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Abstract. Finding motif pairs from a set of protein sequences based on the protein-protein interaction data is a challenging 

computational problem. Existing effective approaches usually rely on additional information such as some prior knowledge on protein 

groupings based on protein domains. In reality, this kind of knowledge is not always available. Novel approaches without using this 

knowledge is much desirable. Recently, Tan et al. [10] proposed such an approach. However, there are two problems with their 

approach. The scoring function (using χ2 testing) used in their approach is not adequate. Random motif pairs may have higher scores 

than the correct ones. Their approach is also not scalable. It may take days to process a set of 5000 protein sequences with about 

20,000 interactions. In this paper, our contribution is two-fold. We first introduce a new scoring method, which is shown to be more 

accurate than the χ-score used in [10]. Then, we present two efficient algorithms, one exact algorithm and a heuristic version of it, to 

solve the problem of finding motif pairs. Based on experiments on real datasets, we show that our algorithms are efficient and can 

accurately locate the motif pairs. We have also evaluated the sensitivity and efficiency of our heuristics algorithm using simulated 

datasets, the results show that the algorithm is very efficient with reasonably high sensitivity.

                                                          
* Corresponding author. 

1.   INTRODUCTION 

In the cell of all organisms, protein-protein interactions 

occur in the structure of sub-cellular organelles, the 

transport machinery across different membranes, 

packaging of chromatin, the network of sub-membrane 

filaments, signal transduction and regulation of gene 

expression, etc. Aberrant protein-protein interactions 

have been linked to a number of neurological disorders 

such as Alzheimer’s disease [12], Muscular Dystrophy 

[4] and Huntington’s disease [2]. Because of their 

importance, much research has been performed in order 

to understand the mechanism of protein-protein 

interactions. 

Protein is a sequence of amino acids with 3D 

structure. Some subsequences of a protein will form sub-

structures, called domains, on the surface of the 3D 

structure. These domains characterize the functions of 

each protein by controlling what kind of molecules this 

protein will bind to. When two proteins bind together 

(interact), their domains will exchange charges to form 

bonds which stabilize the protein-protein complex. For 

example, proteins with Src homology 3 (SH3) domain 

(GxxPxNY) usually bind to proteins with polyproline 

type II helical structure (PxxP). We call GxxPxNY and 

PxxP a binding motif pair or motif pair in short. 

Discovering motif pairs helps us understand many 

protein-involved mechanisms and predict the functions 

of a protein. Biological experiments such as site-

directed mutagenesis [3] and phage display [5] are 

available for discovering motif pairs. However, these 

experiments are both laborious and expensive.  

If we are given the protein-protein interaction data 

(e.g. the DIP (Database of Interacting Proteins) database 

[14]), discovering the motif pair is more difficult than 

discovering the motif of the binding sites of co-regulated 

DNA sequences, which has been well studied in the 

literature[1,6-8], because of the following issues:
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1. Protein sequences are composed of 20 amino acids 

whereas DNA sequences are comprised of 4 

nucleotides. Therefore, it is more computationally 

involved when we work with protein sequences. 

2. For co-regulated DNA sequences, it is assumed 

that the given DNA sequences contain over-

represented subsequences of a similar pattern 

(motif). However, we can only identify the pair of 

similar patterns (motif pair) if the set of relevant 

protein-protein interactions are isolated. This 

might not be easy as there are many possible 

subsets of interactions. Even when the set of n
interactions can be isolated, there are still 2

n-1

ways of grouping the protein sequences to identify 

the motif pair. 

3. Usually there is more information available for 

discovering DNA motif since, for example, the 

sequences without the binding sites (control set) 

can provide extra information for solving the 

problem. However, missing interactions between 

two protein sequences in the database do not imply 

the non-existence of motif pairs because the 

missing protein-protein interaction data might be 

due to the lack of experiments between these pair 

of proteins. 

A naive approach is to fix a particular protein and 

the group of proteins that are known to bind to this 

protein. Then, identify the motif from the group of 

protein sequences. This can be done using standard 

motif discovery tools such as MEME [1] or Weeder [8]. 

And then also find a motif pattern that can uniquely 

identify the particular protein to form the motif pair. 

However, this method works only when the number of 

protein sequences that bind to the same protein is large, 

say > 4. In practice, it is usually not the case. In fact, 

even when a particular protein can bind to a group of 

many proteins, those bindings might be due to many 

factors, not just a single motif pair. The problem of 

finding a motif pair is then reduced to finding a 

sequence pattern that can uniquely identify that 

particular protein and also an over-represented sequence 

pattern in a subset (not necessary all) of proteins in the 

group. Since that particular protein might be uniquely 

identified by more than one pattern and there can be 

many subsets of proteins in the group whose sequences 

have similar patterns, the number of possible motif pairs 

can be many. So, it is impossible to determine the 

correct motif pair, if it exists, which initiates the 

interactions. 

To handle the above problem, [9] proposed to take 

advantage of prior knowledge of protein groupings 

according to protein domains. Instead of considering the 

bindings between a particular sequence and a group of 

proteins, they consider the bindings between a group of 

protein sequences and another group of sequences with a 

particular domain so as to increase the number of 

sequences in the instance. A modified Gibbs sampling 

algorithm was developed to identify the motif pair. This 

method will work if we already know one of the motifs 

in the motif pair; otherwise, how to isolate two groups of 

proteins that are related to the same motif pair from the 

interaction database is non-trivial. 

Recently, Tan et al. [10] introduced a method to 

discover motif pairs without knowledge of motifs 

participating in the motif pair and without any prior 

knowledge on the protein groupings. The basic idea of 

their approach is as follows. Based on the input 

sequences, they generated all possible substring pairs of 

a certain length from any two interacting sequences. For 

each possible motif pair, they identified the two groups 

of proteins that contain an instance of the motifs. They 

compare the number of observed interactions between 

these two groups and the expected number of 

interactions using χ2
 testing. The motif pairs with the 

highest χ-score (implying the observed number of 

interactions is much larger than the expected number) 

were reported. They developed two algorithms, D-

MOTIF and D-STAR, for discovering binding motif 

pairs based on this idea. D-MOTIF can discover the 

motif pair with the highest χ-score while D-STAR is a 

heuristics algorithm. 

There are several problems with this approach. We 

found out that the χ-score is not an adequate measure for 

motif pairs. Since the expected number of interactions 

decreases with the number of sequences that contain the 

two motifs, algorithms using χ2
 testing tend to discover 

binding motif pairs that occur only in a few sequences. 

For example, when there is only one sequence with 

motif M1 and only one sequence with motif M2, if there 

is an interaction between these two sequences, the χ-
score will be high. However, M1 and M2 are not 

statistically significant as they occur in one sequence 
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only. This is also the reason why their approach requires 

two input minimum thresholds for both the number of 

sequences containing each motif and the number of 

interactions between these sequences. Moreover, they 

assume that the interactions are uniformly distributed in 

the input sequences, which may not be correct since the 

interaction experiments may be biased to some 

sequences depending on the choices of the researchers. 

As a result, χ-score may not be a good measure in this 

type of studies
†
.  

Both algorithms, D-MOTIF and D-STAR, are not 

practical for large data sets. For D-MOTIF, as the 

minimum number of interactions of at least 3 is assumed, 

all possible motif pairs from each interaction triplet (that 

is, any three pairs of sequences that are known to bind) 

are considered. Based on these motif pairs, they isolate 

the two subsets of proteins that contain the motif for 

calculating the χ-score. In the worst case, D-MOTIF 

runs in O(m3
(n (|Σ| – 1)

d
)

6
) time where m is the number 

of interactions, n is the length of a sequence, and Σ is the 

alphabet (assuming that l and d are small). D-MOTIF 

takes a long running time and requires a huge amount of 

memory even for a data set of about a hundred 

sequences. On the other hand, D-STAR is a heuristic 

version of D-MOTIF and does not consider all possible 

motif pairs. In their study, they adopted the mismatch (l, 
d)-motif model (that is, the motif is of length l and the 

instances differ from the motif by d mismatches). Based 

on the observation that if we considered all sequences 

containing a substring y with at most 2d mismatches 

from an instance x of a real motif M, we include all 

instances of M. They, therefore, only consider the 

substrings that occur in the input sequences to isolate the 

two subsets of proteins. However, they might include a 

lot of noisy instances in the subsets. Although D-STAR 

can discover binding motif pairs from a data set with a 

hundred sequences in minutes, it takes days when the 

number of sequences is increased to a thousand. D-

                                                          
† As an example, based on the same SH3 domains dataset used in [1], 

which consists of about 150 protein sequences and 230 interactions, 

instead of using their heuristics algorithm, we exhausted all 

possible substring pairs using the same set of parameters in [1]. We 

computed the χ-score of each pair. We found that all motif pairs 

that are similar to the ones reported by [1] are ranked 90 or below. 

In other words, the correct motif pair can only be found in rank 90 

or below. 

STAR runs in O(m2n2
 + mtn2

) time where t is the 

number of sequences.  

Our contributions: In this paper, we introduce a 

new scoring method by calculating the probability that 

the observed number of interactions is generated under a 

null hypothesis. If this probability is small, the null 

hypothesis is incorrect for the pair of motifs and these 

two motifs are likely to be a motif pair. This scoring 

method tends to discover motif pairs that occur in many 

sequences (instead of one sequence) with a large number 

of observed interactions. The scoring function resolves 

the problems of χ-score and does not require any pre-set 

thresholds. Experimental results on real biological data 

show that our scoring method can model binding motif 

pairs better than χ2
 testing.  

We propose to use the wildcard motif (l, d)-model 

and have developed an exact algorithm, FindMotif(l, d, 

r), to find the top r motif pairs with the highest scores 

and a heuristic algorithm, MotifHeuristics(l, d, r), to 

find r motif pairs which are guaranteed to be local 

optimal solutions. The exact algorithm runs in O(m2n2
) 

time while the heuristic version runs in O(rm2n) time 

where r is the number of random seeds used in the 

algorithm. Usually l and d are small and r is around 200, 

so both our exact and heuristic algorithms run faster 

than D-MOTIF and D-STAR, respectively. In practice, 

MotifHeuristics can discover motif pairs for more than 

5000 protein sequences only in about 20 minutes. For 

the exact algorithm, it only takes about half an hour to 

handle a data set of about 150 sequences and 230 

interactions. We have also evaluated MotifHeuristics 

using simulated datasets, the results show that 

MotifHeuristics is efficient with reasonably high 

sensitivity.  

This paper is organized as follows. We will 

describe our scoring method and the formal problem 

definition in Section 2. In Section 3, we will describe 

our algorithms for discovering motif pairs. Experimental 

results on real biological data will be shown in Section 4. 

Section 5 concludes the paper. 

2.   PROBLEM DEFINITION 

2.1.   Motif Representation 

Protein is a sequence of amino acids which can be 

represented by a sequence of symbols in Σ = 
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{‘A’..‘Z’} – {‘B’, ‘J’, ‘O’, ‘U’, ‘X’, ‘Z’}. Proteins with 

similar function usually contain similar substrings. 

These substrings can be modeled by an abstract 

representation called motif. In this paper, we define (l, 
d)-motif to be a length-l string with d wildcard symbols, 

denoted by ‘x’, and l – d symbols in Σ. For example, 

“GxxPxNY” is a (7,3)-motif. A (l,d)-motif M represents 

those length-l substrings σ which are the same as M but 

with each wildcard symbol ‘x’ replaced by a symbol in 

Σ. Each string σ is called an instance of motif M. For 

example, “GACPQNY” is an instance of the motif 

“GxxPxNY”. 

2.2.   (l, d)-Motif Pair Finding Problem 

Given a set S of t protein sequences and a set I ⊆ {{si, sj} 

| si, sj ∈ S} of m known interactions between sequences 

in S, we want to discover a pair of motifs M1 and M2

such that the set of instances of M1 (denoted as S(M1)) 

interact with the set of instances of M2 (denoted as 

S(M2)). Note that since many interactions between 

sequences in S are still unknown and there are no 

interactions between some pairs of sequences, there may 

not be interactions between all sequences in S(M1) and 

S(M2). 

2.2.1.   χ-score 

Tan et al. [10] discovered the motif pair by comparing 

the observed number of interactions with the expected 

number of interactions for every motif pair. Given a 

motif pair M1 and M2, they calculated the expected 

number E(M1,M2) of interactions between sequences in 

S(M1) and S(M2) by assuming the m known interactions 

are uniformly distributed in the t input sequences. They 

compared E(M1,M2) with the observed number O(M1,M2) 

of interactions between sequences in S(M1) and S(M2) by 

χ2
 testing. 
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Tan et al. [10] discovered motif pairs by 

considering those pairs with high χ-scores. However, 

using χ-score has two main weaknesses. 

1. Large χ-score when S(M1) and S(M2) are small.

If the sizes of S(M1) and S(M2) are small, since the 

value of E(M1,M2) is extremely small, even when 

there is only one interaction between sequences in 

S(M1) and S(M2), the χ-score can be very large. For 

example, in a database with 5000 sequences and 

20000 interactions, the value of E(M1,M2) for a 

motif pair M1 and M2 with one sequence in S(M1) 

and S(M2) respectively is 0.0016. If there is an 

interaction between these two sequences, the χ-
score will be 623. Tan et al. try to solve this 

problem by limiting the sizes of S(M1) and S(M2) to 

be bigger than a threshold. However, different 

thresholds should be used for different input data 

and they tend to discover motif pairs with the size 

of S(M1) and S(M2) being the same as the threshold. 

2. Number of interactions is not uniformly 

distributed. Since biologists usually perform 

experiments on some special proteins, these 

proteins participate in more known interactions than 

other proteins, e.g. YBL063W protein participates 

in 283 known interactions while YJR091C protein 

participates in 1 known interaction only. Therefore, 

the assumption that the m known interactions are 

uniformly distributed in the t input sequences is 

incorrect. The method by Tan et al. might discover 

the wrong motif pairs and at the same time might 

miss the correct ones. 

2.2.2.   p-score 

Instead of using χ-score as the scoring function, we 

calculate the probability that there are O(M1,M2) or more 

interactions between sequences in S(M1) and S(M2) 

based on a null hypothesis (described below). If this 

probability is small, the null hypothesis cannot model 

the motif pair M1 and M2 and the motif pair is 

statistically significant. 

Given a motif M1, let I(M1) ⊆ I be the interactions 

involving sequences in S(M1) and T(M1) (T(M1) be the 

set of sequences that interact with sequences in S(M1). 

As the number of ways of distributing x objects onto y
boxes (“onto” means at least one object per box) is ( 1

1

−

−

y
x

) 

and the null hypothesis assumes that the |I(M1)| 

interactions are uniformly distributed onto T(M1), the 

conditional probability that there are exactly i
interactions between sequences in S(M1) and S(M2) 

given I(M1) and T(M1) can be calculated as follows (to 

be precise, only the value of |T(M1)|, |T(M1) ( S(M2)|, and 
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|T(M1) – S(M2)| are needed in the calculation). The 

conditional probability 
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Note that in the numerator of the equation, the i
interactions are distributed uniformly onto T(M1) ∩

S(M2) and the remaining |I(M1)| – i interactions onto 

T(M1) – S(M2). The conditional probability that there are 

O(M1,M2) or more interactions between sequences in 

S(M1) and S(M2) given I(M1) and T(M1) can be 

calculated by summing up all possible i from O(M1,M2) 

to U = min{I(M1) – |T(M1) – S(M2)|, |S(M1)|×|T(M1) ∩

S(M2)|}, where i is upper bounded by two cases: (1) 

when each sequence in T(M1) – S(M2) is involved in 

exactly one interaction, and (2) the maximum number of 

interactions between S(M1) and T(M1) ∩ S(M2). We 

have P1 = P(O(M1, M2) ≥ i | S(M1), T(M1), I(M1), S(M2)) 

= ∑ =

U

MMOi ip
),( 21

. 

Similarly, we can calculate the conditional 

probability P2 = P(O(M1, M2) ≥ i | S(M2), T(M2), I(M2), 

S(M1)) that there are i or more interactions between 

sequences in S(M1) and S(M2) given that the sequences 

in S(M2) participate in |I(M2)| interactions with 

sequences in T(M2). The p-score of a motif pair {M1, M2} 

can be represented by the conditional probability P0 = 

P(O(M1, M2) ≥ i | S(M1), T(M1), I(M1), S(M2), T(M2), 

I(M2)). However, P0 cannot be calculated easily. We 

estimate the value of P0 by the following equation: 
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When the values of P(T(M2), I(M2) | O(M1, M2) ≥ i, 
S(M2), S(M1)) and P(T(M2), I(M2) | S(M2) , S(M1)) are 

the same, P0 will be exactly the same as P1. Let Ô(M2) = 

(|I(M2)|/ |T(M2)|) |T(M2) ∩ S(M1)| be the expected 

number of interactions between S(M2) and T(M2) ∩

S(M1). When i / Ô(M2) is small, the difference between 

P(T(M2), I(M2) | O(M1, M2) ≥ i, S(M2), S(M1)) and 

P(T(M2), I(M2) | S(M2), S(M1)) is small. Therefore, P0

can be approximated by P1 when i / Ô(M2) is small. 

Similarly, P0 can be approximated by P2 when i / Ô(M1) 

is small. Thus we compare the values of i / Ô(M2) and i / 

Ô(M1). We use P1 (P2) to approximate the p-score of 

(M1, M2) when i / Ô(M2) (i / Ô(M1)) is smaller. 

A motif pair M1 and M2 with small p-score means 

that M1(M2) has unexpectedly large number of 

interactions with M2(M1). Therefore, we discover motif 

pairs by searching for pairs of motifs M1 and M2 with 

small p-scores. 

Using p-score as the scoring function overcomes the 

two weaknesses of χ-score. Firstly, motif pair M1 and M2

with small size usually has a large p-score, e.g. when 

both S(M1) and S(M2) contain one sequence and there is 

an interaction between them, p-score(M1,M2) = 1. 

Therefore, by using p-score as the scoring function, we 

tend to discover motif pair M1 and M2 when there are an 

unexpectedly large number of interactions between large 

sets sequences S(M1) and S(M2). Secondly, by using 

T(M1), T(M2), S(M1), S(M2) in calculating the p-score, 

we do not rely on the assumption that the interactions 

are uniformly distributed among all input sequences. 

3.   ALGORITHM 

3.1.   Exact Algorithm 

In this section, we propose an exact algorithm, 

FindMotif(l, d, r),  to identify the top r (l, d)-motif pairs 

with the lowest p-scores. The algorithm is based on the 

idea of voting. Based on the scoring function we 

proposed in Section 2, we require the following 

information to calculate the score of each possible motif 

pairs. In the following, we assume that l and d are small, 

so ( d
l ) is a constant. 

1. For each motif M,  

- NS[M]: the number of sequences containing an 

instance of M, |S(M)|; 

- NI[M]: the total number of interactions for 

sequences in S(M), |I(M)|; 

- NT[M]: the number of sequences interacting with 

the sequences in S(M), |T(M)|. 

2. For each pair of motifs M1 and M2,  

- NO[M1, M2]: the total number of interactions 

between sequences in S(M1) and those in S(M2), 

that is, the observed interactions, O(M1, M2); 

- C[M1, M2]: the number of sequences in S(M2) that 

interact with sequences in S(M1), |T(M1) ∩ S(M2)| . 

For each length-l substring s in the input sequence, 

we add a vote to NS[M] for which s is an instance of the 
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motif M. Note that there are ( d
l ) such M’s. Each NS[M] 

can get at most one vote from each input sequence. 

NS[M] can be computed in O(tn) time where t is the 

number of sequences and n is the length of each 

sequence.  

To compute NI, NT, NO, and C, we do the voting as 

follows. For each interaction {si, sj} ∈ I, for every 

length-l substring x in si, we add a vote to NI(M) and a 

vote to NT(M) where x is an instance of M. Each NI(M) 

can get at most one vote from each interaction. Each 

NT(M) can get at most one vote for every sequence sj. If 

si and sj are two different sequences, for every length-l
substring y in sj, we add a vote to NI(M) if NI(M) has not 

yet received a vote from the same interaction. And we 

add a vote to NT(M) where y is an instance of M if NT(M) 

has not yet received a vote from si. For every two 

length-l substrings x and y (in si and sj, respectively), we 

add a vote to NO[M1, M2] and a vote to C[M1, M2] and 

C[M2, M1] where x and y are instances of M1 and M2

respectively. Each NO[M1, M2] can get at most one vote 

from each interaction. Each C[M1, M2] can get at most 

one vote from each sequence sj. Each C[M1, M2] can get 

at most one vote from each sequence si. This step takes 

O(mn2
) time where m is the total number of interactions. 

Finally, we can pre-compute all possible values for 

( j
i

) for different values of i, j to be used in the 

calculation of the score of a motif pair. The maximum 

value for i is the largest possible number of interactions, 

r, for a motif and can be obtained from the NI[M] table, 

which is usually a lot smaller than m. Computing all 

these values takes only O(r2
) time. Then, computing the 

score for a motif pair takes O(m) time as it involves 

finding the sum of at most O(m) terms, each can be 

computed in constant time using the pre-computed ( j
i

)

values. There are altogether O(( d
l )

2
 · |Σ|

2(l – d)
) possible 

motif pairs where Σ is the alphabet for amino acids . 

However, some of them may not have any instance in 

the input sequences, so we only need to compute the 

score for at most O(mn2
) pairs since we only need to 

consider those pairs of sequences which have an 

interaction. The overall time complexity is O(m2n2
). The 

space complexity is O(( d
l )

2
 · |Σ|

2(l – d)
). As l and d are 

usually small, they can be treated as constants. Theorem 

1 follows. 

Theorem 1: The time and space complexities of 

FindMotif(l, d, r) are O(m2n2
) and O(|Σ|

2(l – d)
), 

respectively. 

For the SH3 domain dataset of 146 protein 

sequences and 233 interactions, the algorithm takes 

about half an hour with l = 8 and d = 5, which is a lot 

faster than D-MOTIF. We also develop a heuristics 

algorithm that can run faster than FindMotif(l, d, r) 

which can handle the whole yeast dataset of about 5000 

sequences with over 20,000 interactions in about 20 

minutes. 

Remarks: In practice, if the space requirement of 

O(( d
l )

2
 · |Σ|

2(l – d)
) is too large, we apply some simple 

tricks to reduce the space requirement. For example, we 

first fix a set of positions for the wildcard characters and 

process the motifs with these positions as wildcards. The 

space requirement can be reduced to O(|Σ|
2(l-d)

). Then, 

repeat the procedure for ( d
l ) times. Another trick is to 

fix the first character, say ‘A’, of one motif and process 

the motifs starting with that character, the space 

requirement will then be reduced to O(|Σ|
2(l – d) – 1

). 

3.2.   Heuristics Algorithm 

FindMotif finds the p-score for all motif pairs in the 

sequences that interact. As the motif pair space is very 

large and computing the p-score is time-consuming, 

FindMotif has a long running time when dealing with a 

moderately large dataset or when l is large. The 

heuristics algorithm MotifHeuristics improves the 

running time of FindMotif by considering less motif 

pairs, thus reducing the number of times the p-score is 

calculated. 

Instead of finding the p-score for all motif pairs that 

interact, MotifHeuristics starts with r random seed (l, d)-

motifs that are found in the sequences. For each seed x, 

we can find its optimal partner motif y such that motif 

pair {x, y} has the lowest p-score by voting, similar to 

FindMotif. The optimal motif partners of the seeds then 

becomes the new seeds. In the next step, we go on to 

find the optimal partner motif for all the new seeds. By 

doing this, we can obtain motif pairs with lower p-score. 

This process is repeated until the p-score does not 

improve. The resulting motif pairs are local optimal 

motif pairs. It is likely that at least one of the randomly 

generated seeds will converge to the optimal motif pair. 
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By setting an appropriate the value for r, the algorithm 

can finish within reasonable time with high accuracy. 

The time complexity for MotifHeuristics(l, d, r): 

Let the algorithm run for k iterations for each seed. In 

each iteration, at most r seeds are given. The algorithm 

finds the optimal partner of the r seeds. Similar to the 

exact algorithm, this step is done by voting NS, NI, NT, 

NO and C. However, it takes O(mnr) time only as one of 

the motif (the seed) is known. As there are r seeds and 

O(mn) possible optimal partner for each seed, it takes 

O(rm2n) time to calculate the scores of all pairs. The 

overall time complexity is O(krm2n), as there are k
iterations. In practice, the algorithm halts after around 

10 iterations, or we can stop the execution after 10 

iterations. Therefore, k can be neglected. Again, we treat 

l and d as constants. Theorem 2 follows. 

Theorem 2: The time and space complexities of 

MotifHeuristics (l, d, r) are O(rm2n) and O(r · |Σ|
l – d

), 

respectively. 

4.   EXPERIMENTS 

We have performed experiments to evaluate our scoring 

function and the performance of MotifHeuristics. We 

ran our program on real biological data and verified the 

results with those obtained from biological experiments. 

We have also compared the performance our algorithm 

with the heuristics algorithm D-STAR proposed by Tan 

et al. [10]. All the experiments were performed on a 

standalone computer with 2.4GHz Intel CPU and 4GB 

memory. In each experiment, we used 200 seeds for 

MotifHeuristics and each seed was refined at most 10 

times. 

4.1.   SH3 Domains Dataset 

SH3 domains are similar amino acid segments that are 

found to bind motifs “PxxP”, “PxxPx[RK]” and 

“[RK]xxPxxP” [12]. It has been experimentally 

determined that the binding is due to the presence of the 

pattern “GxxPxNY” in SH3 domain (PDB ID:1AVZ). 

We tested whether FindMotif and MotifHeuristics are 

able to recover this motif pair “GxxPxNY” and “PxxP”. 

The dataset was obtained from Biomolecular Object 

Network Databank [13]. It contains 146 yeast proteins, 

including 23 that contain the SH3 domain, and 233 

protein-protein interactions. 

Table 1. Experimental results on SH3 domain dataset using 

FindMotif

M1 M2 S(M1), S(M2) O(M1, M2) p-score 

PxNxVxxx LxxLxxSx 22, 69 80 4.78×10-14

LxPxxTxx GxxPxxYx 29, 17 54 1.70×10-13

LSxSxxxx PxNxVxxx 57, 22 68 1.78×10-13

LLxxLxxx PxNxVxxx 60, 22 83 2.65×10-13

PxNxVxxx SxSxIxxx 22, 58 82 4.40×10-13

SLxxKxxx PxNxVxxx 47, 22 67 6.66×10-13

PxxPxRxx GxxPxxYx 28, 17 57 2.24×10-12

SxIDxxxx GxxPxxYx 36, 17 63 3.34×10-12

LxPxxTxx AxxSxGxx 29, 23 52 4.46×10-12

GxxPxxYx LxxLxxSx 17, 69 80 5.66×10-12

Top 10 motif pairs reported by FindMotif on the SH3 

dataset with l = 8, d = 5, r = 200. 

Table 2. Experimental results on SH3 domain dataset using 

MotifHeuristics

M1 M2 S(M1), S(M2) O(M1, M2) p-score 

LxxLxxSx PxNxVxxx 69, 22 80 4.78×10-14

LxPxxTxx GxxPxxYx 29, 17 54 1.70×10-13

GxxPxxYx PxxPxRxx 17, 28 57 2.24×10-12

GxxPxNxx PxxPxRxx 18, 28 54 1.04×10-11

LxxSxKxx TxxGxVxx 38, 15 38 1.12×10-11

QSxxSxxx SxxQxxIx 36, 24 40 1.36×10-11

SxxSxSxx ATxPxxxx 79, 18 76 1.87×10-11

IxxTTxxx KxxPExxx 21, 18 27 8.50×10-11

PSxLxxxx YxxDYxxx 47, 10 42 1.40×10-10

SxPxPxxx AxAxYxxx 37, 12 44 3.20×10-10

Top 10 motif pairs reported by MotifHeuristics on the SH3 

dataset with l = 8, d = 5, r = 200. 

Table 3. Experimental results on yeast dataset 

M1 M2 S(M1), S(M2) O(M1, M2) p-score 

GxxPxNxV PxLPxRxx 32, 39 78 4.25×10-35

PPxPxRxx GxxPxNYx 27, 19 72 9.12×10-35

RRxDxxQx SSPxKxxx 11, 107 56 4.20×10-32

GCxxAExx SSxxSxxS 16, 508 128 1.17×10-31

LVxxFLxx LxxSPxKx 77, 68 35 6.86×1025

DTxGQxxx LxxYIxIx 43, 31 38 1.38×10-20

GDGTxxxx IWDxRxxx 40, 16 23 3.39×1019

GSTGxxxx AxxLxNSx 46, 70 38 4.28×10-19

IGxAIxxx GxKTxKxx 59, 50 39 1.62×10-18

FGxxTxNx ALRxLxxx 16, 103 43 1.75×10-18

Top 10 motif pairs reported by MotifHeuristics on the yeast 

dataset with l = 8, d = 5, r = 200. 
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Top 10 motif pairs reported by FindMotif on the 

SH3 dataset with l = 8, d = 5. We tested FindMotif and 

MotifHeuristics with l = 8 and d = 5. The results are 

shown in Table 1 and 2. FindMotif discovered the motif 

pair “GxxPxxY” and PxxPxR at rank 7 and 

“GxxPxxY” and “PxLP” at rank 13. MotifHeuristics 

also discovered the similar motif pair at rank 3. 

Therefore, both algorithms could discover the known 

motif pair.   

Tan et al. stated that the heuristeric D-STAR 

algorithm was able to discover the known motif pairs 

[10]. We exhausted all possible motif pairs using their 

model and parameters. We found the first motif pair 

similar to “GxxPxNY” and “PxxP” was ranked 90 and 

there were 89 motif pairs having higher χ-score than the 

known motif pair. This result suggested that D-STAR 

might miss out motif pairs with good scores (the top 89 

pairs). On the other hand, our scoring function was more 

robust than the χ-score proposed by Tan et al. as 

FindMotif has considered all possible motif pairs and 

the known motif pair is ranked within the top ten results.

4.2.   Yeast Dataset 

To measure the efficiency and further verify the 

correctness of MotifHeuristics on large dataset, we ran 

the algorithm on the yeast dataset. The yeast dataset is 

obtained by merging data from the MIPS and DIP 

databases. It includes 5246 yeast proteins and 21225 

interactions. Since this dataset contains most protein 

sequences and interactions in the SH3 dataset, we expect 

our algorithms can also discover motif pair similar to 

“GxxPxNY” and “PxxP”. We used MotifHeuristics to 

discover motif pairs in this dataset with parameters l = 8, 

d = 4 and r = 200. The results were shown in Table 3. 

MotifHeuristics reported the motif pair “GxxPxNxV” 

and “PxLPxRxx” at rank 1. This shows that our scoring 

function perform well in both small and large datasets. 

4.3.   Running Time Comparison 

The running time of the three algorithms on the above 

datasets are shown in Table 4. For the SH3 dataset, all 

algorithms could discover a motif pair similar to the 

known pair “GxxPxNY” and “PxxP”. Since FindMotif 

guaranteed finding the motif pair with the lowest p-score, 

it took the longest time (54 minutes) to finish. For the 

two heuristics algorithms, D-STAR took 14 minutes 

while MotifHeuristics took 51 seconds only. On the 

other hand, MotifHeuristics had the shortest running 

time. For the yeast dataset, since the number of protein 

sequences and interactions were large, FindMotif and 

the heuristics algorithm, D-STAR, could not finish in 5 

days. On the other hand, MotifHeuristics was able to 

discover the correct motif pair in 44 minutes only. So, 

MotifHeuristics is more scalable and efficient. 

4.4.   Simulated Data 

We have further evaluated the sensitivity and efficiency 

of MotifHeuristics using simulated data. We generated 

146 (same size as the SH3 dataset) length-668 random 

protein sequences (each nucleotide has equal probability 

to occur). We randomly picked a (8,5)-motif pair and 

planted s instances (i.e., |S(M1)| = |S(M2)| = s) of each 

motif in the sequences. 200 interactions are randomly 

assigned to the 146 sequences. An additional i (i.e., 

|O(M1, M1)|) interactions are assigned to the instances of 

the planted motif pair. We have tried two settings: s = 

10 and s = 20. For each setting, we study the running 

time and the success rate of MotifHeuristics using 

different values of i. For each set of parameters s and i, 
50 different data sets were generated.  

Note that we only consider the algorithm to be 

successful if the planted motif pair appears in the output 

as rank 1. The results are shown in Figure 1. When the 

number of interactions increases to about 45 and 75, 

respectively, for the cases of 10 and 20 planted motif 

instances, the success rate increases to more than 80%. 

We found that with fewer interactions, the p-value of the 

planted motif pair is usually larger than 1×10
-11

 making 

it difficult to be distinguished from noise. The results are 

consistent with the real dataset (see Table 2). The 

Table 4. Comparison of the algorithms’ running time  

Dataset

Algorithm 
SH3 dataset Yeast dataset 

FindMotif 54 min (l = 8, d = 5) - 

MotifHeuristics 51 s 

(l = 8, d = 5, r = 200)

44 min 

(l = 8, d = 4, r = 200)

D-STAR 14 min - 

‘-‘ means the algorithm did not finish in 5 days 
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average running time for each dataset is about 1 minute. 

Overall speaking, MofitHeuristics is fast with 

reasonably high sensitivity. 

5.   CONCLUSION 

In this paper, we have proposed a new scoring function 

to evaluate whether a motif pair is significant based on 

the given protein-protein interaction data. We also 

developed an exact algorithm and a heuristic algorithm 

to solve the problem. We show that our scoring function 

is more accurate than the one used in [10] and our 

algorithms are more efficient and scalable than existing 

algorithms. Possible future directions include the 

followings. The scoring function we proposed is an 

approximation to the conditional probability we defined 

in Section 2. Whether a more accurate scoring function 

exists is an interesting and important question. Although 

our algorithms can process a large dataset within 

reasonable amount of time, a more efficient (in terms of 

time and space) algorithm is always desirable. Whether 

the current approach can be effectively applied to locate 

motif triplets is also a challenging extension. 
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Fig. 1. Success rate against number of planted interactions 
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