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Traditional algorithms for the structure determination ofnative proteins by solution nuclear magnetic resonance (NMR) spectroscopy
require a large number of experimental restraints. These algorithms formulate the structure determination problem asthe computation
of a structure or a set of similar structures that best fit the restraints. However, for both laboratory-denatured and natively-disordered
proteins, the number of restraints measured by the current NMR techniques is well below that required by traditional algorithms.
Furthermore, there presumably exists a heterogeneous set of structures in either the denatured or disordered state. Wepresent a data-
driven algorithm capable of computing a set of structures (ensemble) directly from sparse experimental restraints. For both denatured
and disordered proteins, we formulate the structure determination problem as the computation of an ensemble of structures from the
restraints. In this formulation, each experimental restraint is a distribution. Compared with previous algorithms, our algorithm can
extract more structural information from the experimentaldata. In our algorithm, all the backbone conformations consistent with the
data are computed by solving a series of low-degree monomials (yielding exact solutions in closed form) and systematic search with
pruning. The algorithm has been successfully applied to determine the structural ensembles of two denatured proteins,acyl-coenzyme
A binding protein (ACBP) and eglin C, using real experimental NMR data.

1. INTRODUCTION

The protein folding problem is fundamental in structural
biology. It can be stated as the problem of elucidating
how a protein can fold, in less than a second, from the
denatured state to the native state. One challenge to solv-
ing the folding problem is the lack of knowledge about
the structures of proteins in thedenatured state. In this
paper, “denatured state” means the state in which the
backbone NH groups have little protection against1H
/ 2H-exchange. It has been estimated that about one-
third of eukaryotic proteins are disordered or partially-
disordered in their native state in solution. Such natively-
disordered proteins play key roles in signal transduction
and genetic regulation as well as in human diseases such
as Alzheimer’s and Parkinson’s diseases. Although much

progress has been made in understanding how the struc-
ture defines the biological function of native proteins, it
is not well-known how the structures of disordered pro-
teins determine their function. For denatured proteins,
an accurate, quantitative structural distribution is key to
solving the protein-folding problem27, 20, while for dis-
ordered proteins, an accurate distribution of the structures
is critical for establishing the structure-function relation-
ship. To quantify the structural distribution, it is neces-
sary to compute the ensemble of structures directly from
experimental data. At present, NMRa is the only avail-
able technique that can measure many individual struc-
tural restraints for these proteins. However, even using
the most advanced NMR techniques, the number of mea-
sured restraints is well below that required by traditional
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NMR structure determination methods5, 11. Further-
more, these methods formulate the structure determina-
tion problem as the computation of a structure (or a set of
similar structures) that best fit the restraints. Such a for-
mulation is appropriate for the structure determination of
a native protein having a single dominant conformation.
However, a new formulation is necessary for computing
the structures of either denatured or disordered proteins,
which are presumably heterogeneous in solution19, 24.
In this paper, we first formulate the structure determina-
tion problem of both denatured and disordered proteins as
the determination of a heterogeneous ensemble of struc-
tures, from sparse experimental restraints measured in ei-
ther the denatured or disordered state. In this formulation,
the restraints aredistributions. We then present a data-
driven algorithm capable of accurately-computing dena-
tured backbone structures directly from sparse restraints.
In our algorithm, the conformational space consistent
with the data is searched systematically, rather than ran-
domly as in previous approaches14, 4, 16, 6. The algo-
rithm uses considerably more experimental data than pre-
vious approaches for characterizing the denatured state
from experimental data16, 14, 4. The larger amount of
data, together with the systematic search, significantly in-
crease the accuracy of the computed ensembles. In the
following, we only present the algorithm and application
to denatured proteins. The algorithm can be applied to
natively-disordered proteins as well. Our contributions
are:

(1) A new formulation of the structure determination
problem for denatured proteins.

(2) A data-driven, systematic search algorithm for com-
puting an ensemble of all-atom backbone structures
for denatured proteins directly from experimental
data.

(3) Successful application of the algorithm to compute
the structure ensembles of two denatured proteins
from real, biological NMR data.

This paper concentrates on the computer science aspects
of the algorithm. We will only describe briefly the appli-
cations of the algorithm to two real biological systems.
The biological significance of our results and the use of
the computed ensembles to understand protein folding
will be addressed in detail in another paper.

1.1. Organization of the paper

We begin with a probabilistic interpretation of NMR data
in the denatured state in terms of equilibrium statistical
physics. Section 3 presents a formulation of the structure
determination problem of denatured proteins using ex-
perimental NMR data such as the orientational restraints
from residual dipolar coupling (RDC)25, 12 and dis-
tance restraints from paramagnetic relaxation enhance-
ment (PRE)1 experiments. Section 4 reviews existing
approaches. Section 5 presents the mathematical basis
of the algorithm. Section 6 describes our algorithm for
computing an ensemble of structures. Section 7 presents
briefly the results of applying our algorithm to compute
the structural ensembles of two denatured proteins, acyl
coenzyme A binding protein (ACBP) and eglin C, from
real, experimental NMR data. Finally, in section 8 we
analyze the complexity of the algorithm and describe its
performance in practice.

2. A PROBABILISTIC
INTERPRETATION OF RESTRAINTS
IN THE DENATURED STATE

Our algorithm first computes both the backbone dihe-
dral angles and the orientation of each structural frag-
mentb independently using the orientational restraints
from RDCs, and then assembles the computed structural
fragments into a complete structure using the distance re-
straints from PREs. Our algorithm is based on a new for-
mulation for structure determination in which each ex-
perimental restraint is converted to a distribution. In the
following, we present the physical basis for the formula-
tion.

RDCs can be measured on proteins weakly-aligned
in a dilute liquid crystal medium25, 26. The RDC,r,
between two nuclear spins is related to the direction of
the corresponding internuclear unit vectorv = (x, y, z)

by 22,

r = Sxxx
2 + Syyy

2 + Szzz
2 (1)

whereSxx, Syy andSzz are the three diagonal elements
of a diagonalized Saupe matrixS (the alignment tensor)
specifying the ensemble-averaged anisotropic orientation
of a molecule in the laboratory frame;x, y andz are, re-
spectively, thex, y, z−components ofv in a principal

bA structural fragment consists ofm-consecutive residues; typicallym ≈ 10.
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order frame (POF)which diagonalizesS. Before diag-
onalization,S is a 3× 3 symmetric, traceless matrix with
five independent elements. Note thatx2 + y2 + z2 = 1

andSxx + Syy + Szz = 0. Thus, given both the RDCr
and tensorS, Eq. (1) represents the projection onto a 2-
sphere of an ellipse of solutions for the orientation of the
vectorv with respect to a global frame (POF)commonto
all the RDCs measured on the same aligned protein. Ten-
sorS must be known first in order to extract orientational
restraints from RDC data. RDCs alone or in combina-
tion with other NMR-measured geometric restraints have
been used extensively to determine and refine the solution
structures of native proteins7, 29.

Recently, it has been shown that RDCs can also be
measured accurately on weakly-aligned, denatured pro-
teins23, 2, 18, 9 and disordered proteins4. For a folded,
nativen-residue protein, asingleglobal tensor,S, can be
used to interpret all the experimental RDCs by Eq. (1).
However, according to equilibrium statistical physics15,
asetof tensors,Q, is required to interpret the RDCs mea-
sured in the denatured state. Each tensor in the setQ

represents a cluster of denatured structures that have sim-
ilar structures and align similarly in the medium. The
set of RDCs corresponding to each tensor in the setQ

can be sampled from the individual distributions associ-
ated with each measured RDC. The distribution for each
RDC can be defined by anRDC random variablethat has
as its sampling space the RDCs of all the orientations of
the corresponding vectorv in different structures that ex-
ist in the denatured state. The experimentally-measured
RDC value is theexpectation. The different tensors in the
setQ represent different conformations in the denatured
state that are oriented differently in the aligning medium.
The tensorS is also a random variable.

Paramagnetic relaxation enhancement (PRE) is sim-
ilar to the nuclear Overhauser effect (NOE)30 in terms
of physicsc. However, PRE can be observed even in the
denatured state between an electron spin and a nuclear
spin as far as 20̊A away, while no NOE between two nu-
clear spins can be observed at such a distance. The reason
is that PRE is almost 2,000-fold stronger than the NOE.
In fact, long-range NOEs, which are critical for comput-
ing structures using traditional methods,5, 11 are gener-
ally too weak to be detected on denatured proteins. The

PRE-derived distance,d, in the denatured state, is also a
random variable, where the measured value is an average
over all the possible structures in the denatured state.

3. THE STRUCTURE DETERMINATION
PROBLEM FOR DENATURED
PROTEINS

As is well known, given bond length, bond angle and pep-
tide planeω angle, the backbone conformation of ann-
residue protein is completely determined by a2n-tuple
of backbone dihedral angles,cn = (φ1, ψ1, . . . , φn, ψn),
where(φi, ψi) are the dihedral angles of residuei. This
2n-tuple will be called aconformation vector, cn. In fact,
the sines and cosines of the2n (φ, ψ) angles are sufficient
to determine a backbone conformation. The structure de-
termination problem for a denatured protein is to compute
an ensemble of presumably heterogeneous structures that
are consistent with the experimental data within a rela-
tive large range for the data. More precisely, the structure
determination problem for denatured proteins can be for-
mulated as the computation of a set of conformation vec-
tors,cn, given the distributions for all the RDCsr and for
all the PREsd.

4. PREVIOUS WORK

Solution NMR spectroscopy is the only experimental
technique currently capable of measuring geometric re-
straints for individual residues of a denatured protein
at the atomic level. Traditional NMR structure deter-
mination methods5, 11, developed for computing struc-
tures in the native state, require more than 10 restraints
per residue, derived mainly from NOE experiments, to
compute a well-defined native structure. Recently de-
veloped RDC-based approaches for computing native
structures rely on either heuristic approaches such as re-
strained molecular dynamics (MD) and simulated an-
nealing (SA)10, 13 or a structural database8, 21. It is
not clear how to extend these native structure determina-
tion approaches to compute the desired denatured struc-
tures. Traditional NOE-based approaches cannot be used
since long-range NOEs, which are critical for applying
the traditional approaches to determine NMR structures,
are usually too weak to be detected in the denatured

cThe main difference between PRE and NOE is that PRE results from the dipole-dipole interaction between an electron and a nucleus while the
physical basis of NOE is the dipole-dipole interaction between two nuclei. Under the isolated two spin assumption, bothPRE and NOE (that is, the
observed intensity of cross-peaks in either a PRE or NOE experiment) are proportional tor−6 wherer is the distance between two spins.
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state.d Previous RDC-based MD/SA approaches typi-
cally require either more than 5 RDCs per residue or
at least 3 RDCs and 1 NOE per residue (most of them
should be long-range) to compute a well-defined native
structure. In the database-based approaches, RDCs are
employed to select structural fragments mined from the
protein databank (PDB)3, a database of experimentally-
determinednativestructures. A backbone structure for
a native protein is, then, constructed by linking together
the RDC-selected fragments using a heuristic method.
Compared with the MD/SA approaches, the database-
based approaches require fewer RDCs. However, these
database-based approaches have not been extended to
compute structures for denatured proteins. In summary,
neither the traditional NOE-based methods nor the above
RDC-based approaches can be applied to compute all-
atom backbone structures in the denatured state at this
time.

Recently, approaches14, 4 have been developed to
build structural models for the denatured state using one
RDC per residue. These approaches are generate-and-
test. They begin with the construction of a library of
backbone(φ, ψ) angles using only the angles occurring
in the loops of thenativeproteins deposited in the PDB.
Then, theyrandomlyselect(φ, ψ) angles from the library
to build an ensemble of backbone models. Finally, the
models were tested by comparing the experimental RDCs
with the average RDCs back-computed from the ensem-
ble of backbone structures. There are three problems with
these methods. First, the(φ, ψ) angle library is biased
since only the(φ, ψ) angles from the loops of thenative
proteins are used. Consequently, the models constructed
from the library may bias towards the native conforma-
tions in the PDB. Second, random selection may miss
valid conformations. Third, the agreement of the ex-
perimental RDCs with the average RDCs back-computed
from the ensemble of structures may result from over-
fitting. Over-fitting is likely since one RDC per residue
is not enough to restrain the orientation of an internuclear
vector (such as the NH bond vector) to a finite set. In fact,
given an alignment tensorS, an infinite number of back-
bone conformations can agree with one RDC per residue,
while only a finite number of conformations agree with
two RDCs per residue29, 28, 31.

All-atom models for the denatured state have been
computed previously in a generate-and-test manner in16

by using PREs to select the structures from all-atom MD
simulation at high temperature. Due to the data sparsity
and large experimental errors, PREs alone are, in gen-
eral, insufficient to define precisely even the backbone
Cα-trace. The generated models have large uncertainty.
A generate-and-test approach6 using mainly NOE dis-
tance restraints has been developed to determine the en-
semble of all-atom structures of an SH3 domain in the
unfolded state in equilibrium with a folded state.e How-
ever, the relatively large experimental errors as well as the
sparsity and locality of NOEs similarly introduce large
uncertainty in the resulting ensemble of structures, which
was selected mainly by the NOEs.

5. THE MATHEMATICAL BASIS OF
OUR ALGORITHM

Our algorithm uses a set of low-degree (≤4) monomials
for computing,exactlyandin constant time, the sines and
cosines of individual backbone dihedral(φ, ψ) angles.
These monomials have been derived from the RDC equa-
tion (1) and protein backbone kinematics, and have been
described in detail elsewhere29, 28, 31. In the following,
for ease of exposition, we state the monomials for com-
puting, respectively, the sine and cosine of the backbone
φ angle from a CH RDC and those ofψ angle from an
NH RDC 28. NH and CH RDCs denote, respectively,
the RDCs measured on NH and CH bond vectors. Start-
ing with peptide planei, we can compute the sines and
cosines of theφi, ψi angles, respectively, from the CH
RDC of residuei and the NH RDC of residuei+ 1 using
the following two Propositions:

Proposition 5.1 28 Given the orientation of peptide plane
i in the POF (see section 2) of RDCs, thex-component
of the CH unit vectoru of residuei, in the POF, can be
computed from the CH RDC by solving a quartic mono-
mial in x. Given thex-component, they-component can
be computed from Eq. (1), and thez-component from
x2 + y2 + z2 = 1. Givenu, the sine and cosine of theφi

angle can be computed by solving linear equations.

dThe denatured state in this paper (see section 1) has been called the “unfolded state”20.
eAn unfolded state in equilibrium with a folded state6 differs from thedenatured statein this paper. In6, the observed NOEs result from the
equilibrium between the folded and unfolded states, not from the unfolded state alone.
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Proposition 5.2 28 Given the orientation of peptide
plane i in the POF of RDCs, thex-component of the
NH unit vectorv of residuei + 1, in the POF, can be
computed from the NH RDC by solving a quartic mono-
mial in x. Given thex-component, they-component can
be computed from Eq. (1), and thez-component from
x2 + y2 + z2 = 1. Givenv, the sine and cosine of theψi

angle can be computed by solving linear equations.

According to Propositions 5.1–5.2, given the orien-
tation of peptide planei (planei stands for the peptide
plane for residuei in the protein sequence), the sines and
cosines of the backboneφi, ψi angles can be computed,
exactlyin closed form, from the CH RDC of residuei and
the NH RDC of residuei+1. Furthermore, the orientation
of the peptide plane for residuei + 1 can be computed,
exactlyin closed form, from the orientation of the peptide
plane for residuei and the sines and cosines of the inter-
veningφi, ψi angles. Thus, given a tensorS, the orien-
tation of the peptide plane for residue1 (the first peptide
plane) of the protein sequence, and CH and NH RDCs,
all the sines and cosines of backbone(φ, ψ) angles can be
computed from RDCs by solving a series of quartic and
linear equations. Thus, the set of conformations consis-
tent with two RDCs per residue is finite and algebraic. In
conclusion, given bond length, bond angle, peptide plane
ω angle, and the orientation of the first peptide plane as
well as a tensorS, and a set of two RDCs per residue sam-
pled from the RDC distributions (see section 2), a finite
and algebraic set of backbone conformations can be de-
termined exactly. Furthermore, this set of conformations
can be computed by a systematic search such as a depth-
first search over ak-ary tree wherek ≤ 64, the maxi-
mum number of solutions for(φ, ψ) angles for a single
residue28, 29. Taken together, we have stated the math-
ematical basis of our algorithm, that is, an ensemble of
denatured structures can be computed exactly by solving
a series of monomials each with degree≤ 4 using dif-
ferent sets of two RDCs per residue sampled from their
distributions and the corresponding tensorsS from the set
Q.

6. AN ALGORITHM FOR STRUCTURE
DETERMINATION OF DENATURED
PROTEINS

Our algorithm for computing the structure ensemble of
adenaturedprotein extends but differs substantially from

our previous algorithms29, 28, 31 for computing the back-
bone structures ofnativeproteins. The goal of the present
algorithm is to compute a presumably heterogeneousen-
sembleof structures that are consistent with the exper-
imental data within a large range, rather than asingle
structure or a set of similar structures that best fits the
data (as in the native state). For the native state, asin-
gle tensor,S, can be used to interpret all the experimen-
tal RDCs by Eq. (1). Moreover, for native proteins, this
single tensor can be determined during structure compu-
tation (if secondary structure elements are known29, 28).
However, it is physically infeasible to use a single ten-
sor to interpret all the experimental RDCs on a denatured
protein (see section 2). Rather one should use a set,Q,
of different tensors to compute all the possible different
conformations in the denatured state. This set of tensors
Q is updated continuously during the structure compu-
tation. Our algorithm computes the ensemble using a
divide-and-conquer strategy for efficiency.

6.1. Divide-and-conquer strategy

The algorithm first divides the entire protein sequence
into p fragments, F1, . . . ,Fp, and p − 1 linkers,
L1, . . . ,Lp−1 (Fig. 1). A linker consists of the residues
between two neighboring fragments. Next, the algorithm
computes,independently, an ensemble of structures,Wi,
for each fragmenti where i = 1, . . . , p. This step is
calledFragment computation(Fig. 2) and will be detailed
in Section 6.2. Next, for each structure in ensembleWi,
i = 1, . . . , p, we compute the corresponding tensorti

by singular value decomposition (SVD)17 and save each
ti into a setTi. Given a structure and the experimental
RDCs, a tensorS can be computed by using SVD to min-

imize the RDC RMSD,Er =

√

∑

u
j=1

(r′

j
−rj)2

u−1 , where
u is the total number of RDCs for fragment Fi, rj

and
r′

j
are, respectively, the experimental RDC for residue

j of Fi and the RDC back-computed from the structure
using the tensorS by Eq. (1). As shown in Eq. (1),
given a structure,r′

j
is a function ofS so by minimiz-

ing Er, S can be computed by SVD17. Next, the algo-
rithm merges all the tensors in the setsTi, i = 1, . . . , p,
into p-tuples, (t1, . . . , tp), such thatti is from the setTi

and allp tensors in ap-tuple have theirSyy andSzz val-
ues agree with one another up to the ranges defined by
[Syy−δyy, Syy+δyy] and[Szz−δzz, Szz+δzz] whereδyy

andδzz are thresholds. For each mergedp-tuple, the algo-
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rithm then computes their common tensor by SVD using
the corresponding structures inWi, i = 1, . . . , p and all
the experimental RDCs for Fi, i = 1, . . . , p, and saves
the common tensors into a setQ. The diagonalization of
the tensor returned from SVD gives not only the diagonal
elements,Sxx, Syy andSzz , but also the orientation for
each fragment in the common POF as well. In particu-
lar, the orientations of all the peptide planes in the POF
are returned from SVD where the first and last peptide
planes are used for computing(φ, ψ) angles from RDCs
by Propositions 5.1–5.2. Finally, the algorithm computes
the linkers,L1, . . . , Lp−1, using every common tensor in
Q and assembles the corresponding fragments and link-
ers into complete backbone structures. This step is called
Linker computation and assembly(Fig. 3) and will be de-
tailed in Section 6.3.

6.2. Fragment computation

A structure ensemble,Wi, of anm-residue fragment Fi
is computed as follows (Fig. 2). First, the algorithm es-
timates an initial tensorS0,1 by SVD using experimental
RDCs and a model built with the backbone(φ, ψ) angles
for polyprolineII. The algorithm then selectsb different
sets of RDCs,R1, . . . , Rb, for the fragment by randomly
sampling CH and NH RDC values from their respective
normal distributions. Next, for eachRt, t = 1, . . . , b, the
algorithm computes an optimal conformation vector,c1t,
by systematically searching over all the possible confor-
mation vectors,cm of 2m-tuples(φ1, ψ1, . . . , φm, ψm),
computed fromRt where theφk angle for residuek is
computed according to Proposition 5.1 from the sampled
CH RDC for residuek, and theψk angle is computed ac-
cording to Proposition 5.2 from the sampled NH RDC for
residuek+1. An optimal conformation vector is a vector
which has the minimum score under a scoring function
T

F
defined as

T
F

= E2
r + wvE

2
v (2)

where Er =

√

∑

u
j=1

∑

m
k=1(r

′

j,k
−rj,k)2

um−1 is the RDC
RMSD, u is the number of RDCs for each residue,r

j,k

and r′
j,k

are, respectively, the experimental RDC for
RDC j of residuek, and the corresponding RDC back-
computed from the structure. The variableswv andEv

are, respectively, the relative weight and score for van der
Waals (vdW) repulsion. For each conformation vector
cm of a fragment,Ev is computed with respect to a quasi-
polyalanine model built withcm. The quasi-polyalanine

model consists of alanine, glycine and proline residues
with proton coordinates. If a residue is neither a glycine
nor a proline in the protein sequence, it is replaced with
an alanine residue. If the vdW distance between two
atoms computed from the model is larger than the min-
imum vdW distance between the two atoms, the contri-
bution of this pair of atoms toEv is set to zero. Since the
(φ, ψ) angles are computed from the sampled CH and NH
RDCs by exact solution, the back-computed NH and CH
RDCs are in fact the same as their sampled values. For
additional RDCs (CC′ or NC′ RDCs),Er is minimized
as cross-validation using Eq. (2). For each sampled set
of RDCs,Rt, t = 1, . . . , b, the output of this system-
atic search step is the optimal conformation vectorc1t in
Fig. 2. The search step is followed by an SVD step to up-
date tensors,S1t, using the experimental RDCs and the
just-computed fragment structure. Next, the algorithm
repeats the cycle of systematic search followed by SVD
(systematic-search/tensor-update) to compute a new en-
semble of structures using each of the newly-computed
tensors,S1t, t = 1, . . . , b. The output of the fragment
computation for a fragmenti is a set of conformation
vectorschw, w = 1, . . . , bh, whereh is the number of
the cycles of systematic search/tensor-update.

6.3. Linker computation and assembly

Given a common tensorS in setQ and the orientations of
two fragments F1 and F2 in the POF forS, anm-residue
linker L1 between them is computed as shown in Fig. 3.
The computation of a linker can start from either its N-
terminus as detailed in Fig. 3 or from its C-terminus, de-
pending on the availability of experimental data. For the
latter, the interested reader can see the Propositions 10.1
and 10.2 ( section 10 of APPENDIX) for the detail. Every
two consecutive fragments are assembled (combined),re-
cursively, into a single fragment and the process stops
when all the fragments have been assembled. The scor-
ing function for the linker computation,T

L
, is computed

similarly toT
F

.

T
L

= E2
r + wvE

2
v + wpE

2
p (3)

The main difference is thatEv for a linker is computed
with respect to an individual structure composing of all
the previously-computed and linked fragments, and the
current linker built with the backbone(φ, ψ) angles com-
puted from RDCs. In addition, the PRE violation,Ep,
which is essentially the PRE RMSD for an individual
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F1, F2,L1, L2, FpLp-1,Fp-1,

W1 W2 WpWp-1

Merge: 

Syy ± δyy and 

Szz ± δzz

 
( t1,  t2, . . ., tp-1,  tp )   

 Structure Ensembles

Set of Tuples    

Fragments / Linkers
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Computation

F1 F2L1 L2 FpLp-1Fp-1

Assemble

Protein Sequence

Divide

Set Q of Common 

Alignment Tensors 
S1

c1,  c2,  .....,  cq1

( t1,  t2, . . ., tp-1,  tp )   

F1 F2L1 L2 FpLp-1Fp-1

Sq

Ensemble

Linker 

Computation

c1,  c2,  .....,  cqq

T1 T2 TpTp-1
Sets of Tensors

Tensor 

Update

Tensor 

Update

Fig. 1. Divide-and-conquer strategy. The input to the algorithm is: the protein sequence, at leasttwo RDCs per residue in a single
medium and PREs (if available). The termsci denote conformation vectors for the complete backbone structure. Please see the text
for the definitions of other terms and an explanation of the algorithm.

S0, 1

S1, 1 S1, 2 S1, b-1 S1, b

 c2, 1 c2, 2 c2, b(b -1) c2, b
2c2, j

Set W i:

c1, 1 c1, 2 c1, b-1 c1, b

R1
R2 Rb-1

Rb
Systematic

Search

Tensor 

Update

 S2, 1 S2, 2 S2, b(b -1) S2, b
2S2, j

Ensemble of 

conformation vectors:

R1

Ensemble of 

conformation vectors:

R2 Rb-1
Rb

Systematic

Search

Set of alignment

tensors:

Rb R1

Tensor 

Update

Fig. 2. Fragment computation: the computation of a structure ensemble of a fragment. The figure shows only two cycles of systematic
search followed by SVD. Please see the text for the definitionof terms and an explanation of the algorithm.

structure composing of all the previously-computed and
linked fragments and the current linker, is computed as

Ep =
√

∑

a
i=1

(d′

i
−di)2

a−1 , wheredi andd′i are, respectively,

the experimental PRE distance and the distance between
two Cα atoms back-computed from the model, anda is
the number of PRE restraints. An experimental PRE dis-
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tance restraint is between two Cα atoms computed from
the PRE peak intensity16. If d′i ≤ di, the contribution
of PRE violationi to Ep is set to zero. This search step
is similar to our previous systematic searches as detailed
in 29, 28, 31. The key difference is that the linker scor-
ing function, Eq. (3), has two new terms:Ev andEp,
and lacks the term in29, 28, 31 for restraining(φ, ψ) an-
gles to the favorable Ramachandran region for a typical
α-helix orβ-strand.

7. APPLICATION TO REAL
BIOLOGICAL SYSTEMS

We have applied our algorithm to compute the structure
ensembles of two proteins, an acid-denatured denatured
ACBP and a urea-denatured eglin C, from real experi-
mental NMR data.

Application to acid-denatured ACBP. An ensem-
ble of 231 structures has been computed for ACBP dena-
tured at pH 2.3. The experimental NMR data9 has both
PREs and four backbone RDCs per residue: NH, CH,
NC′ and CC′. All the 231 structures have no vdW re-
pulsion larger than 0.1̊A except for a few vdW violations
as large as 0.35̊A between the two nearest neighbors of a
proline and the proline itself. These 231 structures satisfy
all the experimental RDCs (CH, NH, CC′ and NC′) much
better than the native structure, and have PRE violations,
Ep, in the range of4.4− 7.0 Å. The native structure also
has very different Saupe elements,Syy andSzz. Further
analysis of the computed ensemble shows that the acid-
denatured ACBP is neither random coil nor native-like.

Application to urea-denatured eglin C. An ensem-
ble of 160 structures were computed for eglin C dena-
tured at 8 M urea. No structures in the ensemble have a
vdW violation larger than 0.1̊A except for a few vdW vio-
lations as large as 0.30̊A. The computed structures satisfy
the experimental CH and NH RDCs much better than the
native structure. The native structure also has very differ-
ent Saupe elements,Syy andSzz. Further analysis of the
computed ensemble also shows that the acid-denatured
ACBP is neither random coil nor native-like.

8. ALGORITHMIC COMPLEXITY AND
PRACTICAL PERFORMANCE

The complexity of the algorithm (Fig. 1) can be analyzed
as follows. Let the protein sequence be divided intop

m-residue fragments andp− 1 m-residue linkers and let
the size of samplings beb. The systematic-search step
in Fragment computation takesO(bpfm) time to com-
pute all thep ensembles forp fragments (Fig. 2) where
f is the number of(φ, ψ) pairs for each residue com-
puted from two quartic equations (Propositions 5.1–5.2)
andpruned using a real solution filter as described in28

and also a vdW filter (repulsion). A single SVD step in
Fig. 2 takesm52 + 53 = O(m) time. Thus,h cycles
of systematic-search/SVD taket

F
time in the worst-case,

wheret
F

=
∑h

j=1 pb
j(fm +m) = p bh+1−b

b−1 (fm +m) =

O(pbh+1(fm + m) = O(pbh+1fm) sincefm is much
larger thanm. In implementation,b = 8 × 1024 and
h = 2 (see section 11 of APPENDIX). In practice, only a
small number (about 100) of structures out of all the pos-
sible bh computed structures for fragmenti (section 6.2
and Fig. 2), are selected and saved inWi (Fig. 1), that is,
the selected structures haveT

F
≤ Tmax or T

L
≤ Tmax

whereT
F

andT
L

are computed, respectively, by Eq. (2)
and Eq. (3), andTmax is a threshold. The Merge step
takeso(pwp logw) time, wherew = |Wi| is the number
of structures inWi. The Merge step generatesq p-tuples
of alignment tensors, whereq = γwp andγ is the per-
centage ofp-tuples selected from the Cartesian product
of the setsTi, i = 1, . . . , p, according to the ranges for
Syy andSzz (section 6.1). The SVD step for comput-
ing q common tensors fromp m-residue fragments takes
q(mp52+53) = O(mpq) time. The linkers are computed
and assembled top-down using a binary tree. The Linker
computation and assembly step then takest

L
time, where

t
L

= bq
∑log p

k=1 2kf (2k+1)m = bq
(2f2m)log p+1−2f2m

2f2m−1 fm

since at depthk, vdW repulsion and PRE violation are
computed for the assembled fragment consisting of2k

m-residue fragments and anm-residue linker (Fig. 3).
The total time isO(pbh+1fm + pwp logw + mpq +

bqp2m+1f2m log p+m) = O(pbh+1fm + pwp logw +

mpq + bqp2(c+1)m+1fm) where c = log f = O(1).
The largest possible value28 for f is 16 but on average
f is about2. The largest possible value forγ is 1 but
in practice, it is very small, about10−9, andq = 103

with w = 100. Although the worst-time complexity is
exponential inO(h), O(m) andO(p), the parameters for
m,h, p are rather small constants in practice with typical
values ofm = 10, h = 2, p = 6 for a 100-residue pro-
tein. In practice, on a Linux cluster with 32 2.8GHz Xeon
processors, 20 days are required for computing an ensem-
ble of231 structures for ACBP, and 7 days for computing
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For i← 1 to 4 // 4-fold degeneracy in relative orientation

(1) TL ←∞

(2) cm,i ← ∅ // initialize the conformation vector
(3) For j ← 1 to b // sampling cycle

(a) Sample a set of RDCs,Rj , from the normal distributions for RDCs.
(b) Compute an optimal conformation vectorc

′
m−2,i ← (φ1, ψ1, . . . , φm−2, ψm−2) by systematic search.

(c) Computeφm−1 by Proposition 5.1 using CH RDC for residuem− 1.
(d) Computeψm−1, φm andψm by Proposition 10.3 (section 10 of APPENDIX).
(e) Build a polyalanine model for linker L1 using the vectorc′m,i ← (φ1, ψ1, . . . , φm, ψm)
(f) Link L 1 to F1 and F2. // see figure caption for an explanation
(g) ComputeEp and a new scoreT ′

L
by Eq. (3) for the assembled fragment F1∪ L1∪ F2.

(h) If T ′
L
< TL andEp < Pmax

TL ← T ′
L

cm,i ← c
′
m,i

(4) Returncm,i // the optimal conformation vector

Fig. 3. Linker computation and Assembly. b is the number of sampling cycles.Pmax is the maximum PRE violation allowed and
set to be 7.0̊A. The Link step, step (f), is to translate first the N-terminal of L1 to the C-terminal of F1, then translate the C-terminal
of the fragment F1∪L1 to the N-terminal of F2. There exists an intrinsic 4-fold degeneracy in the relative orientation between two
fragments computed using RDCs measured in a single medium.

an ensemble of 160 structures for eglin C.

9. CONCLUSION AND BIOLOGICAL
SIGNIFICANCE

At present, we have only very limited knowledge of the
structural distribution of either laboratory-denatured or
natively-disordered proteins. The main reason is that
the current experimental techniques can only provide a
sparse number of restraints, even while the traditional
structure determination methods require a large number
of them. In this paper, we presented and demonstrated a
data-driven, systematic search algorithm capable of com-
puting the ensemble of denatured solution structures di-
rectly from sparse experimental restraints. Our algo-
rithm is based on the formulation of structure determi-
nation of denatured or disordered proteins as the com-
putation of a set of heterogeneous structures from the
distributions for the sparse experimental restraints. We
have shown that the ensemble of denatured structures can
be computed using the distributions for the orientational
restraints from RDCs by solving a series of low-degree
monomials. Compared with the previous approaches
for characterizing the denatured state from experimen-
tal data, the ensemble of structures computed by our al-
gorithm is substantially more accurate. More restraints
were used in our algorithm, and most importantly, exact
algebraic solutions in combination with systematic search

guarantee that all the valid conformations consistent with
the experimental restraints are computed. The accurately-
computed structure ensemble makes it possible to answer
two key questions in protein folding: (a) are the struc-
tures in the denatured state random coils? and (b) are the
denatured structures native-like? Our quantitative analy-
sis concludes that the denatured states of both ACBP and
eglin C are neither random nor native-like.
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APPENDIX

In this appendix, we first state the polynomials for com-
puting, respectively, the sine and cosine of the backbone
φ angle from an NH RDC and those of theψ angle from a
CH RDC, starting with theC-terminusof a fragment. By
comparison, Propositions 5.1–5.2 of the main text com-
pute the(φ, ψ) angles from RDCs starting with theN-
terminus. The proof for these two propositions is very
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similar to the proof for lemmas 5.1–5.2 given in28. We
then present a proof for a new proposition for computing
backbone(φ, ψ) angles from oriented peptide planes. Fi-
nally, we describe the parameters and implementation of
the algorithm.

10. LOW-DEGREE POLYNOMIALS
FOR COMPUTING BACKBONE
DIHEDRAL ANGLES

The following two Propositions, 10.1 and 10.2, are a gen-
eralization of Propositions 5.3 and 5.4 of28 to compute
backbone structure from the C-terminus, rather than the
N-terminus. Starting with the peptide planei + 1, we
can compute backboneφi, ψi angles, respectively, from
the NH RDC of residuei and CH RDC of residuei as
follows:

Proposition 10.1. Given the orientation of peptide plane
i+1 in the POF of RDCs, thex-component of the CH unit
vectoru of residuei, in the POF, can be computed from
the CH RDC for residuei by solving a quartic monomial
in x describing the intersection of two ellipses. Given
thex-component, they-component can be computed from
Eq. (1) and thez-component fromx2+y2+z2 = 1. Given
u, the sine and cosine of theψi angle can be computed
by solving a linear equation.

Here, the CH vector ellipse equation is a function of the
ψi angle. The ellipse equation has been described in de-
tail in 28.

Proposition 10.2. Given the orientation of peptide plane
i+1 in the POF of RDCs, thex-component of the NH unit
vectorv of residuei, in the POF, can be computed from
the NH RDC for residuei by solving a quartic monomial
in x describing the intersection of two ellipses. Given
thex-component, they-component can be computed from
Eq. (1), and thez-component fromx2 + y2 + z2 = 1.
Givenv, the sine and cosine of theφi angle can be com-
puted by solving a linear equation.

Here, the NH vector ellipse equation is a function of the
φi angle. The ellipse equation has been described in de-
tail previously 28.

The sine and cosine of the backbone(φ, ψ) angles
of the last two residues linking two oriented fragments
can be computed,exactlyand in constant time, by the
following Proposition:

Proposition 10.3 Given the orientation of peptide planes
i andi+ 2 and the backbone dihedral angleφi, the sines
and cosine of the backbone dihedral anglesψi, φi+1 and
ψi+1 can be computed exactly and in constant time.

Proof. In the following, small and capital bold letters de-
note, respectively, column vectors and matrices. All the
vectors are 3D vectors and all the matrices are 3D rotation
matrices. Letv1, v3 andw1, w3 denote, respectively, the
NH and Cα vectors of peptide planesi, andi+ 2. From
protein backbone kinematics we have

LG1w3 = Rz(ψi)RRy(φi+1)Rx(θ3)Rz(ψi+1)cw ,

LG1v3 = Rz(ψi)RRy(φi+1)Rx(θ3)Rz(ψi+1)cv

whereR is a constant matrix, andcw andcv are two con-
stant vectors andθ3 is a constant angle. Given the back-
bone angleφi, the matrixL is known. The matrixG1 is
the rotation matrix from the POF of RDCs to a coordi-
nate frame defined in the peptide planei. From Eq. (4),
through algebraic manipulation we can derive the follow-
ing three simple trigonometric equations satisfied by the
ψi, φi+1 andψi+1 angles

a1 sinφi+1 + b1 cosφi+1 = c1

a2 sinψi+1 + b2 cosψi+1 = c2

a3 sinφi + b3 cosφi = c3

wherea1, b1, c1 are constants derived from the constant
matrix R, and the six variables,a2, b2, c2, a3, b3, c3, are
simple trigonometric function of theφi+1 angle.

11. PARAMETERS AND
IMPLEMENTATION OF THE
ALGORITHM

Our algorithm (Figs. 1, 2, 3 of the main text) is built
upon (a)exactsolutions for backbone(φ, ψ) angles from
RDCs, and (b) asystematic-searchfor exploring all the
possible solutions consistent with the experimental re-
straints and biophysical properties (minimum vdW repul-
sion). However, several parameters must be chosen to
ensure the correctness and convergence of the algorithm.
We explored via computational experiments the spaces of
these parameters to find the proper values that ensure the
computed ensembles are stable. The parameters includes:

(1) division of protein sequence into fragments and link-
ers

(2) initial estimation of alignment tensors
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(3) the standard deviations of the probability distribu-
tions for convolving the experimental RDCs

(4) the size of sampling,b
(5) the number of systematic-search/SVD cycles,h

In order to see their effects on the computed ensembles,
we have run the algorithm with different initial tensors
computed by SVD using either an idealα-helix (φ =

−64.3◦, ψ = −39.4◦), or β-strand (φ = −120.0◦,
ψ = 138.0◦), or polyProline II model (φ = −80.0◦,
ψ = 135.0◦). We have also tested the algorithm us-
ing different sizesb of sampling and different numbers
h of the systematic-search/SVD cycles. Our computa-
tional experiments showed that with anb = 8 × 1024

andh = 2, the computed ensemble has already achieved
a stable state since further increase in eitherb or h does
not changes the distributions of backbone(φ, ψ) angles
and pair-wise backbone RMSDs between the structures
in the ensembles. The largest effect appears to be how
the protein sequence is divided if there are missing RDCs
concentrated in a certain region. In the implementation,
the division into fragments and linkers is based primarily
on the availability of experimental RDCs. In general, the
linkers between two fragments have more missing RDCs
than the fragments. If no experimental data is available
for either CH or NH RDCs, the correspondingφ andψ

are selected randomly in the range of[−π, π]. As de-
tailed in section 6.1, the alignment tensor used to com-
pute the linkers is computed from the structures of frag-
ments. Thus, if we exchange a fragment with a linker and
if the linker has many missing RDCs, the computed en-
semble differs, to some extent, from the original one. Our
choice for division emphasizes the experimental data.
The standard deviations for RDC random variables are,
respectively, 8.0 Hz (Hertz) for CH RDCs and 4.0 Hz for
NH RDCs, and both are much larger than the real exper-
imental errors, which are estimated to be less than 1.0
Hz for CH RDCs and 0.50 Hz for NH RDCs. The val-
ues of these deviations are, respectively, about one-half
of the ranges for all the experimental CH and NH RDC
values. The probability distributions used to convolve
RDCs are rather broad relative to the experimental val-
ues, and thus the algorithm is capable of computing most
of structures in the denatured state. The relative weight
wv andwp in Eq. (2) and Eq. (3) of the main text are
set to be 8.0 and 2.0, respectively. The effects on the fi-
nal ensembles of these weights are minimal, since vdW
repulsion is very small in the final structures, and PRE
violation is implemented by the requirement that all the
final structures have no RMSD in PREs larger than 7.0Å.
The function forms for bothEv andEp in Eq. (3) are
flat-bottom-harmonic-walls.
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