices in question
can be singular. This is known as the singularity or
undersampled problem.!®

We have recently developed Uncorrelated LDA
(ULDA)?! as an extension of classical LDA. A key
property of ULDA is that the features in the trans-
formed space of ULDA are uncorrelated to each
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other, thus reducing the redundancy in the trans-
formed (dimension reduced) space. Furthermore,
ULDA is applicable, even when all scatter matrices
are singular, thus overcoming the singularity prob-
lem. The optimal transformation G of ULDA can
be computed by maximizing the following objective

function:
f2(G) = trace ((GTS;G)TGTS,G) (5)

subject to the constraint that GTS,G = I,, where
M denotes the pseudo-inverse'? of a matrix M.
The computation of the optimal transformation of
ULDA is based on the simultaneous diagonalization
of the three scatter matrices.?! Let X be the ma-
trix that simultaneously diagonalizes Sy, Sy, and S;.
That is,

XTS$yX = Dy, X*'S,,X = D, and X7 S, X = Dy,

(6)
where Dy, D,,, and D, are diagonal, and the diagonal
entries of Sy are sorted in the non-increasing order.
Then G = X, solves the optimization problem in
Eq. (5), where X, consists of the first ¢ columns of
X with ¢ = rank(Sp).

ULDA has been applied successfully in several
applications, including microarray gene expression
data analysis.2? However, we have observed that for
data containing large amount of noises, ULDA has
been shown to be less effective.?! We employ the reg-
ularization technique to improve the robustness of
ULDA. The algorithm is called Regularized ULDA
(RULDA). Regularization is commonly used to sta-
bilize the sample covariance matrix estimation and
improve the classification performance.? Regulariza-
tion is also the key to many other machine learning
methods such as Support Vector Machines (SVM),1?
spline fitting,?° etc. In RULDA, a regularization pa-
rameter A is added to the diagonal elements of the
total scatter matrix S; as S; + Al,,, where I, is the
identity matrix of size m. The optimal transforma-
tion G of RULDA is given by computing the eigen-
vectors of

(St +>\Im)715b- (7)

The performance of RULDA is critically dependent
on the estimation of an appropriate regularization
value A, because a large A may significantly disturb
the information on S;, while a small A may not be
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effective enough to solve the singularity problem.
Cross-validation is commonly used to estimate the
optimal A from a finite set,

A:{Ala"' 7>\N}7

of N candidates. We used N = 100 in our experi-
ments.

With the discriminant features extracted via
LDA, the Nearest-Neighbor (NN) algorithm and
Support Vector Machines (SVM) are applied for clas-
sification.

3. K-NEAREST NEIGHBOR AND
SUPPORT VECTOR MACHINES
FOR CLASSIFICATION

K-Nearest Neighbor (KNN)® 14 is a non-parametric
classifier and theoretical proofs have shown that
its error is asymptotically at most 2 times of the
Bayesian error rate. KNN finds the K nearest neigh-
bors among training samples based on a certain dis-
tance measure, and uses the categories of the K
neighbors to determine the category of the test sam-
ple. The parameter K for the number of neighbors
can be selected by cross-validation. In our experi-
ments, K is set to be 1 and the algorithm is called
Neighbor-Neighbor (NN).

Support Vector Machines (SVM)? ¢ 19 are the
state-of-the-art classifiers for many classification
problems.> SVM finds a maximum margin sepa-
It leads
to a straightforward learning algorithm that can

rating hyperplane between two classes.

be reduced to a convex optimization problem.
The formulation can be extended to multi-class
classifications.® 17 SVM is attractive due to its well
developed theory.!? Another appealing feature of
SVM classification is the sparseness of its representa-
tion of the decision boundary. The maximum margin
hyperplane can be represented as a linear combina-
tion of data points. Those training examples that
receive nonzero weights, are called the support vec-
tors, since removing them would change the location

6. 17 can be

of the separating hyperplane. Kernels
used to extend SVM to classify nonlinearly separa-

ble data. We apply linear SVM in our experiments.

4. RESULTS AND DISCUSSIONS

In this section, we experimentally evaluate the pro-
posed system on embryonic developmental stage
range classification. A collection of 2705 embryo im-
ages from three different developmental stage ranges
(1-3, 4-6, 7-8) was used in our study.

We performed our study by a random splitting
of the whole dataset into training and test sets. The
dataset was partitioned randomly into a training set
consisting of n images (n denotes the training sam-
ple size) and a test set consisting of the remaining
2705 — n images. We varied the training sample size
n from 30 to 540. To reduce the variability, the split-
ting was repeated 50 times and the resulting accura-
cies were averaged.

We first examined the effect of Histogram Equal-
ization (HE) and Gabor Filters (GF) on stage range
classification. To this end, we ran the experiments
under four different conditions: “NO” without any
pre-processing, “HE” with Histogram Equalization,
“GF” with Gabor Filters, and “HE+GF” with both
Histogram Equalization and Gabor Filters. The clas-
sification result (accuracy in percentage) using SVM
as the classifier is shown in Table 1. We can observe
that both the HE and GF operations are effective in
classification, while GF is more effective than HE.
In the following experiments, all images were pre-
processed via both operations.

Table 1. Effect of image pre-processing oper-
ations on stage range classification (accuracies
shown in percentage). NO: No pre-processing;
HE: Histogram Equalization; and GF: Gabor
Filters.

size Image pre-processing operation
n NO HE GF HE + GF
30 53.49 61.22 67.91 76.31
60 62.04 65.27 77.77 80.34
90 67.17 68.21 79.91 82.73

Next, we evaluated the proposed system on stage
range classification. We employed both RULDA and
ULDA to extract discriminant features before apply-
ing NN and SVM for classification. We can observe
from Table 2 that RULDA plus NN and RULDA plus
SVM achieve the best overall performance. When
less than 10% of the images is used in the train-
ing set, they achieve about 86% accuracy, which is



significantly higher than previously reported result!?
(about 73%). The key feature of the proposed com-
putational system in comparison with the previous
work is the inclusion of the feature extraction step
via Regularized ULDA (RULDA), as well as the use
of SVM as the classifier. Experimental results in
Table 2 show the effectiveness of both RULDA and
SVM for stage range classification.

Table 2. Comparison of two feature extraction algorithms
(ULDA and RULDA) and two classifiers (NN and SVM) on
classification accuracy and standard deviation (in parenthesis)
in percentage.

training sample size ULDA RULDA

n NN SVM NN SVM
30 76.94 76.94 | 76.55  76.31
(3.48) (3.48) | (4.33) (4.18)

60 79.89 79.89 | 8091 80.34
(2.33)  (2.33) | (3.08) (2.93)

90 80.68  80.68 | 82.71  82.73
(2.11)  (2.11) | (3.09) (2.29)

180 7722  77.22 | 85.74  86.10
(2.62) (2.62) | (1.82) (1.65)

300 66.30 66.30 | 86.60  87.37
(2.67) (2.67) | (1.18) (1.58)

480 68.29  68.69 | 87.48  88.75
(2.19)  (2.39) | (0.99) (1.16)

540 73.80 73.90 | 87.24 88.91
(2.01)  (2.20) | (1.26) (1.16)

In general, as the training sample size, n, in-
creases, the classification accuracy of both RULDA
plus NN and RULDA plus SVM increases. We ob-
serve that ULDA does not perform well when the
training sample size n is large. The rationale behind
this may be that ULDA involves the minimum re-
dundancy (uncorrelated features) in the transformed
space and is susceptible of overfitting. The expres-
sion pattern images may contain a large amount
of noises due to the errors encountered in high
throughput experiment and in image pre-processing.
RULDA significantly improves ULDA in these cases,
which shows the effectiveness of the regularization
applied in RULDA. The regularization parameter in
RULDA is estimated via cross-validation using the
training data. When the training set is large, the es-
timation of the regularization value is more reliable
and more robust to the noise. This explains the rela-
tively larger difference between RULDA and ULDA
in classification, when the training sample size n is
large. Overall, RULDA plus SVM performs slightly
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better than RULDA plus NN, especially when the
training sample size n is large.

Recall that RULDA projects the data onto
]Rk_l, where k is the number of classes in the
dataset. There are k = 3 stage ranges (classes) in
our experiments, and all images are projected onto a
2D plane. To examine the effectiveness of the projec-
tion, we ran RULDA on a training set of 180 images
and applied the projection to a test set of 2525 im-
ages. In Fig. 2, we showed the projection of a subset
of test images (for clarity of presentation). We de-
picted each test image by the corresponding stage
range (1, 2, and 3). Overall, the three stage ranges
were separated well, which shows that the discrimi-
nant features derived via RULDA is effective in stage
range discrimination. We observe that stage ranges
1 and 2 are connected, as well as stage ranges 2 and
3, while stage ranges 1 and 3 are better separated.
Note that the embryonic development is a continuous
process, where the cutting points (boundaries) be-
tween different stages are assigned manually. These
are consistent with the data distribution (after pro-
jection) as shown in Fig. 2.
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Fig. 2. Visualization of a subset of test images after the pro-
jection onto the 2D plane via RULDA. Images from the first
range (1-3), the second range (4-6), and the third range (7-8)
are depicted by “17, “2”, and “3”,respectively.

5. CONCLUSIONS

We present in this paper a computational system for
automatic developmental stage classification by im-
age analysis. This classification system applies Ga-
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bor filters to extract textural features of image sub-
blocks. Uncorrelated LDA (ULDA) and Regularized
ULDA (RULDA) are employed to extract the most
discriminant features for the classification. Experi-
ments on a collection of 2705 expression pattern im-
ages from early stages show that the proposed system
significantly outperforms previously reported results
in terms of classification accuracy. The experimen-
tal results demonstrate the promise of the proposed
computational system for embryonic developmental
stage range classification. As a future work, we plan
to test the proposed system using a much larger col-
lection of expression pattern images including images
from all stage ranges.
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