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In protein identification through MS/MS spectrum, it is critical to accurately predict theoretical spectrum from
a peptide sequence, which heavily depends on a quantitative understanding of the fragmentation process. To date,
widely used database searching methods adopted a simple statistical model to predict theoretical spectrum, yielding
a spectrum deviating significantly from the practical spectrum for some peptides and therefore preventing automated
positive identification. Here, in order to derive an improved predicting model, we proposed a novel method to
automatically learn the factors influencing fragmentation from a training set of MS/MS spectra. In this method, the
determining of factors is converted into an optimization problem to minimize an objective function that measures
the distance between experimental spectrum and theoretical one. Then, an iterative algorithm was proposed to
minimize the non-linear objective function. We implemented the methods and tested them on experimental data.
The examination of 1451 spectra is in good agreement with some known knowledge about peptide fragmentation, such
as the tendency of cleavage towards the middle of peptide, and Pro’s preference of N-terminal cleavage. Moreover,
on a testing set containing 1425 spectra, comparison between predicted and practical spectra generates a median
correlation of 0.759, showing this method’s ability to predict a “realistic” spectrum. The results in this paper help to
an accurate identification of protein through both database searching and de novo methods.

1. INTRODUCTION

A major goal of proteomics is to study biologi-
cal processes comprehensively through the identi-
fication, characterization, and quantification of ex-
pressed proteins in a cell or a tissue. Tandem mass
spectrometry(MS/MS) has emerged as a powerful
tool for sensitive high-throughput identification of
proteins1, 2. In an experiment, proteins of inter-
est are selected, and digested by enzyme such as
trypsin, and then the resultant peptides are sepa-
rated in the mass analyzer according to their mass
to charge ratio (m/z − value). In a single experi-
ment, multiple copies of the same peptide are frag-
mented into many charged fragments, and the frag-
ments retaining the ionizing charge after CID have
their m/z − value measured, the aggregate of which

forms MS/MS spectrum 16.
Predicting theoretical spectrum accurately from

a peptide sequence lies at the core of protein identi-
fication, especially for the database searching meth-
ods. Most database searching methods start with
constructing a theoretical spectrum for each peptide
in a protein database, followed by a comparison of
theoretical spectrum with experimental one using an
effective scoring functions1, 2, 11, 12, 14–16, 28. The
peptides with the highest score would be reported
as potential solutions. Lacking a complete under-
standing of the fragmentation process, the widely
used algorithms, such as Sequest10 and Mascot13,
adopted a simple statistical model to predict theo-
retical spectrum, which assumes that cleavage will
occur at peptide bonds in a uniform manner, regard-
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less of some important influencing factors such as
position of amino acids, types of bond, etc. Though
succeeds in general cases, this simple model produces
theoretical spectrum deviated significantly from ex-
perimental one for some peptides, leading to low or
insignificant scores, and thus preventing positive pro-
tein identification.

Furthermore, the de novo identification ap-
proaches could also benefit from an accurate pre-
diction of the theoretical spectrum. Many studies
haver been conducted to identify protein without
dependence of a protein sequence database. Saku-
rai adopted a method to enumerate all possible se-
quences and compare each one with the spectrum5,
and prefix pruning technique was proposed to speed
up the search6, 2. An alternative strategy is spec-
trum graph, which formulates the spectrum into a
graph, and attempts find the longest path in the
graph28, 15, 4, 8. To overcome the shortcomings of
spectrum graph arisen by missing and mixed peaks,
PEAKS employs a sophisticated dynamic program-
ming method9. In addition, Zhongqi Zhang pro-
posed a method to combine a divide-and-conquer
algorithm with a spectrum simulation7. Typically,
a de novo sequencing method computes candidate
sequences first, and then evaluates them by compar-
ing the experimental spectrum with the predicted
spectra. Hence, an accurate prediction of theoretical
spectrum is not only useful to the database search
approach, but also useful to de novo methods.

To accurately predict theoretical spectrum, it de-
pends on a quantitative understanding of the frag-
mentation process occurring in mass spectrometry,
which remains a challenge because of the following
reasons: First, fragmentation is a stochastic process
governed by complicated physical and chemical rules
and affected by many factors such as position and
identity of amino acids, types of bonds, etc. More-
over, it’s also unclear that to what extent each fac-
tor affects the fragmentation process. Secondly, iso-
topic atoms, neutral losses, post-transcription modi-
fication and measuring error always result in a peak
deviation from its expected position. This paper ad-
dresses an attempt to quantify the factors influencing
fragmentation.

1.1. Related Work

To predict theoretical spectrum, except for the
promising chemical kinetic model to simulate frag-
mentation process24, several studies have been con-
ducted to develop a statistical predicting model.
Dancik et al. introduced an automatic tool-offset
frequency function- to learn the ion types ten-
dency and intensity threshold from the experimen-
tal spectra15, 16. J.R. Yates III et al. attempted to
identify statistical trend in spectrum peak intensi-
ties and put them into the chemical context. F. P.
Roth and S.P. Gygi applied probability decision tree
approach to distinguish the important factors from
a total 63 peptide and fragmentation attributes29.
Another interesting method to determine the factors
influencing fragmentation is a linear model proposed
by F.Schutz21. In this method, F.Schutz fitted a lin-
ear model to spectrum, in which the influence of some
specific amino acid and their position in the peptide
are reflected. Moreover, the linear model also shows
ability to accurately predict theoretical spectrum.

The linear model has some difficulties. In this
model, the preference for cleavage at a bond is rep-
resented as the sum of the influence of C-terminal
residue and of N-terminal residue. This assumption
is strict since it implies that Xaa-Pro bond has an en-
hanced cleavage than any Xaa-Yaa bond regardless
of which amino acid Xaa is, which is inconsistent
with the observation that Xaa-Pro bond’s cleavage
is hindered when Xaa is Gly or Pro21. Hence, it is
more reasonable to consider the cleavage preference
in bond’s manner rather than the sum of residues
influence. In this paper, we present a novel model to
overcome these difficulties.

1.2. Our Contribution

Our contributions within this paper are as follows:
1. We introduce a novel statistical model to

determine the important factors that influence the
global fragmentation. Following the well-known
“mobile proton” hypothesis, our model accounts for
influence of amino acids position, cleavage preference
for a bond in a more reasonable manner.

2. We used this model to predict theoretical
spectrum for a test set and made comparison with
practical ones. Using the derived quantitative pa-
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rameters, theoretical spectrum could be generated
by simulating the tendency of cleavage towards mid-
dle, preference for N-terminal or C-terminal cleavage
for a specific bond. Experimental results show that
this model could predict a more ‘realistic’ spectrum.

We implemented these algorithms into an open
source package PI (Peptide Identifier, downloadable
freely from http://www.bioinfo.org.cn/MSMS/) and
trained PI on several sets of spectra from ISB18. As a
result, we rediscovered some known knowledge about
peptide fragmentation, such as the tendency of cleav-
age towards the middle of peptide, and Pro’s pref-
erence of N-terminal cleavage. Moreover, PI could
predict accurate theoretical mass spectrum from a
peptide sequence.

2. METHODS

2.1. Fragmentation Model

“Mobile proton” hypothesis is one of the widely ac-
cepted tenets of the peptide fragmentation. In this
model, the ionizing protons on the peptide migrate
to an amide carbonyl oxygen along the peptide back-
bone, resulting in the cleavage of its N-terminal pep-
tide bond and the production of a b-ion or y-ion
depending on N-terminus or C-terminus retains the
charge, respectively. Occasionally, an a-ion is gen-
erated from a b-ion by losing of carbon monoxide.
Other possible backbone ions, such as c, x, z ions, are
not typically generated under low energy collision-
induced dissociation conditions22, 23, 26.

Several factors have significant affection on the
fragmentation process since fragmentation in spec-
trometry is a stochastic process governed by the
physical and chemical properties of a peptide and
the collision dynamics. Some of the factors are listed
as follows: First, there is a tight relationship between
peak intensity and the relative position of cleavage
site, that is, fragmentation occurs more often in the
middle of peptide than that at ends17, 22, 25. Second,
individual amino acid has different preference for
which of the two adjacent amide bonds(N-terminal or
C-terminal) may break. For example, it was reported
that Pro has a strong C-bias cleavage22. Other
factors, such as excitation method, charge state of
ions, etc, also have influence on the fragmentation
process26. Hence, identifying the significant factors

is important to improve theoretical spectrum pre-
dicting. This paper attempts to quantify the factors
influencing fragmentation process under the “mobile
proton” hypothesis.

2.2. Influence of Cleavage Site and
Peptide Bonds

In the mobile proton fragmentation model, it was
reported that the proton attachment depends partly
on the relative affinities and the position of amino
acids31. Let A(ai) denote the relative proton affini-
ties of amino acids ai, f(j) denote the influence of
an amino acid at position j on proton affinities.
For a peptide bond < ai, aj >, let B(ai, aj) de-
note the relative possibility that the bond breaks
when a proton migrates onto aj . Thus, for peptide
P (i) = p

(i)
1 p

(i)
2 ...p

(i)
L , the number of cleavage events

of the j− th bond, denoted as Cij , can be estimated
to be proportional to fj ∗ A(p(i)

j−1) ∗ B(p(i)
j−1, p

(i)
j ).

Hence, minimizing the difference between the actual
value Cij and its estimation will assign reasonable
value for A(ai), f(j) and B(ai, aj). For the sake of
simplicity, we define C(ai, aj) = A(aj) ∗ B(ai, aj),
which is a measurement of the relative possibility
that a proton migrates onto aj and therefore results
in the cleavage at the bond < ai, aj >. Hence, all
the above parameters could be determined through
solving the following non-linear programming prob-
lem on a training peptide set P (1), P (2), ..., P (K) with
same length |P (1)| = |P (2)| = ... = |P (K)| = L

min

K∑

i=1

L∑

j=2

((αi ∗ fj ∗ C(p(i)
j−1, p

(i)
j )− Cij)2(1)

s.t.
∑

f(i) = 1, f(i) ≥ 0,

L∑

j=2

αi ∗ fj ∗ C(p(i)
j−1, p

(i)
j ) = 1.

αi ≥ 0, C(ai, aj) ≥ 0

Here, αi is an auxiliary variable, a scale factor
to meet

∑L
j=2 αi ∗ fj ∗ C(p(i)

j−1, p
(i)
j ) = 1. The ob-

jective function is the sum of square of the difference
between the theoretical and experimental intensities.

We tried some classical non-linear programming
methods but failed to find optimal solution in reason-
able time for the high rank of restriction formulas.
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Here, an iterative method was adopted to solve this
problem. The method is based on the fact that the
above formula could be reduced into a least square
problem if two of the three types of variables, e.g., αi

and C(ai, aj), were fixed, while only one types, e.g.,
f(j) was chosen as variables.

At first, all the variables are assigned with ran-
dom initial value. Each iteration loop contains three
steps corresponding to one of f(j), αi and C(ai, aj)
was chosen as variables. For example, if f(j) was
chosen as variable while C(ai, aj) and αi was fixed
with the current value, a classical optimization al-
gorithm is called to solve the least square problem
over variable f(j). So do αi and C(ai, aj). The iter-
ation loop is repeated until the value of the objective
function does not change.

It can be easily proved that the iterative algo-
rithm must converge at last. The proof is based
on the fact that the value of the objective function
is non-negative and decreases monotonously at each
step. In practice, the algorithm always converges to
a fixed point after no more than 10 iteration loops,
and experiments reach the same fixed point on differ-
ent random initializations. In addition, the charac-
teristic of the formula guarantees that only positive
solution would be found.

The algorithm to minimize the distance function
is given in Fig. 1.

3. EXPERIMENTAL RESULTS

3.1. Datasets

A public online spectrum set, AB IP, from ISB
18 was used to test our algorithm, which con-
tains spectra generated through shotgun analy-
sis of proteins from human K562 cells. We re-
stricted our analysis to doubly charged, ‘mobile’
peptide for this proof-of-concept experiment. The
spectrum set are randomly divided set into two
parts, a training set (1451 matches) and a testing
set (1425 matches). (See supplementary material
http://www.bioinfo.org.cn/MSMS/).

3.2. Position and Bond’s Influence on
Cleavage

Relationship between fragmentation probabil-
ity and cleavage site The training set was catego-

rized into several subsets with respect to the length of
peptide. On some subsets containing peptides with
same length L = 7, 8, 9, 10, 11, 12, 13, 14, 15, the re-
lationship between amino acids position and affinity
ability are calculated. Fig. 2 shows the cases where
L = 9, 11, 13, 15. Fig. 2 demonstrates that frag-
mentation occurs more often towards the middle of
a peptide than at its ends, which is consistent with
the observation given previously21, 29, 17. Moreover,
Figure 1 shows that the shorter the peptide, the more
asymmetric the curve, which supports the observa-
tion that fragmentation near the N-terminus differs
significantly from that at other sites26.

Cleavage Preference of Peptide Bonds
The statistical results of the preference of

fragmentation at all the 400 peptide bonds
are calculated (See supplementary material at
http://www.bioinfo.org.cn/MSMS/).

To justify the motivation of this work, we com-
pared the cleavage preference of Xaa-Pro bonds with
that of Xaa-Trp bonds(See Figure 3a). Figure 3a
shows that in general cases a Xaa-Pro bond has a
higher tendency to cleavage than the corresponding
Xaa-Trp bond; however, a Xaa-Pro bond is rela-
tively hard to cleavage when Xaa is Gly or Pro since
cleavage is hindered in these two cases21. This phe-
nomenon cannot be reflected correctly if simply mea-
suring the cleavage preference as the sum of residue
influence. Hence, it is more reasonable to consider
the cleavage preference in bond’s manner.

Examination of the preference data is in good
agreement with knowledge already known to mass
spectrum experts. First, some amino acids prefer
cleavage at N-terminus over C-terminus bond. For
example, it is well-known that cleavage at Pro’s
N-terminus is preferred than that at C-terminus
because attacking of the adjacent carbonyl oxy-
gen at the electropositive carbon is hindered due
to the molecular structure of Pro22. Figure 3b
shows that Xaa-Pro always has a higher possibil-
ity of fragmentation than the counterpart Pro-Xaa,
supporting that Pro tends to cleavage at its N-
terminal than C-terminal bond21. It was also re-
ported that cleavage at His-Xaa bonds are much
more often than others23, 22. As an example, Fig-
ure 3c shows a comparison between His-Xaa bonds
and Asn-Xaa bonds, which is consistent with the
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above observation. Second, fragmentation of the
Xaa-Pro bond is encouraged when Xaa is Ile(0.020),
His(0.016) or Trp(0.014), while is hindered when Xaa
is Gly(0.0018) or Pro(0.0009) (See Figure 3a). In
conclusion, the above results have strongly supports
from the“mobile proton model”, i.e., the more basic
the residue, the more large the affinity of proton, and
then the more facile the fragmentation.

3.3. Predicting Theoretical Spectrum

For a given peptide P , theoretical spectrum could
be predicted by simulating the fragmentation process
following the mobile proton model. That is, the num-
ber of cleavage events of the j− th bond can be esti-
mated to be proportional to fj∗A(pj−1)∗B(pj−1, pj).
Here, we roughly assumed that a b ion or y ion would
be formed by a cleavage event with equal probability
since the ‘effective’ temperature is unknown26.

Two examples were shown in Fig. 4, one
for “DPLLLAIIPK” containing Pro since Pro has
a unique fragmentation preference, the other for
“DAGTIAGINVMR”. Each predicted spectrum was
plotted on the lower axis below, showing reasonable
similarity to their experimental counterpart (Corre-
lation coefficient are 0.80 and 0.81, respectively).

On the test set containing 1425 pairs of spec-
tra and its corresponding peptide, theoretical spec-
trum were predicted and compared with experimen-
tal spectra. The median correlation between pre-
dicted and the practical spectra is 0.759, showing
that this method could predict a ”realistic” spec-
trum.

4. CONCLUSION AND DISCUSSION

Prediction of theoretical spectrum accurately is im-
portant to database searching methods, however,
this prediction is in great need of a quantitative
understanding of the fragmentation process. Here,
we proposed a non-linear programming methods to
estimate the factors influencing the fragmentation.
We applied this algorithm to real data, and success-
fully obtained many biological features which also
supported by some known rules of fragmentation,
demonstrating the efficiency of the methods. And
our simulated mass spectra are reasonably similar to
their experimental counterparts. Currently, we have

not taken charge +3 and non-mobile peptides into
account, and adopted a rough assumption that b-ion
and y-ion are produced with equal probability by a
cleavage event. The influence of distant amino acids
on fragmentation is also not considered in our model.
How to incorporate those factors in PI remains an
open problem.
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Algorithm to Minimize Distance Function

Input: K pairs of peptides and tandem mass spectra {(P1, S1), (P2, S2), ..., (PK , SK)},
|P (1)| = |P (2)| = ... = |P (K)| = L.
Output: Bond’s preference of cleavage C(ai, aj) for each bond < ai, aj >, Position’s influ-
ence on cleavage f(j), j = 1, 2, ..., L ;
1. Initializing C(ai, aj) and f(j) randomly;
2. Optimize formula (1) over αi with C(ai, aj) and f(j) holding the current value;
3. Optimize formula (1) over C(ai, aj) with αi and f(j) holding the current value;
4. Optimize formula (1) over f(j) with C(ai, aj) and f(j) holding the current value;
5. Repeat step 2-4 until the objective function value converges.
6. Output C(ai, aj) and f(j).

Fig. 1. Algorithm to Minimize Distance Function

Fig. 2. Relationship between Proton Affinity and Cleavage Site. (L=9,11,13,15)
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Fig 3a Fig 3b Fig 3c

Fig. 3. Bonds Preference for Proton Affinity and Cleavage

Fig. 4. Simulated and Experimental Spectra for ’DAGTIAGINVMR’ and ’DPLLLAIIPK’
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