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Cell maintains its specific status by tightly regulating a set of genes through various regulatory mechanisms. If there are aberrations that
force cell to adjust its regulatory machinery away from the normal state to reliably provide proliferative signals and abrogate normal
safeguards, it must achieve a new regulatory state different from the normal. Due to this tightly coordinated regulation, the expression of
genes should show consistent patterns within a cellular context, for example, a subtype of tumor, but the behavior of those genes outside
the context would rather become less consistent. Based on this hypothesis, we propose a method to identify genes whose expression
pattern is significantly more consistent within a specific biological context, and also provide an algorithm to identify novel cellular
contexts. The method was applied to previously published data sets to find possible novel biological contexts in conjunction with
available clinical or drug sensitivity data. The software is currently written in Java and is available upon request from the corresponding

author ™.

1. INTRODUCTION

The cellular system is very complex, arising from the
interaction of many cellular components and processes.
In order to maintain a specific state, the cell needs to
tightly regulate various components using a host of
regulatory mechanisms. A series of disruptions to the
regulatory mechanisms, erodes the normal controls over
proliferation, and produces a variety of other regulatory
variations leading the cell to assume a significantly
different state than its prior normal state, such as
cancers.'*">  To transition from normal to abnormal,
(e.g. healthy to tumor), the functioning of the regulatory
mechanism of the cellular system must be altered in
significant ways. Such a change would result in an
alteration of the way in which the cellular system
interprets and acts upon certain kinds of input, in other
words, a change of cellular context. While governing
regulatory mechanism of normal context is disturbed in
cancer, the persistent growth of the cancer implies that
these cells retain a complex, reliable regulatory system
capable of maintaining the enormous order required for
the cell to live. The tumor’s new behaviors now require

* Corresponding author.

a regulatory mechanism, possibly a different one from
the regulatory mechanism that maintained the normal
cell from which the tumor originated.

While many association-based approaches*'* have
proven useful, one must look among all of the associated
genes and attempt to group them on the basis of prior
knowledge about the activities of the individual genes to
identify particular processes. As the tool tries to look
for more specific relationships among genes, it can find
smaller groups of interacting genes, defined by the kinds
of behaviors that arise from the way in which
transcriptional regulation operates, improving the
likelihood that such sets do represent interpretable
hypothesis. More intriguingly, when the contextual
information is unknown a priori, which is not unusual,
capturing this implicit situational information, i.e.
cellular context, based on observational evidence, and
identifying genes with behavior specific to the context is
a critical step toward the understanding of interactions
among the participants and the discovery of its
regulatory mechanism.

Recently, Segal et al developed the algorithms
employing similar concepts® and applied those to a
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Saccharomyces cerevisiae expression data set to identify
regulatory modules and their condition-specific
regulators from gene expression data.’' They also
applied the method to perform an integrated analysis of
1,975 published microarrays spanning 22 tumor types to
develop cancer module maps.”® This method starts from
initial partitions generated from clustering and utilizes
prior biological knowledge such as Gene Ontology’,
KEGG (Kyoto Encyclopedia of Genes and Genomes)”’
and Gene MicroArray Pathway Profiler, if available, in
that study. Our method does not explicitly depend on
such knowledge but solely depends on data.

Biclustering® and Signature Algorithm'®'” are two
other methods comparable to the proposed method,
which try to identify subsets of genes and samples.
However, our method is inspired by the biologically
interpretable master-slave model and has an inherent
directionality in place, i.e. influence of master over the
slave genes. Biclustering considers coherent gene-
sample patterns but struggles with evaluating the
separation between the identified biclusters, making its
output not as easily interpretable. The signature
algorithm on the other hand requires an initial seed gene
list and builds the consistent condition list and gene list
iteratively to identify transcription modules. The
necessity for initial gene list limits the exploratory
power of this algorithm. As the algorithm proceeds,
dependant upon the genes/conditions included in
progressive iterations, it may allow convergence to a
separate module altogether, thereby losing the signal
present in the initial list. Our method, context miner,
identifies each context with a corresponding master gene
and set of samples thereby ensuring the identification of
a unique context and evaluates its statistical
significance.

In the following sections, we first describe the
algorithm to identify a set of genes that appear tightly
regulated within known cellular contexts. We then
describe a method to explore molecular and clinical
patterns to identify all cellular contexts with consistent
patterns that are statistically, significantly different from
the rest of the data set. Lastly, we present the analyses
of previously published data set; melanoma with gene
expression profiles and gene expression along with drug
activity data of NCI 60 cell lines, and conclude with
some discussions.

2. METHODS

2.1. ldentification of cellular contexts

It is assumed that when a cell maintains a specific
cellular context, for example, a phenotype, it tightly
regulates a battery of genes, which would show rather

deterministic transcriptional activities. When the cell
moves away from this cellular context or changes to a
different cellular state, the behavior of the same set of
genes will not appear as deterministic since they now
behave without control signals (intrinsic stochastic
behavior) or each gene comes under the control of
various other external controls.

In this section, we first describe novel statistics to
identify a set of genes with more deterministic
transcriptional behavior within a given cellular context
than outside the context. Once a set of genes is
identified, we evaluate the statistical significance of such
a finding. While the algorithms are described and
applied in the context of transcriptional activities, we
later explain how to use the proposed method for gene
expression data integrated with other types of data such
as array-based comparative genomic hybridization
(aCGH) data and other clinical parameters such as drug
sensitivity.

2.2. Consistency statistics:
interference and crosstalk

To identify a set of genes with consistent transcriptional
behavior within a specific cellular context, we need
statistics to evaluate consistency and/or inconsistency
within and outside specified context. Here, we consider
a context ¢ to be given by specifying a subset of
samples, S, assumed to share certain phenotypes
resulting from being governed by common biological
processes or regulatory mechanisms. We formulate the
hypothesis as follows. Let us assume a cell can be in
any of the different cellular statuses, C € (cy, ¢, ... ¢p).
In other words, specifying context ¢; will partition
samples into two groups, one that would reflect the
cellular status defining the context and the other that
does not. For example, a clinical parameter such as
drug responsiveness can be considered a conditioning
factor, partitioning patients into two groups; one being
responsive and the other not. The two statistical
parameters, interference and crosstalk, can be used to
determine whether a gene is being regulated within a
given cellular context.”! The interference®, 8,7, for a
gene g given a cellular context ¢;, is the extent to which
latent variables (external controls sensitive but not
specific to context) interfere with the regulatory signal
from a master gene, G¥:

s =1-Pilg, =ON[C=¢, ). (1)

b1 - 89, has the same form of equation as the precision. However,
the interference was motivated by biological insight about gene
regulation and we will keep the term as is.



and the crosstalk 7,7 is defined as the probability that
the gene, g, is being regulated (by external control),
when the cellular context is not c;:

nlgj):Pr(gk :ON‘C;tcj) )

The equations above can be modified to consider g; =
OFF as well.

A gene is determined to be specific to the given
context if both interference and crosstalk are
significantly low. Given a subtype of tumor, for
example, we identify genes with significantly low
interference and crosstalk as being tightly regulated
within the tumor (See Fig. 1). For example, we want to
find a set of genes that are consistently up-regulated
(ON) only within a group of patients who respond to a
therapy but not outside. The interference and the
crosstalk can be used to find such genes. This approach
is different from typical t-test where a gene needs to be
differentially expressed (ON in one group and OFF in
the other group). The interference and crosstalk allow
certain level of up-regulation outside the context as long
as it is not as consistent as within the context.

Since both the interference and crosstalk parameters
are estimated from the observations, the statistical
significance of the estimated wvalues should be
considered in order to avoid highly possible false
positives or false discoveries. Let N be the number of
observations made and assume that there are two
different classes (different subtypes of diseases or
prognosis). For a gene, assume there are n, OFF status
and n; (= N - ny) ON status overall in the observations.
When we partition the N samples into two groups based
on their class labels, # in the first class and N — » in the
other, let / < n; ON samples get assigned to the first
group. Let us denote the subset of samples associated
with the first group by S and the other by S”. Using
the Egs. (1-2), we estimate both interference and
crosstalk, but we would like to know the probability of
obtaining those values by chance given the observations.
Since we partition the samples to acquire those numbers,
this probability is same as the probability that we
partition the samples to have exactly the same
configuration given the parameters above, (N, n;, n, 1),
and this can be computed via hyper-geometric
probability as follows in Eq. 3:

Pe(r :I;N,nl,n):(nl] j(N o j / (N j 3)

We then define the probability, given (¥, n;, n), that the
gene is consistently expressed (ON) / times or more as:
min(n,n, )
Pr(L>1N,n,n)= Y Pr(L=i;N,n,n) Q)
i=l
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Figure 1. Context module: Group A indicates genes with
both low cross-talk and low interference with statistical
significance. B presents genes with low interference but
high cross-talk, C with no statistical significance, and D
with high interference or cross-talk. A set of genes identified
in A and B is called context module.

As more ON’s are assigned to the class of our interest,
both the interference and the crosstalk parameters
decrease. Therefore, Pr(L > I; N, ny, n) is the probability
that those parameters are estimated at the same values or
higher. If this probability is very low, such as less than
0.05, it is rare to find those estimated values by chance,
i.e., it is significantly different from what can be found
by chance. For a given context, c¢; and corresponding
subsets Sj“) and Sj('), and a gene, g, with the parameter,
(N, ™, n®, l(k)), we denote the probability Pr(L> 1®: N,
1®, 10 by p0.

The set of genes with low interference and crosstalk
and yet statistically significant are identified to be
specifically highly correlated within a given cellular
context. The set of genes of interest to biologists
focusing on subtypes of cancer are the ones with low
interference (Eq. 1) within the subset of tissues from the
corresponding subtype and low crosstalk (Eq. 2) outside
the subset with low probability of finding such gene by
chance (Eq. 4).

2.3. Interrogating contexts via in-silico
conditioning

In practice, such explicit knowledge about contexts as
clinical parameters is often not known a priori. In this
section, we describe a method to systematically identify
possible molecular contexts. The premise is that each
context is conditioned by a gene, i.e. master, or other
external, cellular conditioning parameters such as
clinical parameters. The method interrogated each gene
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or clinical parameter if one of its states, for example,
ON or OFF, could be interpreted as a conditioning
factor. This was done by grouping samples into two:
first with the samples where the state of conditioning
parameter is set to a specific state, and the other with the
rest of the samples. Then, by applying the method
described in the previous section, we identified the
genes seemingly tightly regulated in such conditions.

This is similar to biologists’ manipulating the status
of a gene or conditioning cells to investigate its down
stream effect. Biologists often use ectopic
expression'™'*!" or gene silencing techniques such as
RNA interference™' " to either increase or decrease the
expression levels, respectively. In our case, it is done
computationally after the data is collected. Thus, we
call this in-silico conditioning.

Each conditioning yields a subset of samples, i.e.
context, where a set of genes that appear tightly
regulated within the context are obtained. Depending on
the number of samples and the number of genes, the
context might be statistically insufficiently distinctive;
the pattern of the similar size of samples and genes
might be found by chance. The next subsection
addresses this issue.

2.4. Significance test for identified
contexts

We assessed the probability of finding a context pattern
where the same number of or more genes were tightly
regulated across same number of samples by chance.
Let (M, N) denote data size where M is the total number
genes and N is the number of samples in data set. We
also let m and n denote the number of co-regulated
genes and the number of observations in an identified
context, respectively. We estimated Pr(m’ 2 m | n’ = n),
the probability that a context regulates larger or equal
number of genes than m, given the sub-sample size ».
This probability was estimated via re-sampling method.
More specifically, we randomly split given data set into
two groups of which the one was of sample size n
(context candidate) and the other of N — n. We then
applied the same set of statistics (Eqs. 1-2) to identify
the number of genes filtered by the same thresholds for
interference (1), crosstalk (0) and p-value (p). By
repeating this procedure many times, we estimated Pr(m’
>m | n”=n). The accuracy of the estimation is based on
the number of repetitions. In typical setting, no less than
1,000 repetitions were required to provide distribution
with enough statistical power. Using this re-sampling-
based approach, we could assess the statistical
significance of identified contexts and consider only
significant patterns for further analysis.

2.5. Data quantization

To use the proposed method, gene expression data needs
to be quantized. If the data is pre-quantized by a
sophisticated method such as described in Chen et al.%’
we use them as is. If not, there are several other
methods available: fold-changes, heuristic-based,”** and
model-based approaches.’””’ While relevant, the
discussion of the quantization issue is beyond the scope
of this study, we therefore leave the further discussion to
those studies.

2.6. Data quantization

To use the proposed method, gene expression data needs
to be quantized. If the data is pre-quantized by a
sophisticated method such as described in Chen et al.%’
we use them as is. If not, there are several other
methods available: fold-changes, heuristic-based,”** and
model-based approaches.””’ While relevant, the
discussion of the quantization issue is beyond the scope
of this study, we therefore leave the further discussion to
those studies.

3. EVALUATION OF THE ALGORITHM

To evaluate its utility and the performance of the
proposed algorithm, we wused simulation-based
experiments. To generate the synthetic data, we started
with a set of master-slave relations, which consisted of a
master, a set of slaves and a set of rules between the
master and the slaves. We then added the conditioning
and crosstalk parameters to specify the strength of
regulation from the master to the slaves, which added
randomness to the relations. This master-slave relation
defined a cellular context. Since typical cells have many
such  cellular mechanisms actively  operating
simultaneously, we specified multiple cellular contexts
and samples were drawn, as measurements were made,
from the set of cellular contexts. The process is
illustrated in Figure. 2.

In Figure 2, the third sample, row (red® (R), black
(B), B, green (G), R, B, G, R, G, R, R, G, G, B, G, B)
has been drawn from the same cellular context (first
graph) as the first sample, row (R, B, B, G, R, B, B, R,
G, R, R, G, G, R, G, B), but because of the randomness
introduced by the conditioning and crosstalk parameters,
on being sampled they do not show the identical gene
expression profile, which is also typical in real
biological observations.

In the simulation done, we used four different
cellular contexts, one master gene in each context, and

¢ “red” appears dark gray, and “green” appears light gray, due to the
conversion to grayscale to comply with the conference guideline.
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Figure 2. Master-Slave regulatory model to simulate

gene expression data: different numbers of samples are
drawn from each context (three contexts).

105 genes in a simulated data. The main focus of the
simulation was to find the effects of number of samples
drawn for each context and the number of regulated
genes in each context, to the performance of the
algorithm. For each data, four different contexts were
sampled with different sampling rates of 5, 10, 15, and
25 observations. Also different numbers of slaves were
tested for each context: 10, 15, 25, and 40 out of 105
total genes. Once the data was generated, for each
cellular context, we tested how accurately the algorithm
identified master and slaves corresponding to the
cellular context. For comparison, other statistics-based
method (correlation) and information-based method
(mutual information) were also used to identify such

0.12 T
—o— context Total
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10 15 20 25 30 35 40
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sets. These methods have been popularly used in
microarray analyses such as clustering to identify co-
regulated genes within same cellular context. For the
measures of performance, we used false positive (FP;
the number of genes identified as being regulated that in
fact are not), false negative (FN; the number of genes
not identified as being regulated that in fact are ), and
total error (FP + FN). Each parameter combination was
repeated 200 times to compute the average performance.
The results are shown in Figure. 3 which compares the
performance of correlation and mutual information with
the context miner in terms of error.

As we can see, in all cases, the proposed algorithm
(context) outperformed the other algorithms (mutual
information and correlation). There was not much
difference between the other two algorithms in terms of
performance. Fig. 3 (a) shows the effect of the number
of regulated genes in each context. It is shown that
significant portion of total error comes from false
negative (FN). It also shows that FN increases as the
number of slaves increases while false positive (FP)
remains unchanged, which is somewhat expected. Fig. 3
(b) shows the impact of the size of context (sample
size). While FN remains relatively unchanged, FP
decreases significantly as the sample size increases.
Overall error for the proposed method also remains
relatively low at 4 to 8% for different number of slaves
in each context and 5 to 9% for different sample sizes.
Therefore, the simulation study proves that the proposed
method can be effectively used to identify a set of genes
that are specifically regulated within a specific cellular
context.

T
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Figure 3. The comparisons of the proposed method against other association-based methods shows the proposed methods
outperform the others for both increasing number of regulated genes (slaves) (a) and the size of contexts (samples) (b).
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4. RESULTS

To show a proof of principle, we applied the method to
a previously published melanoma data set* and gene
expression data with drug activity data for the NCI 60
cell lines.”” The latter will illustrate how multiple types
of data (gene expression and drug activity data) can be
combined in the analysis to identify interesting patterns
of interactions not only among genes but also between
genes and drugs.

4.1. Analysis of melanoma gene
expression profile

Melanoma data set consists of 8,607 genes and 31
samples.  After preliminary analysis and filtering
according the method described in the original paper, we
extracted 587 genes which were then used for this study.
In the original study of melanoma, there existed very
tightly clustered samples (major cluster) with less
motility and invasiveness. We, therefore, first identified
a set of genes that displayed consistent expression in the
major cluster using our method. Top two genes
identified in the original paper, WNTS5A and MLANA,
as well as SNCA and EDNRB were found at the top of
our list (data not shown). Also, there were some new
genes identified with high consistency, which are
interesting candidates for further study.

Another finding in the original paper was the
regulatory control of Wnt5a when it is highly expressed.
Thus, the samples conditioned by a high expression of
WNTS5A were found to be strongly associated with the
high expressions of MLANA, DKK3, SERPINEI],
MTI1X, KAIl, BRD2, and TRAM1. The involvement
of these genes with melanoma development is unknown
but the consistency of their transcriptional activities
warrants further investigation. However, the regulation
of MLANA by WNT5A has been recently reported.*

To unravel novel molecular contexts related to
melanoma, we applied the algorithm as described in
section 2. Using more than 10,000 re-sampling, we
identified more than 100 contexts with p < 0.005. Table
1 lists the contexts with p < le-4.

In Table 1, note that two distinct states of MLANA
make up two different contexts; the first one is when it is
normal and has 17 genes (excluding itself) being
regulated, and the other is when it is up-regulated and
has 14 genes (excluding itself) as regulated. When
compared, two contexts share only one gene (MYLK) in
common as regulated, but in distinct states. This
confirms our assumption that a gene can be regulated by
different regulators (masters) when cellular context
changes. Further investigation revealed that more than
100 contexts identified with p < 0.005 can be grouped

Table 1. Cellular contexts (denoted by masters) identified
with the statistical significance, p < le-4.

Conditioners State m n  Pr(m™m|n’=n)
MLANA 10 18 0.0000992
PLP1 + 23 7 0.0000992
MLANA + 21 15 0.0000993
FBN2 13 12 0.000099%4
MMP3 - 12 14 0.0000994
TCEB3 - 17 6 0.0000994
LOC646762  + 9 21 0.0000994
MYLK + 20 16 0.0000995
DUSP1 + 7 37 0.0000995
MMP3 16 11 0.0000995
IFIT1 14 15 0.0000995
MBP 15 8 0.0000995
EDNRB 6 43 0.0000995
SNED1 - 4 68 0.0000996
WNTS5A - 24 4 0.0000997

Conditioners are the genes used to in-silico condition
context. State indicates the expression states of
corresponding conditioner. m and » denote the number of
samples where the conditioner is kept at the state and the
number of regulated genes (including the conditioner itself)
within such context. The last column shows the probability
that a context with equal or larger size can be identified by
chance using re-sampling method.

into less than 30 larger contexts with unique hierarchical
structures (data not shown), upregulation of WNTSA
and upregulation of JUN being among them.
Upregulation of WNTS5A is interesting because of its
regulation of MLANA, as reported in Weeraratna et al.**
Upregulation of JUN became also interesting because of
our biologist’s other supporting biological evidences.
These two contexts are exclusive, implying two
distinctive molecular contexts relevant to melanoma.

Ongoing work to elucidate the effects of WNTS5A in
melanoma has revealed that high levels of WNTS5A in
melanocytes are associated with higher production of the
cytokine IL6. Work from a number of laboratories
shows that the transcription factor Mitf, which drives
Melan-A transcription is itself regulated by Pax3 and
Sox10,” and that this regulatory pathway can be
inhibited in melanoma by IL6 stimulation, which affects
Pax3."”

In the other context considered, the stimulation of
transcription of DUSP1 by JUN is seen. DUSPI
expression is known to be upregulated by the onset of
chronic proliferation®, and is known to inactivate



MAPK through dephosphorylation.' DUSP1
transcription is activated in a wide variety of stresses,
and the exact transcription factors involved are not well
worked out.”® It is likely that the high predictivity of
DUSP1 transcription by increased JUN transcription
arises from the simultaneous stimulation of both JUN
and DUSP1 that occurs when cells go into chronic
proliferative states. Interestingly, recent study found the
possibility of potential diagnostic relevance of DUSP
expression in tumors.

4.2. Analysis of NCI 60 cell line gene
expression and drug sensitivity
data

We extended the concept of finding conditioning factors
from only genes, to elements which influence, regulate
or act specific to the existing cellular state. Any such
factor would also be bound by the constraints in place
due to cellular state. Applying our method to such
disparate datasets such as aCGH, gene expression and/or
drug activity data, would allow us to witness the
possible underlying patterns of the inter- and intra-
relationships in them. Using the NCI60 data set we show
that the contexts identified can help guide further studies
of drug effectiveness and mechanism of action.

4.2.1. Data preparation

To provide an example of exploratory functions possible
by our method, we applied it to the NCI 60 drug data.
The dataset consisted of the drug activity data of 118

Clinical parameters
-pathology
-survival
-drug treatment

quantization

logical values

Mining

Molecular profile
-expression data

quantization f
-CGH data

—— discrete values

Context
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drugs and the gene expression data of 1375 genes across
the NCI-60 cell lines.”” The original paper related this
data to sensitivity to therapy rather than to molecular
consequences of the therapy, as the gene expression
patterns were determined in untreated cells.

The drug activity was represented in a matrix with
—log Gls, values, where Gls, is an indicator of the
growth inhibition by the compound on the cell line. The
application of our method can be summarized into three
steps - scaling of data to comparable form
(normalization), combining these forms, and applying
our method to obtain contexts corresponding to the
different conditioning factors. In order to scale the
different data sources, the drug matrix was normalized
by subtracting its row-wise mean and dividing by its
row-wise standard deviation. For the gene expression
matrix, no transformation was applied, the matrix being
already normalized. Next, matrix entries were quantized
on the basis of two-fold changes, for statistical
significance. Then both quantized matrices were
combined into one and used as the input data for the
context analysis. The generalized process is captured in
Figure 4.

4.2.2. Patterns of drug-gene interactions

The context analysis on the NCI 60 drug activity and
gene expression data resulted in 4153 contexts. Among
those, we focused on the contexts where at least one
drug and a gene were included, which resulted in 243
contexts. At last, only 27 contexts were found to be
statistically significant with p-value less than 0.01,

clinical or
physiological
context

molecular or
cellular context

Prognostic
prediction

Figure 4. Combining genomic data and clinical parameters to identify cellular contexts - Drug activity data and gene expression

data from NCI gene expression database NCI 60 cell lines was discretized independently into ternary values and then combined

into a single data set. Using each drug or gene as the conditioning factor, context analysis was carried out to obtain contexts

focusing on drug-gene combinations.
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Table 2. Top 27 contexts identified from combined drug data and gene expression data, with statistical
significance p<0.01. The first column represents the conditioning factors (gene/drug/disease) of the
context. Genes are represented by gene symbols. In case of drugs, the drug name is shown with the
mechanism of action e.g. [TU]. The second, third and fourth columns lists the number of conditioning
factors, number of cell lines and total number of drug/gene elements respectively identified for the
context. The fifth column reports the p-value of finding such a context. The final column reports the
number of drugs that were found to be highly active in that context.

SW S G Pr(G+|S) Drugs
Gene
PTK2 2 4 184 0.00163 33
RAB7 1 5 132 0.00163 0
GJA4 2 3 241 0.00169 39
HEXB 1 2 200 0.00172 37
MMP14 1 3 173 0.00253 5
TWF1 1 5 102 0.00327 3
CORO1A 1 5 102 0.00327 5
TDG 1 3 164 0.00337 16
GLUL 1 3 145 0.00422 3
ISGF3G 4 4 159 0.00489 3
KCNQ4 2 5 93 0.00490 4
- 1 3 139 0.00506 9
- 1 2 174 0.00517 44
MYL3 2 4 145 0.00653 9
RP6-213H19.1 1 4 120 0.00734 3
MAPRE2 2 3 118 0.00759 3
KLF6 1 3 118 0.00759 12
- 1 4 117 0.00816 5
- 1 3 114 0.00843 5
IRX3 1 4 107 0.00897 2
REEPS 3 2 144 0.00948 6
- 1 4 100 0.00979 0
Drugs
7-Epi-10-deacetylbaccatin III [TU] 1 2 190 0.00259 7
Camptothecin,20-ester (S) [T1] 1 42 7 0.00382 0
Camptothecin,1 1-HOMe (RS) [T1] 1 2 160 0.00603 42
Taxol analog [TU] 1 54 4 0.00771 0
Disease
Leukemia 2 6 78 0.00485 2

[TU] is Tubulin—active antimitotic agents and [T1] — Topoisomerase I inhibitor.

which are displayed in Table 2. Among these identified
contexts, we proposed how these elements act with each
other, based on the domain knowledge, annotations or
functionality.

We observed that the majority of the contexts
reflected patterns found in the original paper.” For
example, the two breast cancer cell lines positive for
oestrogen receptor, T-47D and MCF7, clustered

together in the original paper, were also found to be
grouped together in our analysis. The context identified
showed higher activity of drug 11-formyl Camptothecin
(RS) than its counterpart Camptothecin, 11-HOMe(RS).

For the two cell lines (MDA-MB-435 and MDA-
N), there were two filtered contexts of interest In the
first context with only these two cell lines grouped, drug
7-Epi-10-deacetylbaccatin III (Taxol Analog NSC No.



656178), Paclitaxel and other Taxol analog drugs with
the mechanism of action as Tubulin-active antimitotic
agents (TU) displayed highly active status. In the second
context, conditioned by gene RAB7, these two cell lines
were grouped together with Melanoma cell lines
(MALME-3M, SK-MEL-5 and UACC-62).

Interestingly, the drugs identified in this context as
being consistent were Cyclocytidine and
Cyctarabine(araC), belonging to DNA synthesis
inhibitor mechanism (Ds). However, they did not
display high activity across all these samples, while
Taxol analog drugs were highly active in these two
breast cancer cell lines. In the original paper, MDA-
MB-435 and MDA-N cell lines clustered closely with
Melanoma cell lines.”” The authors had discussed that
the MDA-MB-435 and its Erb/B2 transfectant MDA-N
expressed large number of genes characteristic of
melanoma, and recent findings now group these two as a
subtype of Melanoma itself.”**® However, the finding in
our study may indicate that they still do not use the same
mechanisms in drug responses.

In Table 2, many of the contexts include drugs that
have different mechanism of action. Every context
depicts the common transcriptional activities of given
cell lines, for example, subtypes of cancers with shared
transcriptional behavior. It is possible that in order to
stop proliferation of the cell, different points of the
regulatory mechanisms present in cancer cells are
targeted. Thus depending upon drug target point,
varying degree of potency of drug would be established,
effective in arresting the cancer development.

Our initial purpose of being able to attribute the
drug to a particular mechanism seemed thwarted by the
inclusion of drug in multiple contexts, showing more
than one type of mechanisms active in each context.
Considering the previous argument, we tried to improve
the prediction of mechanism of action of drug by finding
maximum overlap between biological processes (GO
terms) of the genes targeted by drug with unknown
action and those of drugs with known action. Greater
overlap would imply similarity in mechanism of action.

We tried assigning the mechanism of action of drug
Inosine-glycodialdehyde (Inox) by studying other drugs
in all contexts which include Inox. In the context
conditioned by IRX3, Inox showed similar activity to
11-Formyl-20(RS)-Camptothecin, of mechanism TI1,
topoisomerase 1 inhibitor. In the context conditioned by
gene TWF1, it showed high activity along with drugs
Dichloroallyl-lawsone and Pyrazofurin of mechanism
Rs, RNA synthesis inhibitor. This context consisted of
Leukemia cell lines CCRF-CEM, K-562, MOLT-4, HL-
60 and RPMI-8226.
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We extracted for each drug the corresponding target
genes from PubGene'® and ran the obtained lists through
GoMiner.*® On matching the significant GO terms (with
p-value<0.05) we found that although there were less
than 10 exact matches but the terms displayed more
coherency in terms of function to Rs mechanism derived
GO terms. For Inosine-glycodialdehyde, we found
G0:0000122, GO:0045892 which relate to negative
regulation of transcription (from RNA polymerase II
promoter and DNA-dependant). GO terms matching
those from Pyrazofurin and dichloroallyl-lawsone (Rs
mechanism) included GO:0006220, GO:0009058,
GO:0009165 and GO:0044249, related to nucleotide
metabolism and biosysnthesis. There was no significant
GO term match between those derived from Inox and
those from Camptothecin.

Some contexts group different cell lines possibly
implying an underlying similarity in the regulatory
mechanism in place, irrespective of the tissue of origin.
This allows identification of drugs which could be
potent in these particular cancer subtypes, allowing us to
span and target a greater range of cancer types using the
same drug. By finding targeted mechanisms by
concentrating on annotations such as GO terms would
allow greater power in our ability to prescribe effective
drugs.

5. CONCLUSION

We propose a method to identify putative cellular
contexts via in-silico conditioning, which, if applied to
the study of cancer, could lead to the discovery of
subtypes of the disease not obvious at the histological
level but possibly explained at molecular levels and
carry prognostic relevance. The method can be applied
to the experimental data with disparate data sources to
improve understanding of the multilayer interactivity of
biological components and help direct further studies.
We used this method on public datasets of melanoma
and gene expression data with drug activity data of NCI
60 cell lines. In melanoma study, we identified
distinctive transcriptional patterns, one of which can be
of clinical importance. The contexts analyzed imply
some concerted pattern amongst the different
components, and may be necessary to allow integration
of biological data using prior knowledge to guide the
combination and comprehension of the data.

The current method is limited to only one
conditioning parameter due to its exhaustive search
which grows exponentially with the number of
conditioning factors. Biological systems often require
multivariate conditioning, and we are currently
exploring extension of the algorithm to address it.
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