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The identification of orthologous genes shared by multiple genomes is critical for both functional and evolutionary

studies in comparative genomics. While it is usually done by sequence similarity search and reconciled tree con-
struction in practice, recently a new combinatorial approach and a high-throughput system MSOAR for ortholog
identification between closely related genomes based on genome rearrangement and gene duplication have been pro-
posed in 11. MSOAR assumes that orthologous genes correspond to each other in the most parsimonious evolutionary
scenario minimizing the number of genome rearrangement and (post-speciation) gene duplication events. However,
the parsimony approach used by MSOAR limits it to pairwsie genome comparisons. In this paper, we extend MSOAR
to multiple (closely related) genomes and propose an ortholog clustering method, called MultiMSOAR, to infer main
orthologs in multiple genomes. As a preliminary experiment, we apply MultiMSOAR to rat, mouse and human
genomes, and validate our results using gene annotations and gene function classifications in the public databases.
We further compare our results to the ortholog clusters predicted by MultiParanoid, which is an extension of the
well-known program Inparanoid for pairwise genome comparisons. The comparison reveals that MultiMSOAR gives
more detailed and accurate orthology information since it can effectively distinguish main orthologs from inparalogs.

1. INTRODUCTION

According to the definition of Fitch 10, orthologs are

genes that evolved by speciation, while paralogs are

genes that evolved by duplication. Orthologs typ-

ically occupy the same functional niche in different

species, whereas paralogs tend to evolve toward func-

tional diversification. Hence, the identification of or-

thologous genes shared by multiple genomes is criti-

cal for both the functional and the evolutionary as-

pects of comparative genomics.

The traditional ortholog identification meth-

ods could be categorized into two types. The

first is sequence similarity-based methods, such as

COG/KOG 23, 22, 24, EGO 15, Inparanoid/Multi-

Paranoid 19, 1, OrthoMCL 17, just to name a few.

The other is tree-based methods, including RAP 6,

TreeFam 16, PhyOP 12, Orthostrapper 21, RIO 26,

OrthologID 4, etc. The main assumption behind se-

quence similarity-based methods is that the evolu-

tionary rates of all genes in a homologous family are

equal and thus the divergence time could be esti-

mated by comparing the DNA or protein sequences

of genes. However, incorrect ortholog assignments

might be obtained if the real rates of evolution vary

significantly between homologs, and methods that

rely on sequence similarity alone are highly subject

to artificial association of slowly evolving paralogs

and to erroneous exclusion of the more rapidly evolv-

ing genes 5. Tree-based analysis is very intuitive and

informative for ortholog identification, since it visu-

ally presents the history of a gene family7. Usually,

orthologs and paralogs are identified by a reconciled

tree, which is constructed to reconcile the incongru-

ent gene and species trees by taking into consider-

ation gene duplication events. However, tree-based

approaches critically rely on the correctness of re-

constructed gene and species trees. Moreover, recon-

structing accurate gene trees for genome-wide scale

analysis is very computation-intensive.

Recently, a new combinatorial approach and a

high-throughput system MSOAR for genome-wide

ortholog identification for closely related genomes

based on genome rearrangement and gene dupli-

cation were proposed in 11. MSOAR focuses on

the assignment of a subtype of orthologs, called

main orthologs which are formed by the true ex-

emplars 20 from each pair of corresponding sets of

inparalogous genes, a by computing the rearrange-

ment/duplication distance between two genomes.

The assumption is that main orthologs correspond

to each other in the most parsimonious evolution-

ary scenario involving genome rearrangement and

∗Corresponding author.
aWith respect to a certain speciation event, the inparalogous genes are those that were generated by post-sepciation duplica-
tions 19.
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(post-speciation) gene duplication events. Since

the true exemplar gene of an inparalogous set is

the direct descendant of the ancestral gene of the

set, it best reflects the original position and func-

tion of the ancestral gene in the ancestral genome.

Hence, a reliable assignment of main orthologs is

an important step toward the general identifica-

tion of orthologs. The extensive tests on simu-

lated data and real human and mouse genomes in 11

demonstrate that MSOAR has a comparable per-

formance as Inaparanoid 19 and is able to find or-

tholog pairs that would be missed by Inparanoid

(or any sequence similarity based methods). More-

over, its assignment result on human and mouse

gonomes is well supported by the six methods listed

on the HGNC Comparison of Orthology Predictions

(HCOP) website (http://www.gene.ucl.ac.uk/cgi-

bin/nomenclature/hcop.pl)9, Jackson Lab’s human-

mouse ortholog database 8, and the protein func-

tions defined in Protein Analysis Through Evolution-

ary Relationships (PANTHER) classification system

(http://www.pantherdb.org/) 25. However, MSOAR

requires the computation of the so called RD dis-

tance (i.e. genome rearrangement/duplication dis-

tance) between two given genomes 11, and is thus

limited to pairwise comparisons.

In this paper, we present a new method to cluster

main orthologs shared by multiple genomes, by ex-

tending MSOAR to more than two genomes. Given

a set of genomes, the new method, called MultiM-

SOAR, first applies MSOAR to each pair of input

genomes, and then it combines the pairwise ortholog

assignment results from MSOAR consistently, taking

into account the species phylogeny, to build main or-

thologs clusters for the whole set of input genomes.

We validate the performance of MultiMSOAR by

testing the method on the genomes of rat, mouse and

human and comparing its predicted main ortholog

clusters using gene annotations and functional clas-

sification in public databases. We also compare our

result to that of MultiParanoid’s 1, which is a single-

linkage based ortholog clustering approach utilizing

the pairwise ortholog clusters obtained by Inpara-

noid 19.

2. METHOD

Consider k closely related genomes G1, G2, . . . , Gk,

where k ≥ 3. Suppose that these k genomes are or-

dered according to their given (rooted) species tree in

a post-order traversal fashion. For example, genome

G1 and G2 share a common ancestor denoted as A12,

A12 and genome G3 share a common ancestor de-

noted as A123, so on and so forth, and finally all

the genomes share a common ancestor denoted as

A12···k. That is, the genomes are phylogenetically or-

dered. MultiMSOAR first applies MSOAR on each

pair Gi, Gj of the input genomes to obtain a set of

putative main ortholog pairs for Gi, Gj . Then it

constructs clusters of main orthologs for all the in-

put genomes by combining the pairwise ortholog pre-

diction results by resolving inconsistency and taking

into account the species tree and possibilitiy of gene

loss.

2.1. Main ortholog clusters for three

genomes

We first explain the idea of this method for the case

of three genomes. Given three phylogenetically or-

dered genomes G1, G2 and G3, and the sets (or

tables) of putative main ortholog pairs T (G1, G2),

T (G1, G3), and T (G2, G3) obtained by applying

MSOAR to genome pairs G1 and G2, G1 and G3, and

G2 and G3, MultiMSOAR starts the construction of

ortholog clusters by making every main ortholog pair

in these three tables its own cluster. MultiMSOAR

next merges clusters using the single linkage tech-

nique, i.e. two clusters are merged if and only if

they share a common (main) orthologous gene. This

procedure is repeated until no mergeable clusters ex-

ist. This first step is called cluster initiation, and

the main ortholog clusters generated in this step are

called the initial clusters. In the following, we will

deal with each initial cluster separately.

We can use an undirected connected graph

G(X, Y, Z) to describe the structure of an initial clus-

ter, where X , Y , and Z are three disjoint vertex

sets that contain the vertices representing genes from

the three genomes involved in the initial cluster. In

graph G(X, Y, Z) (or simply G for simplicity), the

vertices are X ∪ Y ∪ Z and each edge connects two

vertices if they are assigned as a main ortholog pair

by MSOAR in the pairwise comparisons, i.e. they

form an entry in one of the main ortholog pair tables.

Since the main orthology is an inter-genome and one-

to-one relationship, G is a tripartite graph and have

four possible topologies, called triangle, 2-path, 3-

path, and n-path respectively (see Figure 1). We will
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process these topologies differently. In the case of a

triangle, the corresponding cluster has three orthol-

ogous genes, one from each genome, forming exactly

three pairs of main orthologs. Such a cluster will be

reported as a final main ortholog cluster because of

the strong support from the pairwise comparisons.

Each 2-path topology describes the scenario that a

main ortholog pair was found in two of the genomes,

but neither of these two genes have an main ortholog

counterpart found in the third genome. This main

ortholog pair will also be reported as a final main

ortholog cluster. Moreover, if the main ortholog pair

was found between G1 and G3 (or G2 and G3), a gene

loss will also be reported in G2 (or G1, respectively),

since G1 and G2 are assumed to have diverged from

a more recent speciation. Note that, if the main or-

tholog pair was found between G1 and G2, we will

not need report a gene loss event in G3. A 3-path

topology is an acyclic path with three vertices, de-

scribing the scenario that two main ortholog pairs

were found that involve one gene from each genome

and share a common gene. However, none of the

remaining two (unshared) genes were found to form

main ortholog pairs with any other genes. This 3-

path topology indicates a possible main ortholog pair

(missing edge) that has been missed by MSOAR due

to complications caused by multi-domain proteins or

alternative splicing. Therefore, the three genes in

this 3-path initial cluster will be reported as a final

main ortholog cluster. Some real examples of gene

losses and missing main ortholog pairs found by Mul-

tiMSOAR will be given in section 3. All other initial

clusters have the n-path topology. An n-path could

be a path or a cycle, as long as it involves more than

three vertices. Such an initial cluster contains more

than one gene from some genome, and the handling

of such an initial cluster is nontrivial.

In practice, the number of initial clusters with

the n-path topology should be usually very small

Triangle 2-path 3-path

n-path
G3G1

G2

g21

g22

g12
g31

g11

Fig. 1. Four possible topologies of the initial main ortholog
clusters.

if the pairwise comparison results are reliable. For

example, the number of such initial clusters is 390

(or 2.64%)involving a total of 2688 (or 5.79%) genes

from all three genomes in the rat, mouse and human

comparison to be discussed in the next section. For

each initial cluster G(X, Y, Z) with the n-path topol-

ogy, MultiMSOAR uses a heuristic algorithm, called

npathResolver, to divide the initial cluster into fi-

nal main ortholog clusters, each with three ortholog

genes, using a combinatorial optimization approach.

This heuristic algorithm transforms G(X, Y, Z) into

a complete weighted tripartite graph Ḡ(X̄, Ȳ , Z̄, W )

by adding dummy vertices and dummy edges (so

that a perfect matching always exists), and then

tries to find a perfect tripartite matching with the

maximum weight. This tripartite matching prob-

lem is also called the maximum three-index assign-

ment problem, which is known NP-hard 13. We

employ the single-pass recursive heuristic proposed

by Bandelt et al. 3, which could also be applied to

the maximum multi-index assignment problem. The

heuristic works as follows: (i) Find the maximum

weight bipartite matching MX̄Ȳ between the ver-

tex sets X̄ and Ȳ . (ii) Let N = {nxy|x ∈ X̄, y ∈

Ȳ , (x, y) ∈ MX̄Ȳ } be a new vertex set, and define

the weight between vertices nxy ∈ N and z ∈ Z as

W (nxy, z) = W (x, z) + W (y, z). (iii) Find a maxi-

mum weight bipartite matching between the vertex

sets N and Z. Note that, a maximum weight bi-

partite matching can be computed by the classical

Hungarian method 18 in cubic time.

The weights W in Ḡ(X̄, Ȳ , Z̄, W ) are defined tak-

ing into account both sequence similarity and the

main ortholog pair information from the pairwise

comparisons found by MSOAR which are mostly

based on gene location information.

W (i, j) =




MAXWEIGHT Evalue(i, j) = 0 or(i, j) ∈ E(G)
− log(Evalue(i, j)) 0 < Evalue(i, j) ≤ 1e − 20
MINWEIGHT Otherwise

(1)

Here, Evalue(i, j) is obtained by an all-versus-all

BLASTp comparison between each pair of genomes.

(i, j) ∈ E(G) indicates that i and j was assigned as a

main ortholog pair by the pairwise comparisons us-

ing MSOAR. MAXWEIGHT and MINWEIGHT are

two constant values, where MAXWEIGHT must be

bigger than the biggest value of − log(Evalue(i, j))

and MINWEIGHT must be smaller than the small-

est value of − log(Evalue(i, j)).
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The algorithm obtains a set of triplets based on

the final maximum weight matching. A triplet will

be reported as a main ortholog cluster if and only if

its three vertices represent real genes. In other words,

as long as a triplet contain at least one dummy ver-

tex, all the genes in this triplet will be regarded as in-

paralogs. The outline of algorithm npathResolver

is illustrated in Figure 2.

Algorithm npathResolver(G(X, Y, Z) )

1. Add dummy vertices and edges to obtain a complete

weighted tripartite graph Ḡ(X̄, Ȳ , Z̄)

2. Define edge weight function W for Ḡ according

to equation (1)

3. Compute a tripartite matching M(X̄, Ȳ , Z̄) using the

single-pass recursive heuristic

4. for each m ∈ M(X̄, Ȳ , Z̄)

5. if m contains no dummy vertices
6. then output m as a final main ortholog cluster

Fig. 2. The heuristic algorithm to resolve initial clusters with
the n-path topology.

2.2. Extension to the comparison of more

than three genomes

Now consider the case of k > 3 genomes

G1, G2, . . . , Gk. The initial clusters can be con-

structed in the same way as in the case of three

genomes using the single linkage clustering tech-

nique. Here, the graph G(V1, V2, . . . , Vk) has k dis-

joint vertex sets, which correspond to the k genomes.

Similar to the above, the initial clusters are classified

into three possible topologies: the k-clique, a pseudo-

clique, and a nontrivial case. A k-clique consists of

k genes, one from each genome, that form exactly

k(k − 1)/2 main ortholog pairs as found by the pair-

wise comparisons. This cluster will be reported as

a final main ortholog cluster. A pseudo-clique is a

graph with m ≤ k vertices, with each vertex from

a different genome. If the pseudo-clique contains e

edges, we use a parameter q = 2e/m(m− 1) to mea-

sure its cliqueness (or edge density). When m and

q are greater than some user-defined thresholds, the

corresponding initial clusters will be reported as a fi-

nal main ortholog clusters, and some gene loss events

will be reported according to the species phylogeny.

In a nontrivial case, the initial cluster contains multi-

ple genes from the same genome. A maximum weight

k-partite matching will be used on G(V1, V2, . . . , Vk)

to distinguish main orthologs from inparalogs, simi-

lar to the above algorithm npathResolve for three

genomes. Note that the single-pass recursive heuris-

tic for finding a maximum weight matching can be

extended to k > 3 genomes in a straightforward

way 3. Again, this approach will be quite effective

since the number of nontrivial cases are expected to

be very small.

3. EXPERIMENTAL RESULTS

In order to test the performance of MultiMSOAR

as a tool of clustering main orthologs shared by

multiple genomes, we have applied it to three

model genomes: Rat (Rattus norvegicus), mouse

(Mus musculus) and human (Homo sapiens). Gene

positions, transcripts and translations were down-

loaded from the UCSC Genome Browser 14 web-

site (http://genome.ucsc.edu). We use the canonical

splice variants from the November 2004 update of

the rat genome (UCSC rn4, Nov. 2004, version 3.4),

the build 36 “essentially finished” assembly of the

mouse genome (UCSC mm8, February 2006) and the

build 36.1 finished human genome assembly (UCSC

hg18, March 2006). There are 7066 protein sequences

in the rat genome assembly rn4, 19199 sequences in

mouse genome assembly mm8 and 20161 sequences

in human genome assembly hg18. The pairwise main

ortholog information is obtained by running MSOAR

on each pair of the genomes. Specifically, there are

14306 main ortholog pairs reported between mouse

and human, 6539 main ortholog pairs between mouse

and rat, and 6347 main ortholog pairs between rat

and human. MultiMSOAR identifies 14790 main

ortholog clusters in total. We validate the pre-

dicted main ortholog clusters using the gene annota-

tion information and function classification in pub-

lic databases below. We will also compare the re-

sult of MultiMSOAR with that of MultiParanoid 1

which is an ortholog clustering method solely based

on sequence similarity. The comparative study shows

that the prediction result of MultiMSOAR largely

agrees with that of MultiParanoid, but about 7.17%

of MultiMSOAR’s predicted main ortholog clusters

properly refine their corresponding MultiParanoid

clusters.

3.1. Validation using gene annotation

First, we use gene annotation information (in partic-

ular, gene symbols or names) to validate the main
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Table 1. Validation of the main ortholog clusters found by MultiMSOAR using gene anno-
tation

assignable assigned unknown true positive

Main ortholog clusters of size two 7700 8610 1392 6176

Main ortholog clusters of size three 4755 6180 719 4429

ortholog clusters found by MultiMSOAR. The hy-

pothesis is that genes with identical symbols are

most likely to be main orthologs, since a gene sym-

bol usually conveys the character or function of the

gene. We extracted the gene annotation information

from UniProtKB/Swiss-Prot 2 Release 52.1. Recall

that MultiMSOAR output 14790 main ortholog clus-

ters for rat, mouse and human, among which only

12598 clusters have complete annotations. Out of the

12598 main ortholog clusters, 10605 (84.18%) clus-

ters are true positives (i.e. all the genes in the clus-

ter have completely identical gene symbols). Among

the 10605 true positives, 6176 clusters have size two

and 4429 clusters have size three. Since there are

12455 assignable main ortholog clusters (i.e. the to-

tal number of clusters of genes with identical sym-

bols), MultiMSOAR achieved a sensitivity of 85.15%

for the rat, mouse and human comparison. The de-

tailed results are also summarized in Table 1.

3.2. Validation using gene functions

Besides gene annotation, we also use gene functional

classification to validate our clustering result. PAN-

THER (Protein Analysis Through Evolutionary Re-

lationships) classification system 25 is an online re-

source that classifies genes by their functions. It is

based on a method that uses published scientific ex-

perimental evidence or evolutionary relationship to

predict functions in the absence of direct experimen-

tal evidence. Proteins that belong to the same func-

tional family and subfamily are assigned the same

PANTHER ID. We examine the consistency between

the main ortholog clusters output by MultiMSOAR

and the PANTHER IDs of the involved genes. Out

of the 14297 main ortholog clusters of rat, mouse

and human found by MultiMSOAR with valid Entrez

gene IDs, 11667 (or 81.6%) clusters consist of genes

with the same PANTHER IDs, including 6703 clus-

ters of size two and 4964 clusters of size three. This

result demonstrates that the main ortholog clusters

obtained by MultiMSOAR are very much in agree-

ment with the gene functional classification provided

by PANTHER.

3.3. Comparison with MultiParanoid

MultiParanoid is a genome-scale analysis program

that clusters orthologs and inparalogs shared by mul-

tiple genomes 1. It is a straightforward extension of

the well-known Inparanoid program 19, which iden-

tifies orthologs and inparalogs between a pair of

genomes solely based on sequence similarity. To

ensure a direct comparison between MultiMSOAR

and MultiParanoid, we run MultiParanoid on the

same dataset (i.e. UCSC hg18, UCSC mm8, and

UCSC rn4). Since MultiParanoid only reports clus-

ters of co-orthologous genes and it dose not distin-

guish main orthologs from their inparalogs, the size

of a MultiParanoid cluster might exceed three. Af-

ter comparing with the MultiParanoid clusters, the

main ortholog clusters identified by MultiMSOAR

are divided into four categories: match, subset, ab-

sence, and mismatch. Among the 14790 main or-

tholog clusters generated by MultiMSOAR for rat,

mouse and human, 13109 (or 89.12%) clusters found

identical matches in MultiParanoid’s output, 1054

(or 7.17%) clusters are contained in the correspond-

ing MultiParanoid clusters as proper subsets, 297 (or

2.02%) clusters are absent in MultiParanoid’s out-

put (including those clusters that are proper super-

sets of some MultiParanoid clusters), and 330 (or

2.59%) clusters are mismatched, i.e. each of them

partially overlaps with some MultiParanoid cluster.

Note that, when a MultiMSOAR cluster C1 is prop-

erly contained in some MultiParanoid cluster C2, the

additional elements in C2 are likely inparalogs (as

identified by MultiMSOAR) rather than main or-

thologs, and thus C1 could represent a more accurate

main ortholog cluster than C2. In other words, C1

could be viewed as a refinement of C2. The distri-

bution of these four types of main ortholog clusters

is illustrated in Figure 3. This comparison shows

that the main ortholog clusters identified by MultiM-

SOAR are very consistent with the ortholog clusters

generated by MultiParanoid. Furthermore, MultiM-

SOAR gives more detailed and accurate orthology in-

formation since it distinguishes main orthologs from

inparalogs.
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Fig. 3. Comparing the prediction results of MultiMSOAR
and MultiParanoid.
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Fig. 4. An example of gene lost and missing main ortholog
pairs. In the figure, the rat, mouse and human chromoso-
mal segments are ordered top down. Solid lines indicate main
ortholog pairs found by pairwise comparisons. Dashed lines
indicate the missing orthology information identified by Mul-
tiMSOAR.

3.4. Examples of identified gene losses and

main ortholog pairs missed in pairwise

comparisons

As described above, by taking into account the

species tree of the genomes under consideration, Mul-

tiMSOAR is able to identify possible gene losses. In

the case of rat, mouse and human comparison, if a

main ortholog pair was found between mouse and hu-

man (or rat and human) without a corresponding or-

thologous gene found in rat (or mouse, respectively),

a gene loss will be reported in rat (or mouse, respec-

tively), since mouse and rat were separated by a more

recent speciation. Figure 4 shows a segment of rat

chromosome 5 (169,624,099 - 169,349,727), a segment

of mouse chromosome 4 (151,234,544 - 150,964,681)

and a segment of human chromosome 1 (6,028,567 -

6,407,434). Based on the gene location information

and gene sequence similarity, MultiMSOAR success-

fully identified 9 main ortholog clusters within these

chromosome segments and a possible gene loss in rat

(i.e. chd5). Besides, a main ortholog pair between

human and mouse (i.e. ESPN) missed by MSOAR

in the pairwise comparisons was identified by Mul-

tiMSOAR. This pair of main orthologs was missed

by MSOAR because their sequences match different

segments of their orthologous gene in rat and thus

have insufficient similarity between themselves.

In the rat, mouse and human comparison, a total

of 8286 genes were found to have been lost by Mul-

tiMSOAR and 138 pairs of main ortholog pairs that

were missed by MSOAR in the pairwise comparison

were imputed.

4. CONCLUDING REMARKS

The ortholog clustering method that we presented

here extends the pairwise method MSOAR 11 and

enables the identification of main ortholog clusters

for multiple closely related genomes. Our prelim-

inary experiment on a three genome comparison

demonstrates that our method performs consistently

with the gene annotation and funcational classifica-

tion information in public databases and a published

program in the literature. Some interesting future

work includes more extensive testing on four or more

genomes and elaborate (and in-depth) handling of

gene losses (e.g. using pseudo gene information). We

plan to make this a program a public server in the

near future.
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