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Peptide sequencing by tandem mass spectrometry is a very important, interesting, yet challenging problem in proteomics. This problem
is extensively investigated by researchers recently, and the peptide sequencing results are becoming more and more accurate. However,
many of these algorithms are using computational models based on some unverified assumptions. We believe that the investigation of
the validity of these assumptions and related problems will lead to improvements in current algorithms. In this paper, we have first
investigated peptide sequencing without preprocessing the spectrum, and we have shown that by introducing preprocessing on spectrum,
peptide sequencing can be faster, easier and more accurate. We have then investigated one very important problem, the anti-symmetric
problem in the peptide sequencing problem, and we have proved by experiments that model that simply ignore anti-symmetric or model
that remove all anti-symmetric instances are too simple for peptide sequencing problem. We have proposed a new model for anti-
symmetric problem in more realistic way. We have also proposed a novel algorithm which incorporate preprocessing and new model for
anti-symmetric issue, and experiments show that this algorithm has better performance on datasets examined.

1. INTRODUCTION

Peptide sequencing by mass spectrometry (referred to as
“peptide sequencing” in the following part) is the
process of interpreting peptide sequence from the mass
spectrum. Peptide sequencing is an important problem
in proteomics. Currently, though high throughput mass
spectrometers has generated huge amount of spectra, the
peptide sequencing these spectrum data is still slow and
not accurate. Algorithms for peptide sequencing can be
categorized into database search algorithms [1-3] and de
novo algorithms [4-6]. The database search algorithms
are suitable for known sequences already existing in the
database. However, they do not have good performance
for novel sequences not available in database. For these
peptide sequences, the de novo algorithms are the
methods of choice. De novo algorithms interpret peptide
sequences from spectrum data purely by analyzing the
intensity and correlation of the peaks in the spectrum.

Though current extensive research in de novo
peptide sequencing helps to improve the accuracies,
there are still many obstacles for both de novo and
database search approaches, which make further
improvement of the accuracies of peptide sequencing
difficult. Among these obstacles, preprocessing to
remove the noises from spectrum before peptide
sequencing, as well as the anti-symmetric problem, are
two of the very important issues.

Preprocessing to remove noisy peaks

A peak in spectrum is noisy if it does not correspond to

a peptide fragment, but a contaminant in mass
spectrometers, experiment environments, etc. Since
most spectra contain a significant amount of noises, and
noisy peaks may mislead interpretation; therefore,
preprocessing to remove noisy peaks from the spectrum
is necessary.

The anti-symmetric problem

A peak p; is anti-symmetric if there can be different
fragment ion interpretations for p; otherwise, p; is
symmetric. There is an anti-symmetric problem in
spectrum S if S has one peak p; which is anti-symmetric.
For the spectrum graph G [4] used to represent
spectrum, a path in G is called anti-symmetric if there
are no two vertices (fragment ion interpretations) on this
path which represent the same peak; otherwise, we say
that this path has the anti-symmetric problem. The anti-
symmetric problem is common in peptide sequencing.
Currently there are generally two approaches to the anti-
symmetric problem. One approach is to ignore the anti-
symmetric problem [6]; and another is to apply the
“strict” anti-symmetric rule that require each peak to be
represented by at most one vertex (fragment ion
interpretation) on a path in the spectrum graph G [4; 7,
8]. The “strict” anti-symmetric rule is used in many
peptide sequencing algorithms, but whether applying
this rule is realistic is doubtful.

In this paper, we will address computational model
to remove noise peaks from spectrum. This model also
includes the method for introduction of “pseudo peaks”
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into the spectrum to improve peptide sequencing
accuracies. We have also proposed the restricted anti-
symmetric model for the anti-symmetric problem. We
have then proposed a novel peptide sequencing
algorithm which incorporate these two computational
models.

2. ANALYSIS OF PROBLEMS AND
CURRENT ALGORITHMS

In this section, we will analyze the presence of noises in
the spectrum, as well as the difference between the
algorithms that use preprocesses and those which do not
use them. We will also investigate how significant is the
anti-symmetric problem in peptide sequencing by mass
spectrum, and how current algorithms cope with this
problem.

2.1. General Terminologies

We first define some general terms. Through mass
spectrometer, or tandem mass spectrometer, a peptide
P=(aa,...a,), where each of a,,...,a, is one of the amino
acids, is fragmented into a spectrum S with maximum
charge of a. The parent mass of the peptide P is given
by M =m(p) = Z’j:lm(a ;) . Consider a peptide prefix
fragment p, = (aja,...a;), for k < n, the prefix mass is
defined as m(p,)= Z’;:, m(a;). Suffix masses are
defined similarly. We always express a fragment mass
in experimental spectrum using the PRM (prefix residue
mass) representation, which is the mass of the prefix
fragment. Mathematically, for a fragment ¢ with mass
m(q), we define PRM(q) = m(q) if q is a prefix fragment
(such as {b-ion}); and we define PRM(q) = M — m(q) if
q is a suffix fragment (such as {y-ion}). A spectrum S is
composed of many peaks {p;, p» ... pi}. Each of the
peaks p; is represented by its intensity intensity(p;) and
mass-to-charge ratio mz(p;). If peak p; is not noisy peak,
then it will represent a fragment ion of P. Each peak p;
can be characterized by the ion-type, that is specified by
(t, h, 2)e (AxAyxA,), where A, is the set of charges of
the ions, A is the set of basic ion-type, and A, is the set
of neutral losses incurred on the ion. In this paper, we
restrict our attention to the set of ion-types
AP=(AxALXA,), where A, ={12,...,0}, A, = {a-ion, b-
ion, y-ion} and A, = {J, —-H,0, —-NH3}. Suppose the (t,
h, z)-ion of the fragment ¢ (prefix or suffix fragment)
produces an observed peak p; in the experimental
spectrum S that has a mass-to-charge ratio of mz(p,),

then m(q) can be computed using a shifting function,
Shift, defined as follows:

m(q) = Shifi(p,,(t,h,z)) = mz(p,)-z+(5O)+ 6(h) - (z=1) (1)
where 8(t) and d(h) are the mass shift associated with
ion-type ¢ and the neutral-loss 4, respectively. In
addition, we define m(p,(t,h,z))=m(q). We say that peak
p; is a support peak for the fragment ¢ and has ion-type
(t, h, z), and that the fragment g is supported by the peak
pi. The peak p; is a support peak for the peak p; if both
of them are support peaks for the same fragment g.

In peptide sequencing, if two peaks correspond to
two consecutive prefix/suffix ions, then we say they are
connected. Formally, if p; and p; are peaks in S, and they
correspond to a (#, 4; z) ion and a (4, A, z) ion
respectively, then p; and p; are said to be connected with
a mass tolerance of m, if |m(p; (t,h,z))-m(p, (t, h;,z)|<m,.
The presence of connected peaks is the basis of
sequencing algorithms.

In the problem of peptide identification by tandem
mass spectrometry, the input includes the mass
spectrum S, the set of possible ion types 4 and the
parent mass M (and for database search algorithms, a
database of peptides). The output is the putative peptide
sequence P of that matches with S better than any other
peptides.

In this paper, we have specially concerned on
multi-charge spectra, which are spectra with charge
greater than 1. This is because multi-charge spectra (1)
are vastly in existence as the results of ion trap mass
spectrometry experiments, (2) usually contain many
multi-charge peaks and (3) contains many noisy peaks.
Therefore, multi-charge spectra are suitable for our
analysis of computational models in this paper.

To account for the different ion-types in spectrum,
especially for multi-charge spectrum, we introduced the
concept of the extended spectrum S [9] where « is the
maximum charge of the spectrum S, and f is the largest
charge considered for extension. In the extended
spectrum SZ , for each peak p,e§ and ion-type (z, ¢,
ne({1,2,....0}xAxA;), we generate a pseudo-peak
denoted by (p;, (z, ¢, h)) with a corresponding assumed
fragment mass. We then introduce an extended
spectrum graph, denoted by G,(S%), for the extended
spectrum S%, where d is the “connectivity”. For
simplicity, we first define G;(S%), the extended
spectrum graph for S with connectivity 1. Each vertex
v=(p,(t,h,z)) in this graph represents a peak (p; (¢,h,z)) in
the extended spectrum S%, namely, the (t,h,z)-ions for
the peak p;. There is a directed edge between two



vertices if their mass difference is equal to the mass of 1
amino acid. We also define the theoretical spectrum
TS"4(P) that completely characterizes the set of all
possible peaks for a peptide assuming that the ions can
take charge /,2,...,5. Note that by comparison of
theoretical spectrum with experimental spectrum, the
theoretical upper bounds for different measurements on
peptide sequencing results can be calculated [9].
Another useful measure is the SPC, The shared peaks
count (SPC) between the experimental spectrum S and a
peptide P is defined as the number of peaks in S that has
the same mass-to-charge ratio (mz) as those in 7.S(P),
the theoretical spectrum of P.

2.2. Datasets

All of the experiments in this paper use the spectra
selected with different charges from (a) Amethyst data
set from Global Proteome Machine (GPM) [10] and (b)
the data set from Institute for Systems Biology (ISB)
[11]. The GPM dataset are MS/MS spectra obtained
from QSTAR, from both MALDI and ESI sources. The
ISB dataset was generated using ESI source from a
mixture of 18 proteins, obtained from lon-Trap, and
consists of spectra of up to charge 3. In contrast to the
GPM datasets, the ISB datasets are of low quality.

We have selected spectra with corresponding
peptide sequences validated by Xcorr score > 2.5. Table
1 listed the number of spectra and the number of peaks
per spectrum for different charges of GPM and ISB
spectra.

Table 1. The number of spectra, and the number of peaks per
spectrum. The results are based on the GPM and ISB datasets of
different charges.

Charge | No. Spectrum No. peaks per spectrum
GPM ISB GPM ISB

1 756 16 48.2 226.6

2 874 489 46.9 2213

3 454 490 42.6 230.7

4 207 - 46.8 -

5 37 - 46.1 -

Total 2328 | 995 46.5 226.0

Each GPM spectrum has between 20-50 peaks
(usually high quality peaks) and an average of about 40
peaks. In contrast, each ISB spectrum has between
50~300 peaks and an average of 150 peaks. Moreover,
for the corresponding peptide sequences, GPM
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sequences have average lengths of 14.5 amino acids,
and ISB sequences have average length of 15.0.

2.3. Problems Analysis

Since binning is the general prerequisites for spectra
data preprocess, in this section, we have first analyzed
the methods for binning of the peaks in the spectrum,
and then discuss preprocessing to remove noisy peaks
from while introduce “pseudo peaks” into spectrum.
Then we have analyzed of the anti-symmetric problem.

e Binning of peaks in spectrum

Binning discretizes the mass to charge ratios of the
peaks to a series of bins of equal sizes. Each bin
contains a single peak. The binning idea is already
embedded in [12; 13] for mass spectrum alignment. In
[12; 13], the peaks of the spectrum are packed into
many bins of same sizes, and the spectrum is
transformed to a sequence of Os and 1s. Recently, a
database search algorithm COMET [14] is proposed
which uses the bins (usually of size 1 Da) for their
correlations and statistical (Z-score) for
accurate peptide sequencing by database search
(spectrum comparison).

The important parameters considered in binning
include the size of the bins, the number of supporting
peaks, as well as the intensities of the peaks. The lemma
below shows that connected peaks remain connected
after binning if we adjust the mass tolerance properly.

analysis

Lemma 1. Suppose two peaks pi and p; are connected
with a mass tolerance m, and p;* and p;* are bins
corresponding to p; and p;, then p;* and p;* are
connected with a mass tolerance of z*m;;,+m, where
my;, s the bin size, and z is the maximum possible
charge state.

Proof: Suppose p; and p; correspond to a (¢, 4, z;) ion
and a (#, h;, z;) ion respectively, then there exists an
amino acid A such that

mA)-m<Im (i (tuhz)-m(p, (G z)| < m(A)+m, ()
Note that

Imz(p)-mz(0:®) | <myl2, |mz(p)-mz(p 9| <my/2 (3)
From (2), we have

|m(pi*, (t, hiz)-m(p;, (t, hi,z) | <z Fmy;,/2, (€]
Im(p;*, (1, h,2)))-m(py (4, 1;,2)) | <z *Myi/ 2,
Thus
lm(p:*, (t, hizy)-m(p;*, (1, h;,z)| Q)

<|m(p;*(t, hyz;))-m(p; (t, h;,z)|
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+m(p;, (t,hi,z)-m(p;, (1, h;.z)|
Hm(p;* (1, h;.z)-m(p;. (1, h;,2)|
<z¥mpt|m(p; (t,hi,z)-m(p;, (t,h;,z))|

Similarly,
[m(pi (1 hizi)-m(p;, (8. h;,2) |- z* My (6)
<|m(p;* (t,hyz)-m(p;*, (1, h;,z) |,
Hence, combined with (1), we have
m(A)-mqz*mpy @)
<|m(p;* (tihiz)-m(pj*, (t; h;z)|
<m(A)+m+z*my;,
That is,
|m(pi*, (t;hi,z)-m(p;*, (1 h;,z) |-m(A) | <m,+z mpy, (®)
Hence, pi* and p;* are connected with a mass tolerance
of z*my;,+m,. Proved.

Therefore, it is clear that given the proper value of
tolerance, the binning can preserve the accuracies. The
binning method makes the removal of noises easier, and
also makes sequencing faster and potentially more
accurate, especially for noisy spectrum.

e  Preprocessing to remove noisy peaks and

introduce pseudo peaks
Noisy peaks exist in every spectrum, but how to
distinguish them from “true” peaks is not an easy
problem. The first step is to analyze the spectrum data
and find the patterns of noisy peaks. To this end, we
have analyzed most abundant ion type: {b-ion, &, 1},
{b-ion, &, 2}, {b-ion, -H,0, 1}, {b-ion, -NH;, 1}, {y-
ion, &, 1}, {y-ion, &, 2}, {y-ion, -H,0, 1}, {y-ion, -
NH;, 1}, and assume those peaks not of these ion types
noises. The analysis is done on binned GPM dataset and
ISB dataset. The experimental spectrum and theoretical
spectrum for the corresponding sequence is compared,
and peaks in experimental spectrum that can be matched
with certain ion types are counted. The “content of
peaks” for specific ion type is defined as the ratio of
“number of peaks” (in experimental spectrum) of that
ion type, over total number of peaks in experimental
spectrum. The number of peaks and the contents of
peaks of different ion types are analyzed, with average
results in Table 2.

From Table 2, we can see that noisy peaks comprise
a significant portion of the peaks in the experimental
spectrum. For GPM datasets, 80% of the peaks are noisy
peaks, and the most abundant ion types — the b- and y-
ion types, only compose 6% and 5% of the peaks. For

Table 2. The average contents of different types of peaks in GPM and
ISB spectra. The symmetric peaks are just counted once for total
content measures.

Ion type No. of peaks (Avg) Content of peaks
(Avg)
GPM ISB GPM ISB
b-ion, &, 1 2.5 11.2 0.07 0.05
b-ion, &, 2 0.3 3.55 0.01 0.02
b-ion, -H0, 1 0.6 1.83 0.01 0.01
b-ion, -NHj, 1 0.3 1.83 0.01 0.01
y-ion, &, 1 1.6 6.7 0.07 0.04
y-ion, -H,0, 1 0.3 1.1 0.01 0.01
y-ion, -H,0, 1 0.3 3.6 0.01 0.02
y-ion, -NHj, 1 0.3 2.0 0.01 0.01
Noises 26.0 157.3 0.80 0.83
Total 322 189.1 1.00 1.00

ISB datasets, 83% of the peaks are noisy peaks, and the
most abundant ion types - the b- and y-ion types, only
compose 4% and 5% of the peaks. ISB spectra have
more noisy peaks, and peptide sequencing for these
spectra are more difficult.

Further analysis of the noisy peaks indicates that
there are more noisy peaks in the middle part (according
to mass to charge ratios) of the spectrum, than those at
the two ends of the spectrum. Also, most of the noisy
peaks have some features in common, such as low
intensity and few other ions (b-, y-, loss of water or
ammonia, for example) support.

For some famous algorithms such as Lutefisk [6],
there are no such preprocessing to remove noises.
PEAKS [15] and PepNovo [5] are two famous
algorithms that have implemented preprocesses. In
PEAKS, the noise level of the spectrum is estimated,
and the intensities of all the peaks in the spectrum are
reduced by this noise level. Then all the peaks with zero
or negative intensities are removed. In PepNovo,
preprocessing is applied to remove or downgrade peaks
that have low intensity, and do not appear to be b- or y-
ions. Recently, the AUDENS algorithm has been
proposed [16]. The algorithm has a flexible
preprocessing module which screens through the peaks
in the spectrum, and distinguishes between signal and
noise peaks.

Previous preprocessing for peptide sequencing by
mass spectrometry only considered how to remove
noisy peaks. However, some fragment ions are not
represented by any of the peaks. Appropriate
introduction of “pseudo peaks” into spectrum may help



in interpretation of these fragment ions, and increase the
sequencing accuracies. The idea of “pseudo peaks” is
first described in PEAKS [15]. PEAKS assumes that
peaks are at every place in the spectrum, and those
which are not present in the actual spectrum are peaks
with 0 intensities. It is proven that appropriate
introduction of “pseudo peaks” can partially solve the
problem of missing edges in the spectrum graph
approach [15].

In our preprocessing computational model, we have
remove noisy peaks from, removal as well as the
introduction of pseudo peaks into spectrum. Notice that
though the process is similar to previous work, the
computation model is different.

e The anti-symmetric problem

We have mentioned that there are two approaches
to the anti-symmetric problem: 1) ignore the anti-
symmetric problem and 2) apply “strict” anti-symmetric
rule. In the following part, we show that since both of
the approaches are based on unverified assumptions,
they do not reflect the nature of real spectrum.

First we give part of a real spectrum from GPM
datasets (Fig 1). Note that peak no. 1 has multiple
annotations. If we just ignore this peak, then there are
two peptide fragments that we cannot interpret
(AGFAGDDA and AGFAGDDAPRAVFPS), while the
peptide itself has 21 amino acids. Therefore, we see that
the simple model which apply strict anti-symmetric rule
may miss some interpretations of peptide fragments.

Ton Types

.0 (4.6,0); (4, x, —2 % Ha D)

Peak Na M/Z Intensity
1 177.105 2
2 191.12 2.0
3 205.103 2.0
5 231.125 6.0
(] 248,166 3.0
7 276.161 48.0 i1
8 302.203 1.0
9 3195.213 19.0
L 347.211 61.0 (1, 6@y
11 a76.196 1.0
12 404.199 4.0 il
14 485.3358 2.0
15 508,045 47.0
17 519.235 2.0 (3, b,
18 522.28 7.0
19 541.673 2.0
20 543.723 1.0 (3 —
22 585,324 3.0

23.0 (3,

b, @y
w0
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To analyze the significance of the anti-symmetric
problem in peptide sequencing, we have generated the
theoretical spectrum of known peptide sequences. We
have analyzed most abundant ion types {b-ion, &, 1},
{b-ion, &, 2}, {b-ion, -H,0, 1}, {b-ion, -NH;, 1}, {y-
ion, &, 1}, {y-ion, &, 2}, {y-ion, -H,O, 1}, {y-ion, -
NH;, 1}, and assume there is no noise. Two peaks are
said to be overlap if their mass difference is within
threshold (default of 0.25 Da). Note that each of such
overlapping peaks is equivalent to a symmetric peak.

Results on selected GPM and ISB spectrum
datasets are shown in Table 3. The “average numbers”
are the average number of symmetric peaks for
theoretical spectrum of one peptide sequence, and the
“average ratios” are computed as “average numbers”,
over average number of peaks in theoretical spectrum.

It is obvious that the instances of overlaps (within
threshold, 0.25 Da) are quite common. For the overlaps
of b- and y-ions in GPM datasets, there is one overlap
instance in about 5 peptide sequences, or in about 67
amino acids. The overall overlap instances are even
more common, one instance in about 0.36 sequences, or
about 5 amino acids. The ISB datasets has a little bit
less overlaps, but overall, there is still more than one
instance in 0.35 sequences, or in 4 amino acids.

Note that we have not considered peaks with higher
charges (z>3). But previous research [9] has found that
there is significant amount of higher charge (z>3) peaks
in high-charge spectra. It is nature that the number of
overlapping instances will increase when we have

CDDAPRAVFP
SDDAFPRAVEFRS (p1)

TACGDDAPRAVEPSI (piv)

ACGFAGDDAPRAVFPEIVGR
AGFAGDDAPRAVFPEIVGRE
ACGFAGDDAPRAVFPEIVGRFPR

Fig 1. Example of a real spectrum (left) with its corresponding peptide (right). The ion types are represented by (t, h, z)e (AtxAhxAz), as defined
above. In the bracket after the peptide fragment is the corresponding peak number.
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considered high-charge peaks, and more ion types.
Therefore, “strict” anti-symmetric rule is not realistic.

Table 3: The average numbers and ratios of overlapping instances for
different kinds of overlaps. Results on all of the GPM and ISB data.

Overlapping Types GPM datasets ISB datasets
Average | Average | Average |Average
number | Ratio number Ratio

b-ion, &, 1 <> y-ion, I, 1 0.213| 0.015 0.154{ 0.011
b-ion, &, 1 <> y-ion, &, 2 0.203( 0.015 0.173] 0.012
b-ion, &, 1€ y-ion, -H,0, 1 0.307( 0.023 0.307{ 0.023
b-ion, &, 1€-> y-ion, -NHj, 1 0.199( 0.014 0.129{ 0.008
y-ion, &, 1< > b-ion, &, 2 0.094 0.006 0.110{ 0.008
y-ion, &, 1< -> b-ion, -H,0, 1 0.095( 0.006 0.220{ 0.014
y-ion, &, 1€-> b-ion, -NHj3, 1 0.090( 0.006 0.199( 0.012
b-ion, &, 2&-> y-ion, &, 2 0.336( 0.024 0.331f 0.024
b-ion, &, 2&-> y-ion, -H,0, 1 0.152( 0.000 0.128 0.000
b-ion, &, 2&-> y-ion, -NHj3, 1 0.255( 0.017 0.340{ 0.021
y-ion, &, 2&-> b-ion, -H,0, 1 0.143( 0.010 0.124{ 0.008
y-ion, &, 2€-> b-ion, -NHj3, 1 0.000{ 0.000] 0.000{ 0.000
b-ion, -H,0, 1€ -> y-ion, -H,0, 1 0.213| 0.015 0.154( 0.011
b-ion, -H,0, 1< > y-ion, -NHj3, 1 0.125( 0.009 0.269| 0.018
y-ion, -H,0, 1< -> b-ion, -NHj3, 1 0.099( 0.007 0.075( 0.005
b-ion, -NHj;, 1€ > y-ion, -NHj, 1 0.213| 0.015 0.154( 0.011
All 2.735( 0.192 2.864| 0.196

Experiments were also performed with random
introduction of noises into theoretical spectrum. Results
(details not shown) indicate that there is a significant
increase in the number of overlap instances. Therefore,
ignoring the anti-symmetric problem is also not
realistic, especially for noisy spectra.

In Lutefisk [6], the anti-symmetric problem is
assumed not exist, and a peak can be annotated as
different ion types. In the Sherenga algorithm [4], only
one ion type is possible for each peak, but the exact
algorithm that solve the anti-symmetric algorithm is not
described. The dynamic programming algorithm for
solving anti-symmetric problem is described in [7; 8],
and suboptimal algorithm that gives the suboptimal
results for the anti-symmetric problem is shown in [17].

Since our experiments have shown that neither of
the two approaches (assumptions) to the anti-symmetric
problem is realistic, the simple models based on these
assumptions may be the obstacles for improvements of
current algorithms. Therefore, we have proposed a more
realistic computational anti-symmetric
problem.

model for

3. NEW COMPUTATIONAL MODELS
AND ALGORITHM

We propose a new algorithm that is based on two new
computational models: 1) preprocessing that can remove
noisy peaks from, while introduce pseudo peaks into,
the spectrum; and 2) new anti-symmetric model that is
more flexible and realistic to the anti-symmetric
problem.

3.1. Preprocessing to remove noisy
peaks and introduce pseudo peaks

First, the binning process is applied on the peaks in the
spectrum. The masses of amino acids are at least of 1.0
Da difference (except for (I, L) and (Q, K), which
cannot be distinguished by any de novo peptide
sequencing algorithm without isotope information). We
thus set the value of mass tolerance m, to be 0.5 Da, and
the bin size my,;, to be 0.25 Da (according to Lemma 1).
With the process of binning, later processes can be even
more accurate (lemma 1 shows that there is no loss of
accuracy) as well as more efficient because less peaks
are considered.

After binning, the pseudo peaks are introduced into
every empty bin, and each of them are of 1/10 intensity
(empirically determined) of the lowest intensity in
original spectrum.

After binning the peaks and introduction of pseudo
peaks, the support scores are computed for every bin
(peak). Here, we transform each of the bins (peaks) into
vertices (ion interpretations) in the extended spectrum
graph G,(S%), and then score each of the vertices.
Define Ngppor(vi) as the number of v; (vj#vi), where
PRM(vj)=PRM(v;). Define the intensity function as
fintensity(vi)=max(0.01, log;o(intensity(vy)),
log;o(intensity(v;)) is normalized, so that fiyensiy (Vi)
cannot be less than 0. Let L be the total number of
incoming and outgoing edges for v;, and a; be the amino
acid for the edge (vi,vj ) (or (vj ,vi)). Then Y [|((PRM(vj)-
PRM(v;)|-mass(a;)|/L is the average mass error for v;. To
avoid "divide-by-zero" error in calculating the weight
function, we define error function as f,.,(v;)=max(0.05,
Y II(PRM(v;)-PRM(v;)|-mass(a;j)|/L).  The
ensure that f,.(v;) is larger than 0.05, a reasonably
small error value. Then the score of vertex v; in G;(S%)
is defined as

Nsupport (vi) + ﬁntensity (vi) (9)

~ferror (Vi )

where

definition

w(v,) =



For each bin, the support score is computed and
ranked.

Some of the actual peaks that are highly likely to be
noises are deleted, and some of the pseudo peaks highly
likely to represent ion types are kept. Using this method,
we can 1) prune out noises in the spectrum and 2)
introduce meaningful peaks into the spectrum. So we
may create better spectrum graph to process. Based on
the analysis of the scores of peaks in the spectrum
(details not shown here), the lowest 20% bins in scores
ranking, or those bins with scores less than 1% of the
highest ones are filtered out.

3.2. The Anti-symmetric Problem

Since there are a significant ratio of peaks in spectrum
that can be (correctly) annotated as different ion types,
the anti-symmetric rule should not be strictly followed.
Otherwise, there is loss of information. However, since
there are still quite some noisy peaks after preprocess,
peptide sequencing that ignores anti-symmetric problem
may also be misled by noisy peaks, and thus not
preferable. Therefore, it would be better if a more
flexible and less strict anti-symmetric rule is applied on
the spectrum for the anti-symmetric problem.

We have proposed the restricted anti-symmetric
model. In this model, restricted number (r) of peaks can
have different ion types. It is easy to observe that the
current two approaches for anti-symmetric problem can
be described by this model. The approach that ignores
the anti-symmetric problem is the one with /=number of
peaks, and the approach that apply the “strict” anti-
symmetric rule is the one with »=0.

The restricted anti-symmetric model is based on the
extended spectrum graph G;(S%) model using multi-
charge strong tags [18]. Multi-charge strong tags are
highly reliable tags in the spectrum graph G;(S%). A
multi-charge strong tag of ion-type (z*, t, h) € Atis a
o Vo in Gi(SE LAY,
where every vertex v; is of a (z*, t, h)-ion, in which ¢
and / should be the same for all vertices, and z* can be
different number from {1,...a}.

The principle of the restricted anti-symmetric
model is that if a multi-charge strong tags (tag) 7; in
G{(S) is of high score, and on this tag, the number (r)
of overlapping instances (an instance is represented as
two vertices of different ion type for the same peak) is
within certain tolerance (half of the length of tag), then

maximal path { vg, v, vy,

25

T; is a good tag in G,(S%), and it is selected for
subsequent process.

It is easy to see that preprocessing and restricted
anti-symmetric models can be applied on any de novo
peptide sequencing algorithms to improve the
accuracies (details in experiments). Below we describe
our novel algorithm based on these two models.

3.3. Novel
Algorithm

Peptide Sequencing

Our novel algorithm (GST-SPC*) is based on the
previously proposed GST-SPC algorithm [18] which
has good performance. GST-SPC algorithm has two
phases. In the first phase, the GST-SPC algorithm
computes a set of tags - the set of all multi-charge strong
tags (corresponding to tags of maximal length in
extended spectrum graph) - and this leads to an
improvement in the sensitivity that can be achieved. In
the second phase, the GST-SPC algorithm try to link
these tags, and computes a peptide sequence that is
optimal with respect to shared peaks count (SPC) from
all sequences that are derived from tags. The GST-SPC
performs comparable to or better than other de novo
sequencing algorithms (Lutefisk and PepNovo),
especially on multi-charge spectra.

In the GST-SPC* algorithm, before peptide
sequencing, all of the peaks of the spectrum are binned,
with each bin of the mass range my;, (0.25 Da). The
pseudo peaks are introduced into every empty bins. Bins
(transformed to vertices in extended spectrum graph)
that have very low scores or low support rank are
filtered out. Based on the analysis of the peaks in the
spectrum, lowest 20% bins, as well as those bins with
support scores less than 5% of the highest ones are
filtered out.

In GST-SPC algorithm, we note that all of the tags
can have their SPC computed before deriving the paths
in the spectrum. So in GST-SPC* algorithm, after tags
are generated in the extended spectrum graph G,(S%),
we have filtered out the tags that violate the “restricted
anti-symmetric rule”. For the restricted anti-symmetric
model on tags, we restricted 7 to be at maximum half the
length of that tag. We have then computed the SPC for
those “good” tags. Then a variant of width first search
algorithm is applied on G,(S%) to find paths from v, to
vm, SO that these paths have high SPC, and they are
consistent with restricted anti-symmetric model. Since
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the number of tags is small, the algorithm is efficient. A
flowchart of the whole algorithm is illustrated in Fig 2.

4. EXPERIMENTS

4.1. Experiment Settings

All of the experiments in this paper are performed on a
PC with 3.0 GHz CPU and 1.0 GB memory, running
Linux system. Our algorithm is implemented in Perl.
We have also selected Lutefisk [6], PepNovo [5] and
PEAKS [15], three modern and commonly used
algorithms with freely available implementations
(online portal for PEAKS), for analysis and comparison.
The best results given by different algorithms are used
for comparison.

For measurement of the sequencing performance,
we have adopted the following measurements:
Sensitivity and Positive Predictive Value (PPV).

Sensitivity = # correct / | p | (10)
PPV =# correct/ | P | (11)
Tag-Sensitivity = # tag-correct / | p | (12)
Tag-PPV = # tag-correct / | P | (13)

where #correct is the “number of correctly sequenced
amino acids” and #tag-correct is “the sum of lengths of
correctly sequenced tags (of length > 1)”. #correct is

computed as the longest common subsequence (LCS) of
the correct peptide sequence p and the sequencing result
P. Sensitivity indicates the quality of the sequence with
respect to the correct peptide sequence and a high
sensitivity means that the algorithm recovers a large
portion of the correct peptide. The tag-sensitivity
accuracy take into consideration of the continuity of the
correctly sequences amino acids. For a fair comparison
with algorithms as PepNovo that only outputs highest
scoring tags, we also use PPV and tag-PPV measures,
which indicate how much of the results are correct.
Upper Bound on Sensitivity: Given a spectrum S
and the correct peptide sequence p, let U( SZ A4d})
denote the theoretical upper bound on sensitivity that
can be attained by any algorithm using the extended
spectrum graph G, (SZ) , namely using the extended
spectrum SZ and a connectivity d. The bound
U(Sj ,{d}) is computed as the maximum number of
amino acids that can be identified from G,(Sy) with
all of ion types in 4, over the length of p. PepNovo and
Lutefisk which considers charge of up to 2 are bounded
by U(S; ,{2}) and there is a sizeable gap between
U(S3,{2}) and U(SZ,{2}). This bound was introduced
in [18] for the analysis of the multi-charge spectra. In
this paper, we have also computed this bound to
evaluate the performance of different algorithms.

4 “real” peaks
T | R — noises
| | | I | R ey pseudo peaks
Binning v
A GST-SPC algorithm with
(a) Multi-charge tags
| | | (b) Restricted anti-symmetric model
) R N S
Tags VSTSOKR
Introduce “pseudo peaks” CCTGDHTK
A VS GKTTSTVR
CG PQRSTSTK
: QKR ¢ /o
'. | | | 2l | I R
Compute scores and remove noisy peaks Candidates:
A CCTGDHTK
VSTSQKR “AB”: tags
PQRSTSTK “AB”: “bad” tags
| | | | | , N e “AB”: best results

Fig 2. Flowchart of the whole algorithm. “bad” tags are tags that violate the restricted anti-symmetric model.




4.2,

We have first analyzed the performance of
preprocessing method, and compared the results of
Lutefisk, PepNovo, PEAKS and GST-SPC. We have
also compared these results with theoretical upper
bounds on sensitivity, to measure how good the results
of these algorithms are compared to optimal ones. The
GPM and ISB spectra are categorized by charges (given
by spectrum data). The results are shown in Table 4.
From results, we have observed that preprocessing
to remove the noises can effectively increase the
sequencing accuracies. Compared with the results from
original GST-SPC without preprocess, both of the PPV
and sensitivity accuracies increase by about 8% for
GPM datasets, and about 5% for ISB datasets after
preprocess. This difference is probably due to the fact
that ISB spectrum has more noises in it than GPM
spectrum, so after preprocessing to filter out noises, ISB
spectra still have more noises. Such accuracies are much
superior to results from Lutefisk algorithm, especially
on spectrum with high charges (z>3). The novel
algorithm outperforms the PepNovo algorithm on GPM
dataset; and for ISB dataset, the accuracies are closer.
Interestingly, when compared with PEAKS, we have
discovered that though PEAKS’s results on spectra with
charge 1 and 2 are comparable with our results, they are
better than our results on multi-charge spectrum. This is
because PEAKS also has a preprocessing step to remove
noisy peaks and introduce pseudo peaks, again prove
that such preprocessing in necessary. As can be found
later, when we have used new anti-symmetric model,
the accuracies of our algorithm are improved, and there

Results

Table 4. The performance of preprocess. The accuracies in cells are represented in a (PPV/sensitivity) format.
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is almost no difference between them. Compared with
theoretical upper bounds, we can see that there is still
much room for improvements.

We have then performed analysis on restricted anti-
symmetric model. All of the results based on GST-SPC
algorithm are preprocessed. The results based on
restricted anti-symmetric model (GST-SPC*) are
compared with the results based on strict anti-symmetric
rule (strict anti-symmetric) and results from GST-SPC
which ignores anti-symmetric issue (no anti-symmetric).
The results are shown in Table 5.

Table 5. The results based on the restricted anti-symmetric model,
compared with other models. The accuracies in cells are represented in

a (PPV/sensitivity [tag PPV/tag sensitivity]) format.

Dataset No. of | GST-SPC GST-SPC GST-SPC*
spectrum | (no anti- | (strict anti-
symmetric) symmetric)
GPM
Charge 1 756 0.395/0.381 0.394/0.399 0.398/0.342
[0.131/0.130] | [0.144/0.142] | [0.144/0.145]
Charge 2 874 0.334/0.385 0.348/0.386 0.345/0.408
[0.142/0.160] | [0.130/0.158] | [0.151/0.159]
Charge 3 454 0.312/0.327 0.320/0.342 0.332/0.351
[0.077/0.091] | [0.078/0.090] | [0.079/0.096]
Charge 4 207 0.230/0.229 0.238/0.238 0.241/0.239
[0.043/0.042] | [0.043/0.041] | [0.046/0.045]
Charge 5 37 0.195/0.190 0.197/0.195 0.208/0.201
[0.020/0.027] | [0.026/0.025] | [0.028/0.029]
Total 2328 0.345/0.360 0.344/0.364 0.347/0.375
[0.116/0.146] | [0.123/0.155] | [0.129/0.158]
ISB
Charge 1 16 0.390/0.473 0.386/0.486 0.393/0.491
[0.120/0.132] | [0.121/0.132] | [0.161/0.160]
Charge 2 489 0.411/0.398 0.414/0.397 0.434/0.421
[0.096/0.072] | [0.090/0.076] | [0.119/0.121]
Charge 3 490 0.408/0.496 0.426/0.528 0.419/0.531
[0.101/0.145] | [0.115/0.156] | [0.117/0.164]
Total 995 0.409/0.447 0.419/0.464 0.427/0.475
[0.109/0.120] | [0.118/0.112] | [0.119/0.141]

IR

value is not available by the algorithm, and “*”” shows the average values based on charge 1 and charge 2 spectra.

means that the

Dataset No. of | Upper Lutefisk PepNovo PEAKS GST-SPC GST-SPC
spectrum | Bound (without (with
(Sensitivity) preprocess) preprocess)
GPM
Charge 1 | 756 0.44 0.261/0.258 0.322/0.186 0.402/0.375 0.369/0.378 0.395/0.381
Charge2 | 874 0.52 0.243/0.241 0.316/0.215 0.449/0.437 0.321/0.365 0.334/0.385
Charge 3 | 454 0.38 0.111/0.113 - 0.329/0.323 0.291/0.291 0.312/0.327
Charge 4 | 207 0.36 0.065/0.063 - 0.279/0.297 0.219/0.226 0.230/0.229
Charge 5 | 37 0.29 0/0 - 0.270/0.329 0.192/0.191 0.195/0.190
Total 2328 0.41 0.203/0.202 0.319/0.202* | 0.392/0.381 0.312/0.336 0.345/0.360
ISB
Charge 1 | 16 0.55 0.127/0.130 0.630/0.769 0.481/0.486 0.370/0.464 0.390/0.473
Charge 2 | 489 0.54 0.033/0.034 0.481/0.445 0.481/0.486 0.360/0.347 0.411/0.398
Charge 3 | 490 0.49 0.002/0.002 - 0.481/0.486 0.360/0.453 0.408/0.496
Total 995 0.51 0.019/0.020 0.486/0.455 0.481/0.486 0.360/0.401 0.409/0.447
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Table 5 shows that the restricted anti-symmetric
model has superior accuracies. Compared with the
results from algorithms which ignores anti-symmetric
problem (no anti-symmetric), the application of
restricted anti-symmetric model can improve the
accuracies by about 5%, and this is probably due to the
fact that restricted anti-symmetric model can remove
some “bad” tags. About 2% to 5% improvements is
observed when compared with the results from strict
anti-symmetric model, this is consistent with the results
of significance of the anti-symmetric problem in Table
3. The results also show a great improvement in tag
PPV and tag sensitivity by using the restricted anti-
symmetric rule, especially on ISB datasets. This may
also be caused by the restricted anti-symmetric model
that removes the “bad” tags.

Compare the results in Table 5 with those from
Table 4, we have also observed that by the use of
restricted anti-symmetric rule in GST-SPC*, the peptide
sequencing results are more accurate. The results of
GST-SPC* are closer to accuracies of PepNovo (charge
and 2) and PEAKS, and significantly better than results
of Lutefisk. We also note that these results are still
about 20% (charge 1 and charge 2 spectra) to 50%
(charge 5 spectra) less than the theoretical upper bounds
of the accuracies given in [9].

We have then computed the number of results that
are 100% match with the correct peptide sequences
(sensitivity=1 and PPV=1). Results show that all of
these algorithms output more than 5% of 100% match
results. For our novel algorithm which introduces
pseudo peaks, the problem that many of the missing
fragmentations do not have enough peaks support still
exists. We think that better scoring function can help to
improve the ratio of 100% match results.

We have also applied preprocessing and restricted
anti-symmetric model on other algorithms. We have
selected PepNovo algorithm in this experiment.
PepNovo takes input as the preprocessed spectra by our
preprocessing model, and output the tags. We have then
rescored and ranked these tags according to the
restricted anti-symmetric model. We refer to this
method based on preprocessing and restricted anti-
symmetric model as PepNovo*.

Table 7. The performance of preprocessing and anti-symmetric model
on PepNovo. The accuracies in cells are represented in a
(PPV/sensitivity) format.

Dataset No. of | PepNovo | PepNovo with | PepNovo*
spectrum preprocess

GPM

Charge 1 | 756 0.322/ 0.320/ 0.330/
0.186 0.190 0.201

Charge2 | 874 0.316/ 0.319/ 0.333/
0.215 0.221 0.221

Total 1630 0.319/ 0.321/ 0.331/
0.202 0.212 0.220

ISB

Charge 1 | 16 0.630/ 0.635/ 0.645/
0.769 0.791 0.791

Charge 2 | 489 0.481/ 0.480/ 0.488 /
0.445 0.445 0.445

Total 505 0.486 / 0.485/ 0.489 /
0.455 0.417 0.425

The results show that by using preprocess, the
accuracies of PepNovo can be improved, but not much.
By using preprocessing and restricted anti-symmetric
model together, the accuracies can be further improved.
We believe that preprocessing and restricted anti-
symmetric model can be applied on other algorithms
and also improve their accuracies.

Table 6. Sequencing results of Lutefisk, PepNovo, GST-SPC and our novel algorithm. The accurate subsequences are labeled in italics.

n

“M/Z”means mass to charge ratio, “Z”means charge, and “-

means there is no result.

M/Z |Z |Real Lutefisk PepNovo

GST-SPC GST-SPC*

1219.8 |2 |VAQLEQVYIR [170.11]JELEKVYLR |GLQLEQVYLR

AVEIEQVYIR VAAGKEIEQVYIR

1397.9 (2 |ELEEIVQPIISK [242.14JEELAVGI[LP] | EELVKPLLSK

LSK

EIEEIA[101.02]QHISK EIEEIGIIGPISK

3.14]PAAA[CS]

1644.9 (2 ([PAAPAAPAPAEKTPVKK ([APJAAPA[HS]AP[19 (AAPADFEAMTNLPK

APAAPAPA[56.06]JAPAMTKV (APAAPAPAF[51.14]APADHAAAP[8.00]
PK KK

1838.8 |3 |SSYSLSGWYENIYIR [172.09]L[303.17][243 |-

.13][NP][MTILYLR

SSIYI[27.30]IIEPCEIYIR SSIYI[27.30]IIEPCEIYIR

1936.1 |4 |SIRVTQKSYKVSTSGPR  [[199.14][PW][259.10] |-

L[250.14]KVSTSGPR

VVISVTQK[63.847]WKVSTSG |VVCPVTQQ[95.80]PGKVSTSGPR
PR

2101.1 |4 |KIETRDGKLVSESSDVLP |[[243.09]LVR[TY]YTS |-
K ESSAE[PV]R

IKQHTHECYSESSDVIPK IKQHTHECYSESSDVIPK

3752.0 |5 |LPPGEQCEGEEDTEYMT |-

IPVPAQV[1944.68]GRSPVQIC [IPVVGQVE[2025.98]GRSPVIKCSR

PSSRPLRPLDTSQSSR SR
2359.0 |5 |CDKDLDTLSGYAMCLPN |- AFCDYA[417.18]RNQKIRCPT |AFCDID([423.17]RNQKIRCPTR
LTR R




In Table 6, we have listed a few “good”
interpretations of the GST-SPC* algorithm, on which
Lutefisk does not provide good results. It is interesting
to note that more and longer peptide fragments are
correctly sequenced by the novel algorithm - the power
of preprocessing and the restricted anti-symmetric rule.

In these interpretations, we observe that the novel
algorithm that incorporates preprocessing and restricted
anti-symmetric model can predict more and longer
fragments of the correct peptides than Lutefisk,
PepNovo and original GST-SPC. For example, for the
peptide sequence “PAAPAAPAPAEKTPVKK”, the two
tags “APAAPAPA” and “KK” are both interpreted
correctly only by this novel algorithm.

Efficiency: The GST-SPC* algorithm can process a
GPM spectrum (fewer peaks) in about 8 seconds, and 20
seconds for an ISB spectrum (many peaks). This is a
little bit faster than the original GST-SPC algorithm, but
slower than Lutefisk algorithm (within 10 seconds for
these spectra) and PepNovo (about 10 to 15 seconds for
these spectra) algorithm. This is because preprocessing
can reduce the number of peaks, but the restricted anti-
symmetric rule cause the increase of time. For PEAKS
algorithm, the average processing time is 0.3 second per
spectrum on the powerful computation facility of peaks
online (http://www.bioinfor.com:8080/peaksonline).
Because of preprocess, the space needed by GST-SPC*
is less than the original GST-SPC algorithm. The novel
algorithm used approximately 20 MB memory to
process a GPM spectrum, and about 50 MB memory to
process an ISB spectrum, in which most of the space is
used for store the extended spectrum graph.

5. CONCLUSIONS

In this paper, we have addressed two important issues in
peptide sequencing. The first one is preprocessing to
remove noisy peaks from spectrum, and introduce
pseudo peaks into spectrum at the same time. We have
shown by experiments that there is a significant portion
of noisy peaks in the spectrum, and our preprocessing
method, which removes noisy peaks and introduce
pseudo peaks, can make peptide sequencing more
efficient and more accurate. The second issue is about
the anti-symmetric problem. We have shown that both
strict anti-symmetric rule and no consideration of anti-
symmetric problem are not realistic, and we have
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proposed a restricted anti-symmetric model. Both
models can help improve accuracies of de novo
algorithms, and the novel GST-SPC* algorithm that
incorporates these models is shown to have high
performance on datasets examined.

However, there are still gaps between accuracies of
this algorithm and the theoretical upper bounds. The
algorithm can be improved by using better scoring
function (rather than SPC), better preprocessing method,
and more adaptable anti-symmetric model. We are
currently working on these aspects, and preliminary
results are encouraging.

The peptide sequencing problem is a very
interesting problem in bioinformatics, and there are
many other problems in peptide sequencing, such as
peptide sequence assembly. We will apply our
computational models on some of these interesting
problems in the future.
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