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Traditional algorithms for the structure determinationnafive proteins by solution nuclear magnetic resonance RNSpectroscopy
require a large number of experimental restraints. Thegmitims formulate the structure determination problernthascomputation
of a structure or a set of similar structures that best fit #straints. However, for both laboratory-denatured antlelgtdisordered

proteins, the number of restraints measured by the curré®R Kechniques is well below that required by traditional caithms.

Furthermore, there presumably exists a heterogeneoud setictures in either the denatured or disordered statepi&ent a data-
driven algorithm capable of computing a set of structuresdéeble) directly from sparse experimental restraints.beth denatured
and disordered proteins, we formulate the structure détetion problem as the computation of an ensemble of strestfrom the
restraints. In this formulation, each experimental restris a distribution. Compared with previous algorithmsy algorithm can
extract more structural information from the experimentata. In our algorithm, all the backbone conformations test with the

data are computed by solving a series of low-degree monsrfy@lding exact solutions in closed form) and systemag@rsh with

pruning. The algorithm has been successfully applied terdene the structural ensembles of two denatured protaiyd;coenzyme
A binding protein (ACBP) and eglin C, using real experimé&IR data.

1. INTRODUCTION progress has been made in understanding how the struc-

The protein folding problem is fundamental in structural i[ure defines the biological function of native proteins, it

biology. It can be stated as the problem of elucidating is not well-known how the structures of disordered pro-

. . teins determine their function. For denatured proteins,
how a protein can fold, in less than a second, from the P

. an accurate, quantitative structural distribution is key t
denatured state to the native state. One challenge to solv- q y

. . . solving the protein-folding problerif- 2%, while for dis-
ing the folding problem is the lack of knowledge about 9 P ) gp A

L . ordered proteins, an accurate distribution of the strestur
the structures of proteins in tldenatured stateln this

paper, “denatured state” means the state in which theis critical for establishing the structure-function réat
backb’one NH groups have little protection agaihit ship. To quantify the structural distribution, it is neces-

. sary to compute the ensemble of structures directly from
/ 2H-exchange. It has been estimated that about one- y P y

. . ) : . experimental data. At present, NMRs the only avail-
third of eukaryotic proteins are disordered or partially- _ L

. . . . ) . . able technique that can measure many individual struc-
disordered in their native state in solution. Such natively . . .

. . L .~ tural restraints for these proteins. However, even using
disordered proteins play key roles in signal transduction .

. . . . I;]he most advanced NMR technigues, the number of mea-

and genetic regulation as well as in human diseases suc

as Alzheimer's and Parkinson's diseases. Although rnuchsured restraints is well below that required by traditional
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molecular dynamics; SA, simulated annealing.
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NMR structure determination methods'!. Further- 1.1. Organization of the paper
more, these methods formulfate the structure determlna-We begin with a probabilistic interpretation of NMR data
tion problem as the computation of a structure (or a set of.

e . ) in the denatured state in terms of equilibrium statistical
similar structures) that best fit the restraints. Such a for’physics. Section 3 presents a formulation of the structure

mulation is appropriate for the structure determination of determination problem of denatured proteins using ex-

a native protein having a_s'”g'e dominant conformatpn. perimental NMR data such as the orientational restraints
However, a new formulation is necessary for computing ¢, (ocidual dipolar coupling (RDCY> 2 and dis-
the structures of either denatured or disordered proteins

_ i _ tance restraints from paramagnetic relaxation enhance-
which are presumably heterogeneous in solutibr4.

ment (PRE)! experiments. Section 4 reviews existing

I_n this paper, we first formulate the s_tructure determma- approaches. Section 5 presents the mathematical basis
tion problem of both denatured and disordered proteins a5 the algorithm. Section 6 describes our algorithm for

the determination of a heterogeneous ensemble of Strucéomputing an ensemble of structures. Section 7 presents

tures, from sparse exp_erlmental restraints measured |_n e'briefly the results of applying our algorithm to compute
ther the denatured or disordered state. In this formulation the structural ensembles of two denatured proteins, acyl

thg restramt_s ardistributions We then present_a data- coenzyme A binding protein (ACBP) and eglin C, from
driven algorithm capable of accurately-computing dena- real, experimental NMR data. Finally, in section 8 we

tured backbqne structures dlrectly from sparse rest.nalnts analyze the complexity of the algorithm and describe its
In our algorithm, the conformational space consistent performance in practice.

with the data is searched systematically, rather than ran-

domly as in previous approach&s 4 16: 6 The algo-

rithm uses considerably more experimental data than pre2. A PROBABILISTIC

vious approaches for characterizing the denatured state INTERPRETATION OF RESTRAINTS
from experimental datd’ ' 4. The larger amount of IN THE DENATURED STATE

data, together with the systematic search, significantly in Our algorithm first computes both the backbone dihe-
creasg the accuracy of the comput.ed ensembleg I.n th%ral angles and the orientation of each structural frag-
following, we only present the algorithm and application ment independently using the orientational restraints

to denatured proteins. The algorithm can be applied ©from RDCs, and then assembles the computed structural
natively-disordered proteins as well. Our contributions fragments into a complete structure using the distance re-
are. straints from PREs. Our algorithm is based on a new for-
: S mulation for structure determination in which each ex-
(1) A new formulation of the structure determination _ o o
perimental restraint is converted to a distribution. In the

problem for denatured proteins. following, we present the physical basis for the formula
(2) A data-driven, systematic search algorithm for com- . g P phy

. ion
puting an ensemble of all-atom backbone structures . :
. . . RDCs can be measured on proteins weakly-aligned

for denatured proteins directly from experimental .

in a dilute liquid crystal mediun?>- 26, The RDC,r,
data.

L . between two nuclear spins is related to the direction of
(3) Successful application of the algorithm to compute L .
. the corresponding internuclear unit vectoe (z,y, 2)
the structure ensembles of two denatured protemsb 99
from real, biological NMR data. v
_ _ 7= Spxt® + Syyy? + S..27 1)
This paper concentrates on the computer science aspects
of the algorithm. We will only describe briefly the appli- whereS,,, Sy, andS.,. are the three diagonal elements
cations of the algorithm to two real biological systems. of a diagonalized Saupe mati$«(the alignment tensor)
The biological significance of our results and the use of specifying the ensemble-averaged anisotropic oriemtatio
the computed ensembles to understand protein foldingof a molecule in the laboratory frame;y andz are, re-

will be addressed in detail in another paper. spectively, ther, y, z—components ok in a principal

b A structural fragment consists ef-consecutive residues; typicaly. ~ 10.
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order frame (POFwhich diagonalize$. Before diag- PRE-derived distancd, in the denatured state, is also a
onalizationS is a 3x 3 symmetric, traceless matrix with random variable, where the measured value is an average
five independent elements. Note thdt+ 32 + 22 = 1 over all the possible structures in the denatured state.
andS;, + Syy + S.. = 0. Thus, given both the RDE

and tensofS, Eq. (1) represents the projection onto a 2- 3 THE STRUCTURE DETERMINATION

sphere of an ellipse of solutions for the orientation of the PROBLEM FOR DENATURED

vectorv with respect to a global frame (PO&)mmorto PROTEINS

all the RDCs measured on the same aligned protein. Ten-

sorS must be known first in order to extract orientational AS 1S Well known, given bond length, bond angle and pep-
restraints from RDC data. RDCs alone or in combina- id€ planew angle, the backbone conformation of an
tion with other NMR-measured geometric restraints have "€Sidué protein is completely determined bgzatuple
been used extensively to determine and refine the solutiorP Packbone dihedral angles, = (¢1, ¢, ..., ¢n, Pn),
structures of native proteirfs2’. where(¢;, ;) are the dihedral angles of residiieThis

Recently, it has been shown that RDCs can also be2n-tuple will be called a&onformation vectare,,. In fact,

measured accurately on weakly-aligned, denatured pro-the sines and cosines of te (¢, v)) angles are sufficient

teins23 2 18.9 and disordered proteiris For a folded, to determine a backbone conformation. The structure de-

nativen-residue protein, aingleglobal tensorS, can be termination problem for a denatured protein is to compute
used to interpret all the experimental RDCs by Eq. (1). an ensemble of presumably heterogeneous structures that
However, according to equilibrium statistical physlés are consistent with the experimental data within a rela-
asetof tensors(, is required to interpret the RDCs mea- tive large range for the data. More precisely, the structure
sured in the denatured state. Each tensor in theQset determination problem for denatured proteins can be for-

represents a cluster of denatured structures that have sinfiulated as the computation of a set of conformation vec-
ilar structures and align similarly in the medium. The tors, c,,, given the distributions for all the RDGsand for
set of RDCs corresponding to each tensor in the(¥et all the PREs.
can be sampled from the individual distributions associ-
ated with each measured RDC. The distribution for each4. PREVIOUS WORK
RDC can be defined by &DC random variabl¢hathas  gojytion NMR spectroscopy is the only experimental
as its sampling space the RDCs of all the orientations Oftechnique currently capable of measuring geometric re-
the corresponding vecterin different structures that ex-  gyraints for individual residues of a denatured protein
ist in the denatured state. The experimentally-measuredy; the atomic level. Traditional NMR structure deter-
RDC value is thexpectationThe different tensors in the mination method$: !', developed for computing struc-
setQ represent different conformations in the denatured y,reg in the native state, require more than 10 restraints
state that are oriented differently in the aligning medium.
The tensosS is also a random variable.

Paramagnetic relaxation enhancement (PRE) is sim

per residue, derived mainly from NOE experiments, to
compute a well-defined native structure. Recently de-
‘veloped RDC-based approaches for computing native

ilar to the nuclear Overhauser effect (NOE)in erms  structures rely on either heuristic approaches such as re-
of physics. However, PRE can be Obsef\/ed even in the girained molecular dynamics (MD) and simulated an-
denatured state between an electron spin and a ”Ude"’]ﬁealing (SA)'- 13 or a structural database?!. It is

spin as far as 28 away, while no NOE between two nU- ot clear how to extend these native structure determina-
clear spins can be observed at such a distance. The reasqp, approaches to compute the desired denatured struc-
is that PRE is almost 2,000-fold stronger than the NOE. res Traditional NOE-based approaches cannot be used
In fact, long-range NOEs, which are critical for comput- g;ce long-range NOES, which are critical for applying

ing structures using traditional methads,” are 9ener-  the traditional approaches to determine NMR structures,
ally too weak to be detected on denatured proteins. Theg o usually too weak to be detected in the denatured

°The main difference between PRE and NOE is that PRE resuwlis fne dipole-dipole interaction between an electron andckens while the
physical basis of NOE is the dipole-dipole interaction kedw two nuclei. Under the isolated two spin assumption, B&E and NOE (that is, the
observed intensity of cross-peaks in either a PRE or NOErerpat) are proportional to—¢ wherer is the distance between two spins.
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state! Previous RDC-based MD/SA approaches typi- All-atom models for the denatured state have been
cally require either more than 5 RDCs per residue or computed previously in a generate-and-test mann&ft in
at least 3 RDCs and 1 NOE per residue (most of themby using PREs to select the structures from all-atom MD
should be long-range) to compute a well-defined native Simulation at high temperature. Due to the data sparsity
structure. In the database-based approaches, RDCs a@nd large experimental errors, PREs alone are, in gen-
employed to select structural fragments mined from the eral, insufficient to define precisely even the backbone
protein databank (PDB), a database of experimentally- Ca-trace. The generated models have large uncertainty.
determinechative structures. A backbone structure for A generate-and-test approathusing mainly NOE dis-
a native protein is, then, constructed by linking together tance restraints has been developed to determine the en-
the RDC-selected fragments using a heuristic method.semble of all-atom structures of an SH3 domain in the
Compared with the MD/SA approaches, the database-unfolded state in equilibrium with a folded st&tddow-
based approaches require fewer RDCs. However, thes€Ver, the relatively large experimental errors as well as th
database-based approaches have not been extended $arsity and locality of NOEs similarly introduce large
compute structures for denatured proteins. In summary,uncertainty in the resulting ensemble of structures, which
neither the traditional NOE-based methods nor the abovewas selected mainly by the NOEs.
RDC-based approaches can be applied to compute all-
atom backbone structures in the denatured state at this
time. 5. THE MATHEMATICAL BASIS OF

Recently, approached’ * have been developed to OUR ALGORITHM
build structural models for the denatured state using oneQur algorithm uses a set of low-degree4) monomials
RDC per residue. These approaches are generate-andor computing exactlyandin constant timethe sines and
test. They begin with the construction of a library of cosines of individual backbone dihedr@t, /) angles.
backbone(¢, 1) angles using only the angles occurring These monomials have been derived from the RDC equa-
in the loops of thenativeproteins deposited in the PDB.  tjon (1) and protein backbone kinematics, and have been
Then, theyrandomlyselect(¢, 1) angles from the library  described in detail elsewhet& 23 31, In the following,
to build an ensemble of backbone models. Finally, the for ease of exposition, we state the monomials for com-
models were tested by comparing the experimental RDCsputing, respectively, the sine and cosine of the backbone
with the average RDCs back-computed from the ensem-¢ angle from a CH RDC and those ¢f angle from an
ble of backbone structures. There are three problems withNH RDC 28. NH and CH RDCs denote, respectively,
these methods. First, th@, ) angle library is biased the RDCs measured on NH and CH bond vectors. Start-
since only the(¢, v) angles from the loops of theative  ing with peptide plane, we can compute the sines and
proteins are used. Consequently, the models constructedosines of thes;, v); angles, respectively, from the CH
from the library may bias towards the native conforma- RDC of residue and the NH RDC of residui+ 1 using
tions in the PDB. Second, random selection may missthe following two Propositions:
valid conformations. Third, the agreement of the ex-
perimental RDCs with the average RDCs back-computedproposition 5.1 28 Given the orientation of peptide plane
from the ensemble of structures may result from over- ; in the POF (see section 2) of RDCs, the&omponent
fitting. Over-fitting is likely since one RDC per residue of the CH unit vectom of residuei, in the POF, can be
is not enough to restrain the orientation of an internuclearcomputed from the CH RDC by solving a quartic mono-
vector (such as the NH bond vector) to a finite set. In fact, mial in z. Given ther-component, thg-component can
given an alignment tens®, an infinite number of back-  pe computed from Eq. (1), and thecomponent from
bone conformations can agree with one RDC per residueg? + 42 4+ »2 = 1. Givenu, the sine and cosine of the

while only a finite number of conformations agree with angle can be computed by solving linear equations.
two RDCs per residu&’ 28, 31,

dThe denatured state in this paper (see section 1) has béed ttad “unfolded state20.
¢An unfolded state in equilibrium with a folded stdtediffers from thedenatured statén this paper. InS, the observed NOEs result from the
equilibrium between the folded and unfolded states, naohftioe unfolded state alone.
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Proposition 5.2 22 Given the orientation of peptide our previous algorithm®: 28: 31 for computing the back-
planei in the POF of RDCs, the-component of the bone structures afativeproteins. The goal of the present
NH unit vectorv of residuei + 1, in the POF, can be  algorithm is to compute a presumably heterogenenus
computed from the NH RDC by solving a quartic mono- sembleof structures that are consistent with the exper-
mial in z. Given thez-component, thg-componentcan imental data within a large range, rather thasimgle
be computed from Eq. (1), and thecomponent from  structure or a set of similar structures that best fits the
2?2 + 92 4 2% = 1. Givenv, the sine and cosine of thg data (as in the native state). For the native statgina
angle can be computed by solving linear equations. gletensor,S, can be used to interpret all the experimen-
tal RDCs by Eq. (1). Moreover, for native proteins, this
According to Propositions 5.1-5.2, given the orien- single tensor can be determined during structure compu-
tation of peptide plane (plane: stands for the peptide tation (if secondary structure elements are kngWwns®).
plane for residué in the protein sequence), the sines and However, it is physically infeasible to use a single ten-
cosines of the backbong, v); angles can be computed, sor to interpret all the experimental RDCs on a denatured
exactlyin closed form, from the CH RDC of resida@nd protein (see section 2). Rather one should use a(¥et,
the NH RDC of residué+1. Furthermore, the orientation  of different tensors to compute all the possible different
of the peptide plane for residuet 1 can be computed, conformations in the denatured state. This set of tensors
exactlyin closed form, from the orientation of the peptide Q is updated continuously during the structure compu-
plane for residue and the sines and cosines of the inter- tation. Our algorithm computes the ensemble using a
vening¢;, v; angles. Thus, given a tens8r the orien-  divide-and-conquer strategy for efficiency.
tation of the peptide plane for residuidthe first peptide
plane) of the protein sequence, and CH and NH RDCs,
all the sines and cosines of backbdtey) anglescanbe ~ 6.1. Divide-and-conquer strategy
computed from RDCs by solving a series of quartic and The algorithm first divides the entire protein sequence
linear equations. Thus, the set of conformations consis-into 5 fragments, F, .. F,, and p — 1 linkers,
tent with two RDCs per residue is finite and algebraic. In | | L,_1 (Fig. 1). A I|nker consists of the residues

conclusion, given bond length, bond angle, peptide planepetween two neighboring fragments. Next, the algorithm
w angle, and the orientation of the first peptide plane ascomputesindependentlyan ensemble of structuréd/;,
well as atensa$, and a set of two RDCs per residue sam- for each fragment wherei = 1,...,p. This step is
pled from the RDC distributions (see section 2), a finite calledFragment computatio(Fig. 2) and will be detailed
and algebraic set of backbone conformations can be dejn Section 6.2. Next, for each structure in ensenile,
termined exactly. Furthermore, this set of conformations,; _— 1,...,p, we compute the corresponding tensor

can be computed by a systematic search such as a deptyy singular value decomposition (SVE) and save each
first search over &-ary tree where: < 64, the maxi- ¢ into a setT;. Given a structure and the experimental

mum number of solutions fof¢, v) angles for a single  RpCs, a tensa® can be computed by using SVD to min-
8,29 T
residue? Taken together, we have stated the math- imize the RDC RMSDE, — S (rh—r;)?

, Where
u—1
ematical basis of our algorithm, that is, an ensemble of w is the total number of RDCs for fragment, Fr and
denatured structures can be computed exactly by solvmgT,
; | h with dedreot gif- are, respectively, the experimental RDC for residue
a series of monomials each with degreed using di . J of F; and the RDC back-computed from the structure
ferent sets of two RDCs per residue sampled from their

T _ using the tensoS by Eg. (1). As shown in Eq. (1),
distributions and the corresponding tens®fsom the set . o . L
Q given a structurey’ is a function ofS so by minimiz-

ing E,, S can be computed by SVEY. Next, the algo-

rithm merges all the tensorsinthe sétg i = 1,...,p,

into p-tuples, €1, ..., t,), such that; is from the sefT’;
DETERMINATION OF DENATURED and allp tensors in g-tuple have theiS,, andsS. . val-
PROTEINS ues agree with one another up to the ranges defined by

Our algorithm for computing the structure ensemble of [S,, —0d,y, Syy+0y,] @and[S..—0d.., S..+4..| wherej,,

adenaturedprotein extends but differs substantially from andd, ., are thresholds. For each mergetliple, the algo-

6. AN ALGORITHM FOR STRUCTURE
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rithm then computes their common tensor by SVD using model consists of alanine, glycine and proline residues
the corresponding structuresW,, i = 1,...,p and all with proton coordinates. If a residue is neither a glycine
the experimental RDCs for;Fi = 1,...,p, and saves nor a proline in the protein sequence, it is replaced with
the common tensors into a @t The diagonalization of an alanine residue. If the vdW distance between two
the tensor returned from SVD gives not only the diagonal atoms computed from the model is larger than the min-
elementsS,., Sy, andsS.., but also the orientation for imum vdW distance between the two atoms, the contri-
each fragment in the common POF as well. In particu- bution of this pair of atoms t&,, is set to zero. Since the
lar, the orientations of all the peptide planes in the POF (¢, ¢) angles are computed from the sampled CH and NH
are returned from SVD where the first and last peptide RDCs by exact solution, the back-computed NH and CH
planes are used for computifig, ') angles from RDCs  RDCs are in fact the same as their sampled values. For
by Propositions 5.1-5.2. Finally, the algorithm computes additional RDCs (CCor NC' RDCs), E,. is minimized

the linkers,L1, ..., L,_1, Using every common tensor in  as cross-validation using Eq. (2). For each sampled set
Q and assembles the corresponding fragments and link-of RDCs, R;,t = 1,...,b, the output of this system-
ers into complete backbone structures. This step is calledatic search step is the optimal conformation veetgrin
Linker computation and asseml§iig. 3) and will be de-  Fig. 2. The search step is followed by an SVD step to up-

tailed in Section 6.3. date tensorsSy;, using the experimental RDCs and the
just-computed fragment structure. Next, the algorithm
6.2. Fragment computation repeats the cycle of systematic search followed by SVD

A structure ensembléV;, of anm-residue fragment F (systematic-search/tensor-update) to compute a new en-
is computed as follows (Fig. 2). First, the algorithm es- semble of structures using each of the newly-computed
timates an initial tensd8o ; by SVD using experimental ~ €NsorsSu, ¢ = 1,....b. The output of the fragment
RDCs and a model built with the backbofie 1) angles computation for a fragment is a set of conformation

for polyprolinell. The algorithm then selecksdifferent ~ VECtOrSChuw, w = 1,..., b", wheref is the number of
sets of RDCSR, .. ., Ry, for the fragment by randomly the cycles of systematic search/tensor-update.

sampling CH and NH RDC values from their respective

normal distributions. Next, for eadR;, t = 1,...,b, the 6.3. Linker computation and assembly

algorithm computes an optimal conformation vectgy,

by systematically searching over all the possible confor-
mation vectorsg,, of 2m-tuples(¢1,¥1, ..., om, ¥m),
computed fromR; where theg, angle for residué: is
computed according to Proposition 5.1 from the sampled
CH RDC for residué:, and theyy, angle is computed ac-
cording to Proposition 5.2 from the sampled NH RDC for
residuek + 1. An optimal conformation vector is a vector
which has the minimum score under a scoring function
T, defined as

Given a common tens&@ in setQ and the orientations of
two fragments Ir and k; in the POF forS, anm-residue
linker L; between them is computed as shown in Fig. 3.
The computation of a linker can start from either its N-
terminus as detailed in Fig. 3 or from its C-terminus, de-
pending on the availability of experimental data. For the
latter, the interested reader can see the Propositions 10.1
and 10.2 ( section 10 of APPENDIX) for the detail. Every
two consecutive fragments are assembled (combined),
cursively into a single fragment and the process stops

T, =E?+w,E? 2 when all the fragments have been assembled. The scor-

S— - ing function for the linker computatiorT,, , is computed

where E, = \/ iz 2is () g the RDC similarly to 7', .

um—1

RMSD, u is the number of RDCs for each residue,
and r;k are, respectively, the experimental RDC for
RDC j’ of residuek, and the corresponding RDC back- The main difference is thakt, for a linker is computed
computed from the structure. The variabtes and E, with respect to an individual structure composing of all
are, respectively, the relative weight and score for van derthe previously-computed and linked fragments, and the
Waals (vdW) repulsion. For each conformation vector current linker built with the backbon®, v/) angles com-
¢, of afragmentf, is computed with respectto a quasi- puted from RDCs. In addition, the PRE violatioB,,
polyalanine model built witke,,,. The quasi-polyalanine  which is essentially the PRE RMSD for an individual

T, = E} + w,E; + w,E, (3)
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Protein Sequence
ﬂ Divide
Fragments / Linkers F1, L1, Fo, Ly, - - + Fp1,Lp1, Fp _
| | | | | Fragment
. 'Computation
Structure Ensembles Wy wo C e W w,
| | | | | Tensor
Sets of Tensors T1 T c e Tot T, 4l Update
| Merge:
Syy + Syy and
\v/ +
Set of Tuples (t, to - toq o)+ + o (b, ot t) Y Szz £ 82z
/ § Tensor
Updat
Set Q of Common s y Update
Alignment Tensors 1 e
\ Linker
Computation
Linkers Frli—Fo—Lz2 == Fpa—Lp1 =Fp Fmly—Fo—lo == Fp—Lp1 —Fp Y
Assemble
VVV
Ensemble Cq, Co, *=*°" , C I Cq, Cop, "*=*- ,
12 a4 1 =2 dq

Fig. 1. Divide-and-conquer strategy. The input to the algorithm is: the protein sequence, at lestRDCs per residue in a single
medium and PREs (if available). The tergjsdenote conformation vectors for the complete backbonetsire. Please see the text
for the definitions of other terms and an explanation of tige@thm.

So, 1
Systematic
R Ry
1R Rp-1 Search
Ensemble of c c Ce e
conformation vectors: 1,1 1,2 b1 Cqp
| | | | Tensor
Set of alignment S S B Update
tensors: 11 1.2 1,61 Stp
R1 R R R Systematic
R o | i ! Rp-1 © Search
Ensemble of ‘ ;
conformation vectors: €21 €y o - - © Gy . © €2, b(b-1) Cp p?
| | | | | Tensor
Update
Set W | 82, 1 82Y 2 . . . Sz’j . . . 82‘ b(b -1) SZ, b2 p

Fig. 2. Fragment computation: the computation of a structure ensemble of a fragment. The figure shows only two cycles of systematic
search followed by SVD. Please see the text for the defindfderms and an explanation of the algorithm.

structure composing of all the previously-computed and the experimental PRE distance and the distance between
linked fragments and the current linker, is computed astwo C, atoms back-computed from the model, ant
B, = /290" \hered; andd are, respectively, the number of PRE restraints. An experimental PRE dis-

a—1
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tance restraint is between twq,@toms computed from  m-residue fragments and— 1 m-residue linkers and let

the PRE peak intensitif. If d; < d;, the contribution  the size of samplings bk The systematic-search step
of PRE violationi to E, is set to zero. This search step in Fragment computation take&3(bpf™) time to com-

is similar to our previous systematic searches as detailecpute all thep ensembles fop fragments (Fig. 2) where

in 29:28: 31 The key difference is that the linker scor- f is the number of(¢, ) pairs for each residue com-

ing function, Eqg. (3), has two new term&, and E,, puted from two quartic equations (Propositions 5.1-5.2)
and lacks the term if” 28 3! for restraining(¢,v)) an-  andpruned using a real solution filter as described®in
gles to the favorable Ramachandran region for a typicaland also a vdW filter (repulsion). A single SVD step in
a-helix or g-strand. Fig. 2 takesm5? + 53 = O(m) time. Thus,h cycles
of systematic-search/SVD takg time in the worst-case,
7. APPLICATION TO REAL wheret, = S0 pb? (f7 +m) = pPL(fm +m) =
BIOLOGICAL SYSTEMS O(pb" 1 (f™ +m) = O(pb"*!f™) since f™ is much

We have applied our algorithm to compute the structure larger tharvn. In implementationh = 8 x 1024 and

ensembles of two proteins, an acid-denatured denature(@ = 2 (see section 11 of APPENDIX). In practice, only a
ACBP and a urea-denatured eglin C, from real experi-sma” number (about 100) of structures out of all the pos-
mental NMR data ’ sible b computed structures for fragmengsection 6.2

and Fig. 2), are selected and save® (Fig. 1), that is,

Application to acid-denatured ACBP. An ensem-  the selected structures ha¥g < T, Or_TL < Tnaw

ble of 231 structures has been computed for ACBP denaWhereT}, andT; are C(_)mputed, respectively, by Eq. (2)
tured at pH 2.3. The experimental NMR ddthas both ~ and Eq. (3), andll,?az is a threshold. The Merge step
PREs and four backbone RDCs per residue: NH, CH, takeso(pu? logw) time, wherew = |W;| is the number
NC’' and CC. All the 231 structures have no vdW re- Of structures irtW;. The Merge step generatgg-tuples
pulsion larger than 0A except for a few vdW violations ~ ©f @lignment tensors, wherg = yw” andv is _the per-

as large as 0.3& between the two nearest neighbors of a centage ofp-tuples selected from the Cartesian product
proline and the proline itself. These 231 structures satisf ©f the setsT;, i = L..p, according to the ranges for
all the experimental RDCs (CH, NH, ¢@nd NC) much Syy and 5. (section 6.1). The S_VD step for comput-
better than the native structure, and have PRE violations!"9 ¢ c2ommon tensors frgrp m-resu_jue fragments takes
E,, inthe range oft.4 — 7.0 A. The native structure also q(mp5?+5°) = O(mpq) time. The linkers are computed
has very different Saupe elements,, andsS... Further and assembled top-down using a binary tree. The Linker
analysis of the computed ensemble shows that the acidSOmputation and assembly step then takeme, where

] ) ) ) ; 1 9 f2mlog b1 _gp2m
denatured ACBP is neither random coil nor native-like, £, = bg 3087 2% fR+Dm = gL )szm,l = pm

since at depttk, vdW repulsion and PRE violation are
Application to urea-denatured eglin C. Anensem-  computed for the assembled fragment consisting/of
ble of 160 structures were computed for eglin C dena- m-residue fragments and an-residue linker (Fig. 3).
tured at 8 M urea. No structures in the ensemble have aThe total time isO(pb" 1 f™ + pwPlogw + mpq +
vdW violation larger than 0A except for a few vdW vio-  bgp?™+1 f2mloertm) — O(phh+1f™ + pwPlogw +
lations as large as 0.30 The computed structures satisfy mpg + bgp*(ctVm+1fm) wherec = log f = O(1).
the experimental CH and NH RDCs much better than the The largest possible valué for f is 16 but on average
native structure. The native structure also has very differ f is about2. The largest possible value faris 1 but
ent Saupe elements,, andS... Further analysis of the  in practice, it is very small, about0~?, andq = 10°
computed ensemble also shows that the acid-denaturewith w = 100. Although the worst-time complexity is

ACBP is neither random coil nor native-like. exponential in0(h), O(m) andO(p), the parameters for
m, h, p are rather small constants in practice with typical
8. ALGORITHMIC COMPLEXITY AND values ofm = 10,h = 2,p = 6 for a 100-residue pro-
PRACTICAL PERFORMANCE tein. In practice, on a Linux cluster with 32 2.8GHz Xeon

4 Processors, 20 days are required for computing an ensem-

The complexity of the algorithm (Fig. 1) can be analyze
plexty g (Fig. 1) y ble of231 structures for ACBP, and 7 days for computing

as follows. Let the protein sequence be divided into
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Fori«< 1 to4

(1) T, ~
(2) em,i 0
(3) Forj« 1 tob
(a) Sample a set of RDC#,;, from the normal distributions for RDCs.
(b) Compute an optimal conformation vectd;n_gﬂ- — (1,91, - s dPm—2,¥m—2) by systematic search.
(c) Computep,,, 1 by Proposition 5.1 using CH RDC for residue— 1.
(d) Computey,,—1, pm andiy,, by Proposition 10.3 (section 10 of APPENDIX).
(e) Build a polyalanine model for linker;Lusing the vectoc’m,i — (P1,01,5 -+ s Pmy Ym)
(f) LinkL{toF and F. /I see figure caption for an explanation
(g) ComputeE, and a new scor&’ by Eq. (3) for the assembled fragment FL;U Fa.
(h)y £ T, < T, andEp < Prac
T, T,

Cm,i < Cm,i

I/l 4-fold degeneracy in relative orientation

/I initialize the conformation vector
/l sampling cycle

(4) Returnc,, ; // the optimal conformation vector

Fig. 3. Linker computation and Assembly. b is the number of sampling cycled?,,q. is the maximum PRE violation allowed and
set to be 7.8. The Link step, step (f), is to translate first the N-ternhiofal ; to the C-terminal of I, then translate the C-terminal
of the fragment FUL; to the N-terminal of . There exists an intrinsic 4-fold degeneracy in the retativientation between two
fragments computed using RDCs measured in a single medium.

guarantee that all the valid conformations consistent with

the experimental restraints are computed. The accurately-

computed structure ensemble makes it possible to answer

9. CONCLUSION AND BIOLOGICAL two key questions in protein folding: (a) are the struc-
SIGNIFICANCE tures in the denatured state random coils? and (b) are the

At present, we have only very limited knowledge of the denatured structures native-like? Our quantitative analy

structural distribution of either laboratory-denatured o SiS concludes that the denatured states of both ACBP and

natively-disordered proteins. The main reason is that€9lin C are neither random nor native-like.
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P. J. PloryStatistical Mechanics of Chain Moleculé3x-

puting, respectively, the sine and cosine of the backbone
¢ angle from an NH RDC and those of thieangle from a

CH RDC, starting with th€-terminusof a fragment. By
comparison, Propositions 5.1-5.2 of the main text com-
pute the(¢,v) angles from RDCs starting with the-
terminus The proof for these two propositions is very



similar to the proof for lemmas 5.1-5.2 given3h We
then present a proof for a new proposition for computing
backbond ¢, 1)) angles from oriented peptide planes. Fi-
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Proposition 10.3 Given the orientation of peptide planes
i andi + 2 and the backbone dihedral angle, the sines
and cosine of the backbone dihedral angles¢;.1 and

nally, we describe the parameters and implementation of¢;+1 can be computed exactly and in constant time.

the algorithm.

10. LOW-DEGREE POLYNOMIALS
FOR COMPUTING BACKBONE
DIHEDRAL ANGLES

The following two Propositions, 10.1 and 10.2, are a gen-
eralization of Propositions 5.3 and 5.4 6t to compute

backbone structure from the C-terminus, rather than the LG w3 = R, (¢;)RR(¢i+1)Rau(05) R (¢it1)

N-terminus. Starting with the peptide plane- 1, we
can compute backbong, v); angles, respectively, from
the NH RDC of residueé and CH RDC of residué¢ as
follows:

Proposition 10.1. Given the orientation of peptide plane
i+1inthe POF of RDCs, the-component of the CH unit
vectoru of residuei, in the POF, can be computed from
the CH RDC for residué by solving a quartic monomial
in = describing the intersection of two ellipses. Given
thez-component, thg-component can be computed from
Eq. (1) and the:-component from?+y2+22 = 1. Given

u, the sine and cosine of thg angle can be computed
by solving a linear equation.

Here, the CH vector ellipse equation is a function of the

Proof. Inthe following, small and capital bold letters de-
note, respectively, column vectors and matrices. All the
vectors are 3D vectors and all the matrices are 3D rotation
matrices. Lev 1, vs andw;, w3 denote, respectively, the
NH and G, vectors of peptide planeésandi + 2. From
protein backbone kinematics we have

Cuw,
R (03)R: (Yit1)cy

whereR is a constant matrix, ang, andc, are two con-
stant vectors anfs is a constant angle. Given the back-
bone anglep;, the matrixL is known. The matrixG; is

the rotation matrix from the POF of RDCs to a coordi-
nate frame defined in the peptide pland-rom Eq. (4),
through algebraic manipulation we can derive the follow-
ing three simple trigonometric equations satisfied by the

i, g1 andey; g angles

LGivs = R.(¢¥;)RRy(¢it1)

a1sin ;11 + b1 cosgir1 = c1
agsin;1 + ba cosip = co
as sin ¢1 + bg COS ¢1 = C3

whereaq, b1, ¢; are constants derived from the constant

1; angle. The ellipse equation has been described in demmatrix R, and the six variablesis, b, c2, a3, b3, c3, are

tail in 28,

Proposition 10.2. Given the orientation of peptide plane
i+1inthe POF of RDCs, the-component of the NH unit
vectorv of residuei, in the POF, can be computed from
the NH RDC for residué by solving a quartic monomial
in z describing the intersection of two ellipses. Given
thez-component, thg-component can be computed from
Eg. (1), and thez-component fromx? + y? + 22 = 1.
Givenv, the sine and cosine of thig angle can be com-
puted by solving a linear equation.

Here, the NH vector ellipse equation is a function of the

¢; angle. The ellipse equation has been described in de

tail previously 28.

The sine and cosine of the backbofe ) angles
of the last two residues linking two oriented fragments
can be computedexactlyandin constant time by the
following Proposition:

simple trigonometric function of thg;; angle. O

11. PARAMETERS AND
IMPLEMENTATION OF THE
ALGORITHM

Our algorithm (Figs. 1, 2, 3 of the main text) is built
upon (a)exactsolutions for backbongyp, 1) angles from
RDCs, and (b) aystematic-searcfor exploring all the
possible solutions consistent with the experimental re-
straints and biophysical properties (minimum vdW repul-
sion). However, several parameters must be chosen to
ensure the correctness and convergence of the algorithm.

We explored via computational experiments the spaces of
these parameters to find the proper values that ensure the
computed ensembles are stable. The parameters includes:

(1) division of protein sequence into fragments and link-
ers
(2) initial estimation of alignment tensors
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(3) the standard deviations of the probability distribu- are selected randomly in the range[efr, «]. As de-

tions for convolving the experimental RDCs tailed in section 6.1, the alignment tensor used to com-
(4) the size of sampling, pute the linkers is computed from the structures of frag-
(5) the number of systematic-search/SVD cycles, ments. Thus, if we exchange a fragment with a linker and

if the linker has many missing RDCs, the computed en-
In order to see their effects on the computed ensemblessemble differs, to some extent, from the original one. Our
we have run the algorithm with different initial tensors choice for division emphasizes the experimental data.

computed by SVD using either an ideathelix (¢ = The standard deviations for RDC random variables are,
—64.3°, ¢p = —39.4°), or pg-strand ¢ = —120.0°, respectively, 8.0 Hz (Hertz) for CH RDCs and 4.0 Hz for
1 = 138.0°), or polyProline Il model § = —80.0°, NH RDCs, and both are much larger than the real exper-

1 = 135.0°). We have also tested the algorithm us- imental errors, which are estimated to be less than 1.0
ing different sizesh of sampling and different numbers Hz for CH RDCs and 0.50 Hz for NH RDCs. The val-

h of the systematic-search/SVD cycles. Our computa-ues of these deviations are, respectively, about one-half
tional experiments showed that with an= 8 x 1024 of the ranges for all the experimental CH and NH RDC
andh = 2, the computed ensemble has already achievedvalues. The probability distributions used to convolve
a stable state since further increase in either h does RDCs are rather broad relative to the experimental val-
not changes the distributions of backbdiage’) angles  ues, and thus the algorithm is capable of computing most
and pair-wise backbone RMSDs between the structureof structures in the denatured state. The relative weight
in the ensembles. The largest effect appears to be howv, andw, in Eq. (2) and Eq. (3) of the main text are
the protein sequence is divided if there are missing RDCsset to be 8.0 and 2.0, respectively. The effects on the fi-
concentrated in a certain region. In the implementation, nal ensembles of these weights are minimal, since vdW
the division into fragments and linkers is based primarily repulsion is very small in the final structures, and PRE
on the availability of experimental RDCs. In general, the violation is implemented by the requirement that all the
linkers between two fragments have more missing RDCsfinal structures have no RMSD in PREs larger thai7.0
than the fragments. If no experimental data is available The function forms for both¥, and £, in Eq. (3) are

for either CH or NH RDCs, the correspondiggandq) flat-bottom-harmonic-walls.



