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Motivation: The deconvolution of the relationships between BAC clones and genes is a crucial step in the selective

sequencing of the regions of interest in a genome. It usually requires combinatorial pooling of unique probes obtained
from the genes (unigenes), and the screening of the BAC library using the pools in a hybridization experiment. Since
several probes can hybridize to the same BAC, in order for the deconvolution to be achievable the pooling design has
to be able to handle a large number of positives. As a consequence, smaller pools need to be designed which in turn
increases the number of hybridization experiments possibly making the entire protocol unfeasible.
Results: We propose a new algorithm that is capable of producing high accuracy deconvolution even in the presence of
a weak pooling design, i.e., when pools are rather large. The algorithm compensates for the decrease of information in
the hybridization data by taking advantage of a physical map of the BAC clones. We show that the right combination
of combinatorial pooling and our algorithm not only dramatically reduces the number of pools required, but also
successfully deconvolutes the BAC-gene relationships with almost perfect accuracy.
Availability: Software available on request from the first author.

1. INTRODUCTION

While the number of fully sequenced organisms is

growing rather rapidly, some organisms are unlikely

to be sequenced in the immediate future due to

the large size and highly repetitive content of their

genomes. Many of these latter class of organisms

are in the plant kingdom. For these cases, a feasi-

ble alternative strategy called reduced representation

sequencing (see, e.g. 1) entails focusing only on the

gene space, that is the portion of the genome that

is gene rich. It is well known that in higher organ-

isms genes are not uniformly distributed throughout

the genome but instead tend to cluster into gene-rich

regions of the chromosomes (see, e.g. 11, 9).

In many cases, however, even this latter strat-

egy is too expensive or laborious. The next level of

reduced sequencing requires a specific list of genes

of interests (e.g., abiotic stress-related or pathogen

responsive). The task then is to identify the portion

of the genome that contains these genes of interest,

e.g., by identifying the BAC clonesa carrying those

genes, and then sequence solely these BAC clones.

Identification of the BACs containing a specific

set of genes is called deconvolution. More precisely,

the goal of BAC-gene deconvolution is to precisely as-

sign each gene (unigeneb) to one or more BAC clones

in the BAC library for that organism.

Another important reason to deconvolute BAC-

gene relationships is to place BAC clones (and all the

genes that they contain) on the genetic linkage mapc,

if such map is available. This placement is possible

when a gene within a BAC has been placed on the

genetic linkage map.

The assignment of genes to BAC clones can

be accomplished experimentally by performing hy-

bridization between a characteristic short sequence

in the gene called probe, and the entire BAC library.

The gene is then assigned to the set of BAC clones

that are positive for that probe. In this paper we

assume that each probe has the property that it will

hybridize only to the BAC clones containing the orig-

inal gene from which it was obtained. In other words,

we assume that each probe is a unique signature for

each gene (unigene). The uniqueness of each probe

can be established with certainty only if we have

the complete knowledge of the full sequence of the

genome of interest, but the problem of designing such

probes is well-studied (see, e.g. 16, 17). Because our

∗Corresponding author
aBACs are artificial chromosome vectors derived from bacteria used for cloning relatively large DNA fragments, typically in the
range of 100K nucleotide bases.
bA unigene is obtained by assembling one or more ESTs. A unigene (if correctly assembled) is a portion of a gene transcript.
cA genetic linkage map is a linear map of the relative positions of genes along a chromosome, where distances are established by
analyzing the frequency at which two gene loci become separated during chromosomal recombination.
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assumption establishes a one-to-one correspondence

between probes and unigenes, in the context of this

paper the terms “probes” and “unigenes” are equiv-

alent and can be used interchangeably.

Figure 1 illustrates the BAC-unigene deconvolu-

tion problem. Each chromosome is “covered” by a

set of BAC clones. The totality of the BAC clones

constitutes the BAC library. A gene, represented by

the arrow below the chromosome, can be covered by

one or more unigenes. A typical unigene covers ei-

ther the 3’ or the 5’ end of a gene but not the introns.

Probes are designed from unigenes trying to avoid

splicing sites, otherwise they would not hybridize to

the corresponding BAC, which contains the introns

as well.

Due to the large numbers of BACs and probes,

usually in the order of tens of thousands, it is not fea-

sible to carry out a separate hybridization for each

probe/unigene. Group testing 2 is typically used to

reduce the total number of hybridizations required.

Here we assume that the probes are grouped into

poolsd and that pools are used to screen the BAC

library.

The hybridization experiments are then carried

out for each BAC and probe pool pair. The read-

out of one such experiment is positive if the BAC

under consideration happens to contain a gene that

matches one or more probes in the pool, and as a con-

sequence the hybridization will take place. In Com-

puter Science terms, one can think of the hybridiza-

tion process as some form of approximate string

matching between the probe and the BAC.

So far the steps required for the deconvolution

are (1) design a unique probe for each unigene, (2)

group the probes into pools, and (3) screen the BAC

library using the pools. The input to the deconvo-

lution problem is the set of readouts of all these hy-

bridizations between pool of probes and the BACs.

Clearly the smaller the size of each pool, the greater

is the number of experiments needed, and the “eas-

ier” is the deconvolution. Vice versa, if the size of

each pool is too large, then too many BACs will be

positives, and the deconvolution may not be achieved

at all.

In order to study this trade-off, the notion of

decodability needs to be introduced. We say that a

particular pooling design is d-decodable if the decon-

volution can be achieved in the presence of d or less

positives. In this specific context, if all BACs hap-

pen to hybridize to at most d probes and the pooling

is d-decodable, the subset of positive probes can be

unambiguously determined from the readouts of the

experiments. However, if a BAC hybridizes to more

than d probes, it may not be possible to achieve the

deconvolution. If the goal is to resolve the BAC-

probe/unigene relationships exactly, the pools would

have to be designed with a decodability greater than

or equal to the maximum number of probes that a

BAC might possibly contain.

As we will see later in the paper, in order for

a pool design to have a high decodability the pools

have to be rather small, which in turn can make the

number of hybridization experiments prohibitively

high. Our objective is to use a pooling design with

low decodability (e.g., d = 1 or d = 2) which is fast

and inexpensive and exploit additional information

to achieve deconvolution. More specifically, we re-

quires some knowledge of overlap between the BAC

clones as provided by a physical mape of the genome

of interest.

The rest of the paper is organized as follows. In

Section 2 we define formally the problem, and we

describe three algorithms for solving the deconvolu-

tion. The first one uses solely the results from the

hybridization, the second exploits the physical map,

and the third is a variation of the second when we

have a “perfect” physical map. Although in practice

it is unrealistic to assume a perfect map, this algo-

rithm will be useful in the simulations to test the

limits of our method. In that section we also formal-

ize the deconvolution problem (with physical map)

as a new optimization problem, and prove that it is

NP-hard. The optimization problem is expressed in

the form of an integer linear program, which is then

relaxed to a linear program in order to be solved

efficiently. To obtain the best integer solutions, sev-

eral iterations of randomized rounding are applied

to the solutions obtained from the linear program.

dOne can pool BACs, but this will not change the nature of the problem.
eA physical map consists of a linearly ordered set of BAC clones encompassing the chromosomes. Physical maps can be generated
by first digesting the BAC clones with restriction enzymes and then detecting overlaps between clones by matching the lengths
of the fragments produced by the digestion.

204



Genes

Unigenes

exon intron

probe
Unigene

exon intron exonChromosome

BACs

BACs

Fig. 1. An illustration of a chromosome, BACs, genes, unigenes and probes. The goal of deconvolution is to find out the set of
BACs that each probe belongs to.

Our randomized algorithm can be proved to achieve

a constant approximation ratio.

In Section 3 we report experimental results on

simulated hybridization data on the rice genome, and

on real hybridization data on the genome of barley.

The results show that our algorithm is capable of de-

convoluting a much higher percentage of the BAC-

gene relationships from the hybridization data than

the naive basic approach. In particular, if given a

high quality physical map, we can solve almost 100%

of the assignments with almost perfect accuracy (if

the pooling is well designed).

2. METHODS

As mentioned above, the deconvolution process con-

sists of two major steps. In the first, we use a low-

decodability pooling design, screen the BAC library

using these pools, and collect the hybridization data.

Since the pooling has low-decodability, the data ob-

tained by the first step will deconvolute the BAC-

unigene relationships only partially. In the second

step, we will exploit the physical map information to

attempt to resolve the remaining ambiguities.

2.1. Problem Formulation

Let O be the set of all the unique probes obtained

from the unigenes and let B be set of all BAC clones.

A pool p of probes is a simply a subset of O, that is

p ⊂ O. The collection of all pools is denoted by P.

The result of the hybridization of BAC b with pool p

is captured by the binary function h(b,p). We have

h(b,p) = 1 if the readout is positive, h(b,p) = 0

otherwise. If we assume no experimental errors,

h(b,p) = 1 if and only if there exists at least one

probe from the pool p that matches somewhere in

BAC b.

Given the values of h(b,p) for all pairs b,p, the

deconvolution problem is to establish an assignment

between the probes in O and the BAC clones in B,

in a such a way that it satisfies the value of h.

2.2. Basic Deconvolution

The basic deconvolution is rather simple. First, we

determine for each BAC b the set of probes that it

cannot contain, which we denote by Ob. This set can

be obtained as follows

Ob = {o ∈ O|∃p ∈ P such that o ∈ p and h(b,p) = 0}

Next, for each pair (b,p) of positive hybridization, we

construct the pair (b, Ob,p) where Ob,p = p−Ob. The

presence of the pair (b, Ob,p) means that BAC b has

to contain at least one probe from the set Ob,p. The

output from this first step is a list of such pairs, which

we denote with symbol Ω. For any pair (b, Ob,p) ∈ Ω

such that |Ob,p| = 1, the relationship between BAC

b and the only probe o ∈ Ob,p is exact, that is b must

contain o (or, alternatively, o is assigned to b) . We

call exact pairs those pairs in Ω for which |Ob,p| = 1.

By definition, exact pairs can be resolved uniquely.

However, since the decodability of the pool de-

sign is much lower than the number of positives that

a BAC may contain, we expect the proportion of ex-

act pairs to be rather small. In practice, the large
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majority of the pairs in Ω will be non-exact. For

these latter pairs, the relationships between BAC

and probes can be solved only by employing addi-

tional information. Next, we present an algorithm

that resolves the non-exact pairs using a physical

map which may contain errors. Then, we present

an algorithm for the case where high-quality or near

perfect physical map is available.

2.3. Deconvolution Using an Imperfect

Physical Map

For the purposes of the deconvolution, the essential

information on the physical map is represented by

the overlaps between BAC clones. We will show how

the knowledge of the overlap between BACs can help

resolve ambiguous (non-exact) BAC-probe relation-

ships. The following two observations are the cor-

nerstones of our algorithms.

The first observation is that if BAC b1 has a

large overlap with BAC b2, and at the same time

probe o belongs to BAC b2, then probe o will belong

to BAC b1 with high probability. The second obser-

vation is that since probes are carefully designed to

be unique for a specific gene (unigene), the probabil-

ity that they will match/hybridize in some location

other than the location of the gene from which they

were designed is very low. Therefore, if probe o be-

longs to BAC b1, and BAC b2 does not overlap BAC

b1, then o will belong to BAC b2 with very low prob-

ability.

In this section we assume that we are given a

physical map that can potentially contains errors.

Such a map could have been obtained, for example,

by running FPC 10 software on some restriction fin-

gerprinting data. The output of FPC is an assembly

of the BAC clones into disjoint sets, called contigs.

If two BAC clones belong to the same contig, they

are very likely to overlap with each other. On the

other hand, if two BAC clones are from two different

contigs, they are very unlikely to overlap. Formally,

each contig is a subset of B. Let C denote the collec-

tion of contigs. The set C is a partition of B. Since

probes are designed to hybridize only to one location

throughout the genome, we expect that each of them

will only belong to one contig.

The list of pairs in Ω can be interpreted as a

list of constraints. A pair (b, Ob,p) ∈ Ω is satisfied

if there exists a probe o ∈ Ob,p and o is assigned to

BAC b. Ideally, we would like to compute a BAC-

probe assignment such that each probe is assigned

to a set of BACs belonging to the same contig and

all the constraints in Ω are satisfied. Due to the fact

that the physical map is imperfect and that some of

the probes may not match anywheref or match mul-

tiple locationsg in the genome, we may not able to

satisfy all constraints. Therefore, a reasonable objec-

tive is to assign probes to BACs so that the number

of satisfied constraints is maximized, subject to the

restriction that each probe may be only assigned to

one contig.

We have now turned the deconvolution problem

into an optimization problem, which is going to be

tackled in two phases. In phase I, we will assign

probes to contigs (not to BACs). The list of BAC

constraints Ω is transformed to a new list of con-

tig constraints Ω′ of the same size, as follows. For

each constraint (b, Ob,p) ∈ Ω we create the contig

constraint (c, Ob,p) where c is the contig to which

b belongs. A contig constraint (c, Ob,p) is satisfied

if probe o ∈ Ob,p and o is assigned to contig c. As

said, the goal is to maximize the number of satisfied

constraints in Ω′ by assigning each probe to at most

one contig. If a constraint in Ω′ appears in multiple

copies, that constraint will contribute its multiplicity

to the objective function when satisfied. In phase II,

probes will be assigned to BACs. Let o be a probe

in O and assume that o was assigned to contig c ∈ C

in phase I. In phase II, o is assigned to the following

set of BACs

{b ∈ c|∃(b, Ob,p) ∈ Ω such that o ∈ Ob,p}. (1)

It can be easily verified that if the assignment of

probes to contigs in phase I is optimal (i.e., it sat-

isfies the maximum number of constraints from Ω′)

the final assignment of probes to BACs using (1) is

also optimal (i.e., it satisfies the maximum number

of constraints from Ω).

Since the final assignment can be easily obtained

from an optimal solution to phase I, the rest of this

fThis can happen, for example, if the probe happens to cross a splicing site.
gIn practice it is impossible to guarantee the uniqueness of probes unless one knows the whole sequence of the genome and the
hybridization is modeled perfectly in silico.
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section will be focused on solving the optimization

problem in phase I. First we present a formal de-

scription of the problem.

Maximum Constraint Satisfying Probe-

Contig Assignment (MCSPCA)

Instance: A set of probes O, a set of contigs C and a

list of constraints Ω′, where each item of Ω′ has the

form (c, Ob,p), c ∈ C and Ob,p ⊆ O.

Objective: Assign each probe to at most one contig

in C such that the number of satisfied constraints in

Ω′ is maximized. A constraint (c, Ob,p) is satisfied if

one or more of the probes from Ob,p is assigned to c.

Unfortunately but not surprisingly, the MC-

SPCA optimization problem is NP-complete. This

can be proved by a reduction from the 3SAT prob-

lem 8.

Theorem 2.1. The MCSPCA problem is NP-hard.

Proof. Let us define a language problem L which

corresponds to a special case of the above optimiza-

tion problem as follows

L = {(O, C, Ω′)| there exists a many to one mapping

from O to C such that all constraints in Ω′

are satisfied}

where O, C and Ω′ are defined in the original op-

timization problem above. We will prove that L is

NP-complete by a reduction from 3SAT. As a re-

sult, the MCSPCA optimization problem is also NP-

complete.

Let ϕ = (V, S) be an instance of 3SAT, where

V = {v1, v2, . . . , vn} is the set of variables and

S = {s1, s2, . . . , sk} is the set of clauses of ϕ.

We construct an instance ξ = (O, C, Ω′) of L,

with the property that ξ ∈ L if and only if

ϕ is satisfiable. The construction is as follows:

O = {vt
1, v

f
1 , vt

2, v
f
2 , . . . , vt

n, vf
n}, where vt

i and vf
i

correspond to the “true” and “false” assignments

to variable vi ∈ V respectively. We set C =

{c, v1, v2, . . . , vn}, and Ω′ consists of two parts,

namely Ω′
1 and Ω′

2. Ω′
1 is used to ensure the satisfia-

bility of all the clauses in S and Ω′
2 is used to ensure

that either vt
i or vf

i is used to satisfy the constraints,

but not both of them. We set

• Ω′
1 = {(c, {s1

1, s
2
1, s

3
1}), (c, {s

1
2, s

2
2, s

3
2}), . . . ,

(c, {s1
k, s2

k, s3
k})}, where (s1

i , s
2
i , s

3
i ) are the

three literals corresponding to clause si ∈ S.

For example, if s1 = (v1 ∪ v2 ∪ v3), then the

constraint (c, {vt
1, v

f
2 , vt

3}) is added to Ω′
1.

• Ω′
2 = {(v1, {v

t
1, v

f
1 }), (v2, {v

t
2, v

f
2 }), . . . ,

(vn, {vt
n, vf

n})}.

It can be verified that ξ ∈ L if and only if ϕ is satis-

fiable. �

2.3.1. Solving the MCSPCA problem via integer

programming

The MCSPCA optimization problem can be solved

with integer linear programming (ILP) as follows.

Let Xo,c be the variable associated with the possible

assignment of probe o to contig c, which is set to 1

if o is assigned to c and set to 0 otherwise. Let Yq

be a variable corresponding to the constraint q ∈ Ω′,

which is set to 1 if q is satisfied and set to 0 oth-

erwise. The following integer program encodes the

MCSPCA problem.

Maximize
∑

q∈Ω′ Yq

Subject to
∑

c∈C
Xo,c ≤ 1 ∀o ∈ O

Yq ≤ 1 ∀q ∈ Ω′

Yq=(c,S) ≤
∑

o∈S

Xo,c ∀q ∈ Ω′

Xo,c ∈ {0, 1} ∀o ∈ O, c ∈ C

Yq ∈ {0, 1} ∀q ∈ Ω′

(2)

The first constraint ensures that each probe can

be assigned to at most one contig, whereas the third

constraint makes sure that a constraint q = (c, S) ∈

Ω′ is satisfied iff one or more probes from S is as-

signed to c.

The integer program above cannot be solved op-

timally for real world instances because solving in-

teger programs is very time consuming and in worst

case takes exponential time. Faster and approximate

algorithms must be obtained. Below we present one

such fast approximate algorithm based on relaxation

and randomized rounding.

2.3.2. Relaxation and randomized rounding

The integer linear program is first relaxed to the cor-

responding linear program (LP) by turning all {0, 1}

constraints into [0, 1]. Then, the linear program can

be efficiently solved optimally. Let {X∗
o,c | ∀o ∈

O, c ∈ C} and {Y ∗
q | ∀q ∈ Ω′} be the optimal so-

lutions to the linear program. In general, X∗
o,c and
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Y ∗
q are fractional values between 0 and 1. X∗

o,c

is to be interpreted as the probability of assigning

probe o to contig c. We apply standard random-

ized rounding technique to convert the fractional

solutions into an integral solution as follows. For

each probe o, let Co = {c | c ∈ C, X∗
o,c > 0}. If∑

c∈Co
X∗

o,c = 1, randomly assign o to one of the

contigs in Co according to the associated probability

X∗
o,c. If

∑
c∈Co

X∗
o,c < 1, randomly assign o to one of

the contigs in Co according to the associated proba-

bility X∗
o,c, or to none of the contigs with probability

1−
∑

c∈Co
X∗

o,c. The output from this rounding step

is an assignment of each probe to at most one contig,

as required. This rounding procedure can be applied

multiple times. Among the assignments produced by

each individual rounding step, the one that satisfies

the maximum number of constraints will be taken as

the final solution. The following theorem shows that

the randomized rounding step achieves a constant

approximation ration.

Theorem 2.2. The randomized MCSPCA algo-

rithm achieves approximation ratio (1 − e−1).

Proof. Let us still use {X∗
o,c | ∀o ∈ O, c ∈ C} and

{Y ∗
q | ∀q ∈ Ω′} to denote the optimal solutions ob-

tained by solving the linear program. Let OPTf be

the optimal value of the objective function of the

linear program, that is, OPTf =
∑

q∈Ω′ Y ∗
q . Let

Iq be an indicator random variable, which is set to

1 if the constraint q is satisfied under our random-

ized rounding step and to 0 otherwise. Let W de-

note the total number of satisfied constraints after

the rounding step. Clearly, W =
∑

q∈Ω′ Iq, and

E(W ) =
∑

q∈Ω′ Prob(Iq = 1). Consider the follow-

ing two cases:

(1) Y ∗
q = 1. Let q be of the form (c, S) where c ∈ C

and S ⊆ O. In this case,
∑

o∈S X∗
o,c ≥ 1.

Prob(Iq = 1) = 1 − Prob(Iq = 0)

= 1 −
∏

o∈S

(1 − X∗
o,c)

> 1 − e−
∑

o∈S
X∗

o,c

≥ 1 − e−1

So, Prob(Iq = 1)/Y ∗
q > 1 − e−1

(2) Y ∗
q < 1. Let q be of the form (c, S) where c ∈ C

and S ⊆ O. In this case, Y ∗
q =

∑
o∈S X∗

o,c.

Prob(Iq = 1) = 1 − Prob(Iq = 0)

= 1 −
∏

o∈S

(1 − X∗
o,c)

> 1 − e−
∑

o∈S
X∗

o,c

= 1 − e−Y ∗

q

So, Prob(Iq = 1)/Y ∗
q > min0≤y≤1(1 − e−y)/y =

1 − e−1

Therefore, to sum up, E(W ) ≥ (1 − e−1)OPTf . �

The algorithm can be de-randomized via the

method of conditional expectation to achieve a

deterministic performance guarantee. The de-

randomization step follows the procedure in 13 page

132. We observe that the approximation algorithm

we propose here is similar to the one for MAX-SAT
14, 5. To summarize, the sketch of the MCSPCA al-

gorithm is presented in Figure 2.

2.4. Deconvolution Using a Perfect Physical

Map

As said, although it is not realistic to assume to have

a perfect or near perfect physical map, this variation

of the problem allows us to establish the limits of

how many assignment we can correctly deconvolute

from the hybridization data. This is particularly use-

ful for simulations, to ensure that our algorithm can

achieve good results if the input physical map is of

good quality.

If we are given a perfect (or near-perfect) physi-

cal map, the problem can be tackled from the “oppo-

site” direction. Instead of trying to take advantage of

the grouping of BACs into disjoint contigs, we parti-

tion each BAC into several pieces. We preprocess the

physical maps as follows. We align the BACs along

the chromosome according to their relative positions

on the physical map. Then, starting from the 5’ end,

we cut the chromosome at each location where ei-

ther a BAC starts or ends. This process breaks the

genome into at most 2n fragments, where n is the

total number of BACs. Each fragment is covered by

one or more BACs, and some fragments may be cov-

ered by exactly the same set of BACs. In that latter

case, only one fragment is kept while the others are

removed. At the end of this preprocessing phase, a

set of fragments is produced where each fragment is

covered by a distinct set of overlapping BACs. Let
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Algorithm MCSPCA(O, C, B, Ω)

0. Convert Ω to Ω′

1. Generate the integer program in (2) from (O, C, Ω′)

2. Solve the LP relaxation of the ILP in step 1, and obtain the optimal fractional solution {X∗
o,c} and {Y ∗

q }

3. Apply K steps of randomized rounding and save the best solution

for each o ∈ O do

Co = {c | c ∈ C, X∗
o,c > 0}

Assign o to c ∈ Co with probability X∗
o,c or to none of the contigs with probability 1 −

∑
c∈Co

X∗
o,c

4. Further assign probes to BACs

if o is assigned to c in step 3 then assign o to the set of BACs {b ∈ c|∃(b, Ob,p) ∈ Ω s.t. o ∈ Ob,p)}

Fig. 2. Sketch of the two-phase deconvolution algorithm that exploits an imperfect physical map

us denote the final set of fragments as F. Given a

fragment f ∈ F and a BAC b ∈ B, we use B(f) to

denote the set of BACs that f is covered by, and use

F(b) to denote the set of fragments that b covers.

For the same reasons mentioned above, we ex-

pect that each probe will match its intended place in

the genome and nowhere else. Our goal is to assign

each probe to one fragment while at the same time

maximize the number of satisfied constraints in Ω.

A constraint (b, Ob,p) ∈ Ω is satisfied if one or more

probes from Ob,p is assigned to any of the fragment in

the set F(b). Given an assignment between probes

and fragments, the probe-BAC assignment can be

easily obtained. Below is a formal statement of our

new optimization problem.

Maximum Constraint Satisfying Probe-

Fragment Assignment (MCSPFA)

Instance: A set of fragments F, a set of probes

O, a set of BACs B and a list of constraints Ω =

{(b, Ob,p)|b ∈ B, Ob,p ⊂ O}.

Objective: Assign each probe in O to at most one

fragment in F, such that the number of satisfied con-

straints in Ω is maximized.

The MCSPFA problem is also NP-hard, since it

is a special case of MCSPCA when all BACs in B are

disjoint.

2.4.1. Solving the MCSPFA problem via integer

programming

A variant of the integer program that we presented

for MCSPCA can also solve this problem optimally.

Let Xo,f be a variable associated with the possible

assignment of probe o to fragment f , which is set to 1

if o is assigned to f , 0 otherwise. Let Yq be defined in

the same way as the previous integer program. The

integer linear program for MCSPFA follows.

Maximize
∑

q∈C Yq

Subject to
∑

f∈F
Xo,f ≤ 1 ∀o ∈ O

Yq ≤ 1 ∀q ∈ Ω

Yq=(b,S) ≤
∑

o∈S

∑

f∈F(b)

Xo,f ∀q ∈ Ω

Xo,f ∈ {0, 1} ∀o ∈ O, f ∈ F

Yq ∈ {0, 1} ∀q ∈ Ω

(3)

The major difference between the ILP (3) and

the ILP (2) is in the third constraint. The third con-

straint in the ILP above translates the fact that a

constraint (b, S) ∈ Ω is satisfied if any probe in S is

assigned to any fragment in F(b).

2.4.2. Relaxation, rounding and analysis

Following the same strategy used in the MCSPCA

problem, the ILP is relaxed to its corresponding

LP, and then the LP can be solved optimally. Let

{X∗
o,f | ∀o ∈ O, f ∈ F} and {Y ∗

q | ∀q ∈ Ω′} denote the

optimal solutions to the LP. The fractional solution

will be rounded to an integer solution by interpret-

ing X∗
o,f as the probability of assigning probe o to

fragment f .

Let OPTf be the optimal value of objective func-

tion in the LP, that is OPTf =
∑

q∈Ω Y ∗
q . Let

Iq be the indicator random variable, which is 1 if

the constraint q is satisfied under the above ran-

domized rounding step, 0 otherwise. Let W de-

note the total number of satisfied constraints after

the rounding step. Clearly, W =
∑

q∈Ω Iq, and

E(W ) =
∑

q∈Ω Prob(Iq = 1). A similar analysis
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to the one carried out for MCSPCA applies to MC-

SPFA as well, and as a consequence we can prove

that E(W ) ≥ (1 − e−1)OPTf . We can therefore

claim the following theorem.

Theorem 2.3. The randomized MCSPFA algorithm

achieves approximation ratio (1 − e−1).

The pseudo-code of the MCSPFA algorithm is

presented in Figure 3.

3. EXPERIMENTAL RESULTS

In order to evaluate the performance of our algo-

rithms, we applied them to two datasets. The first

one is partially simulated data on the rice genome

while the second is real-world data from hybridiza-

tions carried out in Prof. Close lab at UC Riverside

on the barley genome. Before delving in the experi-

mental setup, we give a short description of the pool-

ing design which is relevant to the discussion.

3.1. Pooling Design

Pooling design (or group testing) is a well-studied

problem in the scientific literature (see 2 and ref-

erences therein). Traditionally, biologists use the

rather rudimentary 2D or 3D grid design. There are

however more sophisticated pooling strategies (see,

e.g., 7, 3, 12). To the best of our knowledge, the

shifted transversal design (STD) 12 is among the best

choices due to its capability to handle multiple pos-

itives, its flexibility and efficiency. STD pools are

constructed in layers, where each layer consists of P

pools, where P is a prime number. Each layer con-

stitutes a partition of the probes, and the larger is

the number of layers, the higher is the decodability

of the pooling. More specifically, let Γ be the small-

est integer such that PΓ+1 is greater than or equal

to the number of probes to be pooled, and let L be

the number of layers. Then, the decodability of the

pool set is equal to 	(L − 1)/Γ
. In order to increase

the decodability by one, an additional PΓ pools are

needed. By a simple calculation, one can realize that

the number of pools required to provide sufficient in-

formation for deconvolution (e.g., to be at least 10-

decodable) for a real-world problem assuming 50,000

BACs and 50,000 unigenes is prohibitively high.

3.2. Experimental Results on the Rice

Genome

The rice “virtual” BAC library used here is a sub-

set of the Nipponbare BAC library, whose BAC end

sequences are hosted at Arizona Genomic Institute

(AGI). The fingerprinting data for this library was

also obtained from AGI. Our rice virtual library con-

tains the subset of BACs in the original library whose

location on the rice genome (Oryza sativa) can be

uniquely identified and for which restriction finger-

printing data was available. The location of the

BACs was determined by BLASTing the BAC end

sequences against the rice genome.

Since our rice virtual BAC library is based on

real fingerprinting data (agarose gel), we expect the

overlapping structure of the rice BACs in the phys-

ical map to be an accurate representation of what

would happen in other organisms. Also, since we

know the actual coordinates of the BACs on the rice

genome, we can also produce a perfect physical map

and test the maximum amount of the deconvolution

that can be extracted from the hybridization data.

For the purposes of this simulation, we restricted

our attention to chromosome 1 of rice, which includes

2,629 BACs. This set of BACs provides a 8.59x cov-

erage of chromosome 1. We created a physical map

of that chromosome by running FPC 10 on the finger-

printing data with cutoff parameter set to 1e−15 (all

other parameters are left to default). FPC assembled

the BACs into 347 contigs and 416 singletons. Not

including the singletons, each contig contains on av-

erage about 6.4 BACs. Given that the fingerprinting

data is noisy, the physical map assembled by FPC

cannot be expected to be perfect. It is also well

known that the order of the BACs within a contig

is generally not reliable 4.

We then obtained rice unigenes from NCBI

(build #65) with the objective of designing the

probes. First, we had to establish the subset of

these unigenes that belong to chromosome 1. We

BLASTed the unigenes against the rice genome, and

we selected a subset of 2,301 unigenes for which

we had high confidence to be located on chromo-

some 1. Then, we computed unique probes us-

ing OligoSpawn
16, 17. This tool produces 36 nu-

cleotides long probes, each of which matches exactly

the unigene it represents and at the same time it

does not match (even approximately) to any other
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Algorithm MCSPFA(O, F, B, Ω)

1. Generate the integer program (3) from (O, F, Ω)

2. Solve the LP relaxation of the ILP in step 1, and obtain the optimal fractional solution {X∗
o,f} and {Y ∗

q }

3. Apply K steps of randomized rounding and save the best solution

for each o ∈ O do

Fo = {f | f ∈ F, X∗
o,f > 0}

Assign o to f ∈ Fo with probability X∗
o,f or to none of the fragments with probability 1 −

∑
f∈Fo

X∗
o,f

4. Further assign probes to BACs.

if o is assigned to f in step 3 then assign o to all the BACs in F(b)

Fig. 3. Sketch of the two-phase deconvolution algorithm that exploits a perfect physical map

unigenes in the dataset.

OligoSpawn successfully produced unique

probes for 2,002 unigenes (out of 2,301). The re-

maining unigenes were not represented by a probes

because no unique 36-mer could be found. This set

of 2,002 probes is named probe set 1. Some of the

probes in probe set 1, however, did not match any-

where in the genome. This will happen if the probe

chosen happens to cross a splicing cite or when the

unigene from which it was selected was misassem-

bled. In probe set 1, 330 probes did not match any-

where on rice chromosome 1. The remaining 1,672

probes matched exactly once in rice chromosome 1.

This latter set constitutes our probe set 2, which is a

“cleaner” version of probe set 1. We observe that in

order to clean the probe set one has to have access

to the whole genome, which somewhat unrealistic in

practice. Each BAC contains on average 5.8 probes

and at most 20 probes.

The probes were hybridized in silico to the BACs

using the following criteria. A 36 nucleotides probe

hybridizes a BAC if they share a common (exact)

substring of 30 nucleotides or more. The criteria was

debated at length with the biologists in Prof. Close

lab and among all suggestions, this one was chosen

for its simplicity. Observe that the hybridization ta-

ble is the only synthetic data in this dataset.

The next step was to pool the probes for group

testing. We followed the shifted transversal design

pooling strategy 12 and designed four sets of pools,

for different choices of the pooling parameters P

and L. Recall that in STD the number of pools is

P ∗L. Pool set 1 is 1-decodable, obtained by choosing

P = 13 and L = 3. Pool set 2 uses two extra layers

(P = 13, L = 5), which increased the decodability by

1. For pool set 3, we chose P = 47 and L = 2. Pool

set 3 is also 1-decodable, but since each pool con-

tains a smaller number of probes, it will deconvolute

the BAC-probe relationships better than pool set 1.

Pool set 4 is constructed from pool set 3 by adding

an additional layer (P = 47, L = 3). As a conse-

quence, pool set 4 is 2-decodable. The four pooling

designs were applied to probe set 1 and probe set 2.

In total, we constructed 8 sets of pools.

The hybridization tables h between pools and

BACs were formed for the 8 sets of pools. Then, the

basic deconvolution step (described in Section 2.2)

was carried out. This step produced a list of con-

straints, some of which were exact pairs and could

deconvolute immediately.

The set of BACs, the set of probes, the list of

constraints from the previous step, and the physical

map produced by FPC, were then fed into MCSPCA.

Our ILP-based algorithm produced a set of BAC-

probe assignments, which was then merged with the

exact pairs obtained by the basic deconvolution to

produce the final assignment.

Similarly, the set of BACs, the set of probes, the

list of constraints from the basic deconvolution and

the perfect physical map were fed into MCSPFA. The

assignment obtained by MCSPFA was also merged

with the exact pairs to produce the final assignment.

For both algorithms we used the GNU Linear

Programming Kit (GLPK) to solve the linear pro-

grams. The size of the linear programs are quite

large. The number of variables ranged from 47,820 to

165,972 and the number of constraints ranged from

29,412 to 60,475.

To evaluate the accuracy of our algorithms, we

employ two performance metrics, namely recall and
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Table 1. Assignment accuracy of MCSPCA (with imperfect physical map) and MCSPFA (with per-
fect physical map) on probe set 1

MCSPCA MCSPFA
pooling #pools # true assigns basic recall recall precision recall precision

P = 13, L = 3 39 14742 0.0103 0.199 0.2647 0.4857 0.4227
P = 13, L = 5 65 14742 0.2726 0.618 0.7668 0.9708 0.8511
P = 47, L = 2 94 14742 0.0173 0.4005 0.5236 0.8856 0.7626
P = 47, L = 3 141 14742 0.763 0.9069 0.9446 0.9991 0.9798

Table 2. Assignment accuracy of MCSPCA (with imperfect physical map) and MCSPFA (with per-
fect physical map) on probe set 2

MCSPCA MCSPFA
pooling #pools # true assigns basic recall recall precision recall precision

P = 13, L = 3 39 14742 0.0121 0.2163 0.3182 0.625 0.6214
P = 13, L = 5 65 14742 0.3111 0.6488 0.8314 0.9984 0.9964
P = 47, L = 2 94 14742 0.0298 0.4348 0.6009 0.9971 0.9962
P = 47, L = 3 141 14742 0.8182 0.9285 0.9767 0.9995 0.9997

Table 3. Performance of the randomized rounding scheme on probe set 1

MCSPCA MCSPFA
pooling # constraints OPTf W OPTf/W OPTf W OPTf/W

P = 13, L = 3 35071 28683 22615 0.7884 35033 30562 0.8724
P = 13, L = 5 58472 45220 41462 0.9169 58425 58277 0.9975
P = 47, L = 2 27591 21472 18633 0.8678 27567 26524 0.9622
P = 47, L = 3 41509 29458 29378 0.9973 41467 41467 1

precision. Recall is defined as the number of cor-

rect assignments made by our algorithm divided by

the total number of true assignments. Precision is

defined as the number of correct assignments made

by our algorithm divided by the total number of as-

signments our algorithm made. Tables 1 and 2 sum-

marize the assignment accuracy of our algorithms.

“Basic recall” is the recall of the basic deconvolution

step (precision is not reported because it is always

100%).

A few observations are in order. First, note

that 2-decodable pooling designs achieve a much bet-

ter performance than 1-decodable pooling. Second,

probe set 2 provides better quality data and as a con-

sequence it improves the deconvolution. However, if

we stick with the more realistic probe set 1 and noisy

physical map, our algorithm still achieves 91% recall

and 94% precision for the pooling P = 47, L = 3.

Even more impressive is the amount of additional de-

convolution achieved for the other 2-decodable pool-

ing when compared to the basic deconvolution. For

example, for P = 13, L = 5 the pooling is composed

by only 65 pools, and thereby the basic deconvolu-

tion achieves just 27% recall. Our algorithm however

achieves 62% recall with 77% precision. The results

for the perfect map shows that our algorithm could

potentially deconvolute all BAC-probe pairs with al-

most 100% precision (if the pooling is “powerful”

enough).

Finally, in order to show the effectiveness of our

randomized rounding scheme, Tables 3 and 4 report

the total number of constraints, the optimal value

OPTf of the LP, and the number W of satisfied con-

straints. Note that the rounding scheme does not

significantly affect the value of the objective func-

tion (see ratio OPTf/W ).

3.3. Experimental Results on the Barley

Genome

The second dataset is related to the barley (Hordeum

vulgare) project currently in progress at UC River-

side. The Barley BAC library used is a Morex li-

brary covering 6.3 genome equivalents 15. Selected

BACs from the BAC library were fingerprinted us-

ing a techniques that employs four different restric-
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Table 4. Performance of the randomized rounding scheme on probe set 2

MCSPCA MCSPFA
pooling # constraints OPTf W OPTf/W OPTf W OPTf/W

P = 13, L = 3 35102 27161 21567 0.7940 35089 31183 0.8887
P = 13, L = 5 58210 42795 39934 0.9331 58179 58179 1
P = 47, L = 2 27739 20127 17990 0.8938 27711 27711 1
P = 47, L = 3 41378 28567 28532 0.9988 41378 41338 0.9990

tion enzymes, called high information content fin-

gerprinting 6. The physical map was constructed

using FPC. The total number of BACs that were

successfully fingerprinted and that were present in

the physical map is 43,094. Among the set of BACs

present in the physical map, about 20 have been fully

sequenced. They will be used for validation of our

algorithm. The Barley unigenes were obtained by as-

sembling the ESTs downloaded from the NCBI EST

database. The unigene assembly contains in total

26,743 contigs and 27,121 singletons.

About a dozen research groups around the world

contributed hybridization data. Each group designed

probes for certain genes of interest and performed the

hybridization experiments. Since those efforts were

not centrally coordinated, the probe design and the

pool design were completely ad hoc. The length of

probe ranges from 36 nucleotides to a few hundreds

bases. The number of unigenes that each pool rep-

resents also ranges from one to a few hundreds. We

collected the data, and we transformed it into a list

of constraints that we processed first with the basic

deconvolution.

Recall that if we obtain an exact pair, the assign-

ment is immediate. But if a constraint is non-exact,

we cannot conclude much even if the size of Ob,p is

very small. However, intuitively those constraints for

which |Ob,p| is small are the most informative.

In an attempt to filter out the noise and isolate

the informative constraints we selected only those for

which |Ob,p| ≤ 50. In total 14,796 constraints were

chosen. Then, we focused only on the 5,327 BACs

and the 2,263 unigenes that were involved in this

selected set of constraints. We then used our MC-

SPCA method on this reduced set (along with the

barley physical map produced by FPC) and we ob-

tained 9,587 assignments. We cross-referenced these

assignments to the small set of sequenced BACs and

we determined that six of them were in common to

the 5,327 BACs we selected. Our algorithm assigned

eight unigenes to those 6 BACs, and six of them

turned out to be correct by matching them to the

sequences of 20 known BACs.

4. CONCLUSIONS

In this paper, we proposed a new method to solve the

BAC-gene deconvolution problem. Our method com-

pensates for a weaker pooling design by exploiting

a physical map. The deconvolution problem is for-

mulated as pair of combinatorial optimization prob-

lems, both of which are proved to be NP-complete.

The combinatorial optimization problems are solved

approximately via Integer Programming followed by

Linear Programming relaxation and then random-

ized rounding. Our experimental results on both real

and simulated data show that our method is very ac-

curate in determining the correct mapping between

unigenes and BACs. The right combination of com-

binatorial pooling and our method not only can dra-

matically reduce the number of pools required, but

also can deconvolute the BAC-gene relationships al-

most perfectly.
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