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      Understanding gene regulation is a key step to investigating gene functions and their relationships. Many algorithms have been de-

veloped to discover transcription factor binding sites (TFBS); they are predominantly located in upstream regions of genes and contrib-

ute to transcription regulation if they are bound by a specific transcription factor.  However, traditional methods focusing on finding 

motifs have shortcomings, which can be overcome by using comparative genomics data that is now increasingly available. Traditional 

methods to score motifs also have their limitations. In this paper, we propose a new algorithm called IEM to refine motifs using com-

parative genomics data. We show the effectiveness of our techniques with several data sets. Two sets of experiments were performed 

with comparative genomics data on five strains of P. aeruginosa. One set of experiments were performed with similar data on four spe-

cies of yeast. The weighted conservation score proposed in this paper is an improvement over existing motif scores.  
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1.   INTRODUCTION  

Gene expression is a fundamental biological process. 

The first step in this process called transcription

transmits genetic information from DNA to messenger 

RNA (mRNA). A transcription factor (TF) is a protein 

that regulates transcription of a gene by interacting with 

specific short DNA sequences, located often in the up-

stream region of the regulated genes. Such short DNA 

sequences are called transcription factor binding sites 

(TFBS) or regulatory elements. The regulatory elements 

can be described as sequence signatures and will be re-

ferred to in this paper as motifs. One TF can regulate a 

large set of genes, and a single gene may be regulated by 

the combination of several TFs. The upstream region of 

each gene regulated by the same TF must have at least 

one binding site specific for that particular TF. These 

binding sites must be specific enough so that the TF can 

“recognize” them and bind to them. However, it is well 

known that different sites bound by the same TF are not 

necessarily identical. The computational challenge is to 

find these sites and to succinctly and accurately describe 

all suc
1
h binding sites.  

* To whom correspondence should be addressed.  

The simplest way to describe a binding site is to 

write down its consensus sequence. However, this is 

very imprecise and does not do justice to the complexity 

of the sequence signature. A sequence alignment of all 

known binding sites captures its complexity, but is not 

succinct enough. A logo format (Schneider and Stephens 

1990; Crooks, Hon et al. 2004) is succinct enough, but is 

merely visual. The appropriate description is a profile, 

which is also referred to as a position-specific scoring 

matrix (PSSM) or a position weight matrix (PWM) 

(Werner 1999; Stormo 2000). A profile is a 4 × K matrix 

(K is the length of the binding site) whose entries give a 

measure of the preference of a base appearing at any 

given position.  

Examples of sophisticated algorithms to identify TF 

binding sites include MEME (Bailey and Elkan 1994), 

AlignACE (Hertz and Stormo 1999), Bioprospector 

(Liu, Brutlag et al. 2001), MDscan (Liu, Brutlag et al. 

2002), YMF (Sinha and Tompa 2003), Weeder (Pavesi, 

Mereghetti et al. 2004) and many more. All these meth-

ods attempt to find sequence signatures that are signifi-

cantly overrepresented in the upstream regions of a 

given gene set (typically a cluster of co-regulated genes

from analyzing microarray data, or a gene set inferred  
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from a ChIP-Chip experiment) when compared to an 

appropriately chosen background.  

Despite the successful application of the algorithms 

listed above, each of them has certain limitations (Hu, Li 

et al. 2005; Tompa, Li et al. 2005; GuhaThakurta 2006; 

MacIsaac and Fraenkel 2006; Sandve and Drablos 

2006). First, all these methods are prone to predict a 

large number of motifs, many of which are false-

positives, partly because TFs show remarkable flexibil-

ity in the binding sites they can potentially bind to. 

Second, all these methods report statistically over-

represented motifs. However, statistical significance of 

motifs need not be synonymous with biological rele-

vance of motifs. Binding of TFs to their binding sites is 

a complex process and may be assisted or hindered by 

many other unexplained factors.  

Comparative genomics data is a promising new 

source of information that can help to improve motif 

prediction. With the availability of an increasing number 

of whole genome sequences of evolutionarily-related 

genomes, it is practical to incorporate the comparative 

genomics data into the motif discovery process. The 

basic assumption is that transcription factors and tran-

scriptional mechanisms involved in fundamental cellular 

processes are likely to be conserved among evolution-

ary-related genomes. Consequently, the binding sites for 

such TFs are also likely to be conserved. Therefore, 

availability of comparative genomics data is likely to 

provide additional support to the predictions of binding 

sites. The simplest way to deal with data on additional 

genomes is to pool together the upstream regions of all 

available genomes and to apply traditional motif detec-

tion methods. However, this is not an optimal utilization 

of the comparative genomics data. The “phylogenetic 

footprinting” strategy is a sophisticated method used to 

find motifs that are conserved for a particular gene 

across related organisms (Blanchette and Tompa 2002). 

Several subtle approaches such as PhyloCon (Wang and 

Stormo 2003), orthoMEME (Prakash, Blanchette et al. 

2004), CompareProspector (Liu, Liu et al. 2004), 

EMnEM (Moses, Chiang et al. 2004), PhyME (Sinha, 

Blanchette et al. 2004), and PhyloGibbs (Siddharthan, 

Siggia et al. 2005) were developed recently to solve this 

problem. In these approaches, either an EM-based algo-

rithm, a greedy algorithm or a Gibbs Sampling strategy 

was applied to optimize an objective function, while 

taking the phylogenetic relationships into account. The 

main problem with these methods is that phylogenetic 

relationships are often not easy to infer and not very 

reliable. Also, any motif that is unique to particular ge-

nomes or in upstream regions of genes with no orthologs 

in some related genomes will not be detected. Most of 

above methods also need an alignment of the input se-

quence. Like phylogenetic relationships, alignments are 

also often unreliable. Inaccurate alignments (or phyloge-

neties) lead to errors in profile matrices, and ultimately 

in motif prediction. 

Another challenge in motif prediction is to develop 

scoring functions that reflect biological significance. 

Several popular scoring functions include IC (informa-

tion content), MAP, Group Specificity score, LLBG 

(least likely under the background model) and Bayesian 

scoring function. However, as explained earlier, algo-

rithms that use these scoring schemes end up with a 

large number of false positives in their predictions. 

When dealing with multiple genomes, the degree of con-

servation of the ‘hits’ of a profile across the many ge-

nomes can be used as a crude surrogate for the signifi-

cance of the motif. However, this metric has its short-

comings. In this paper, we propose a metric to measure 

such biological significance. 

In this paper, we propose a new algorithm called 

IEM (Iteratively Enhancing Motif Discovery). IEM is an 

iterative version of an earlier algorithm called EMR (En-

hancing Motif Refinement) (Zeng and Narasimhan 

2007).  It differs from other earlier approaches in that no 

attempt is made to perform de novo detection of motifs 

(although that would be easy to incorporate). Instead, 

comparative genomics data is used to “enhance” any 

given motif. These motifs may have been discovered by 

other computational methods, or may have been identi-

fied by laboratory techniques. Thus our method lever-

ages the best-known motif discovery methods, or utilizes 

the (potentially incomplete) knowledge of previous stud-

ies while incorporating newly available comparative 

genomics data.  

The research described here is significant for the 

following reasons. First, there is a clear need to reduce 

the number of false positives predicted by traditional 

tools. Second, our method can make use of partial in-

formation (on one or more binding sites), which may be 

available as a result of biological experiments. Third, 

with the availability of high throughput gene expression 

techniques like Microarrays and ChIP-Chip experiments, 

it is possible to get sets of co-expressed genes involved 

in the same metabolic pathway (and, therefore, poten-

tially coregulated). Finally, our results show that the 

IEM algorithm has superior ability to overcome the 

shortcoming of previous methods and to effectively util-

ize any available comparative genomics data. 
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2.   METHODS 

2.1.   Algorithm 

The IEM algorithm takes as input an “unrefined” motif 

for a given genome Γ1 (called the reference genome); 

this motif may have been generated using any reason-

able existing motif detection method. Alternatively, the 

input could be a known binding site or a crude approxi-

mation based loosely on some experiments. Using one or 

more additional genomes Γ2  (referred to as the related

genomes), and the corresponding orthology information 

between Γ1 and Γ2, the algorithm returns an enhanced 

motif. The refinement procedure is EM-based, as de-

scribed below in Section 2.1.3.  

2.1.1.   Basic Expectation Maximization (EM) 

Algorithm    

Since our algorithm is EM-based, we first present an 

adaptation of the classical EM algorithm (Dempster, 

Laird et al. 1977) for ab initio motif discovery 

(Lawrence and Reilly 1990). Motif prediction can be 

thought of as a parameter estimation process for a mix-

ture model: (1) a model for the motif and (2) a model for 

the background. Roughly speaking, the algorithm can be 

described as follows: In the (Expectation) E-Step, for 

every site, the likelihood that it belongs to either model

of the mixture is computed. And, in the (Maximization) 

M-Step, a set of parameters (i.e., the entries of the pro-

file) for the individual models (motif model and back-

ground model) are recomputed using the likelihood val-

ues computed in the E-step as weights in the calculation. 

Upon convergence, we end up with two models: one for 

motif and one for background. We randomly initialize 

parameters for the motif model (by randomly choosing 

the locations of the binding sites), and then the E-step 

and M-step are iterated until convergence.  

2.1.2.   Improvements in MEME    

The original version of EM as proposed by Lawrence 

and Relly (Lawrence and Reilly 1990) suffers from sev-

eral limitations. For example, it does not state how to 

choose a starting point: It assumes that each sequence in 

the dataset contains exactly one occurrence of the motif; 

it also assumes that there is only one instance of the mo-

tif in each upstream region and does not attempt to find 

multiple instances. Bailey and Elkan proposed a modi-

fied EM method called MEME to eliminate these limita-

tions (Bailey and Elkan 1994). Their method used se-

quences from the input as random start points. The 

method allows multiple instances of a motif in one up-

stream region. Furthermore, once the algorithm con-

verges upon a motif, it is eliminated from consideration 

and then the algorithm restarts to look for other motifs.  

MEME works reasonably well on many data sets, 

and is widely used. However, it has shortcomings. First, 

even though it choses a start point form among the sub-

sequences of the input sequence, it may not converge 

upon a desired motif. Thus, it is not suitable for finding 

motifs for which we may know partial information. Sec-

ond, the only way it can deal with comparative genomics 

data is by merely pooling the input sequences from mul-

tiple genomes. However, as mentioned before, this 

leaves the comparative genomics data underutilized. Our 

proposed IEM method considers comparative genomic 

data in a “dual” manner. 

2.1.3.   IEM Algorithm    

The IEM algorithm is described below in Figure 1. As-

sume the input consists of profile M1 = (mij), which is a 

4 × K matrix. K is the length of the motif and mij is the 

entry in the ith row and jth column of M1. Let the indica-

tor variable matrix be defined as Z = (zpq): where zpq = 1, 

if an instance of the motif starts from p
th

 position in the 

upstream region of the qth gene, and is equal to 0 other-

wise. These indicator variables approximate the prob-

ability that a specific site (i.e., the sequence starting 

from the pth position in the upstream region of the qth

gene) is a binding site according to the profile matrix. 

The IEM algorithm estimates the indicator variable ma-

trix Z1 and profile matrix M1 in the reference genome 

and the indicator variable matrix Z2 and profile M2 in the 

related genomes iteratively. The estimation process is 

similar to that in MEME (Bailey and Elkan 1994). How-

ever, in IEM a dual-step estimation is applied by incor-

porating comparative genomics data. Given indicator 

variable zpq in one data source (either the reference ge-

nome or the related genomes) and a motif model (i.e., 

profile matrix) M for the entire data set (merged from 

M1 and M2), we can calculate the probability of observ-

ing a given upstream region Uq as follows: 

1

0

1 1

( | , )
l nk nk

q pq a aj

i j

P U Z M m m
− +

= =

= ∏ ∏ ,                         (1) 

where ma0 is background frequency for base a, maj is 

frequency for base a at position j in the motif model, k is 

the motif length, n is number of 1s in Zpq, and l is the 

length of upstream sequence. Then by Bayes’ rule, we 

can calculate the probability that the site at position p in 

upstream region q is a binding site as follows: 
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Intuitively, the IEM algorithm tries to refine a motif 

in each iteration in two successive EM steps. In each 

step, it computes the likelihood for each site in one data 

set over a model M (not merely M1 or M2), which is ar-

rived at by the previous maximization step applied over 

all the data sets. Comin et al. reported a subtle motif 

discovery method using a similar two-step strategy 

(Comin and Parida 2007). The differences are twofold. 

First, we incorporate comparative genomics data, and 

second, we use profiles instead of consensus sequences 

to represent the motifs. 

Input: a) Profile M1, motif length l, and associated gene set G1 from    

          genome ΓΓΓΓ1

           b) upstream sequences of the ORFs in G1

           c) Additional genome(s) ΓΓΓΓ2,.and the orthology map for all the   

               genomes 

           d) upstream sequences of the ORFs in G2, the orthologs of G1 in  

               ΓΓΓΓ2    

Output: Refined motif weight matrix Mr 

Algorithm:  

           Estimate Z2 in G2 from M1. 

           while (not converged) do

                 Re-estimate M2 in G2 from Z2. 

                 M = merge(M1 , M2)  

                Re-estimate Z1 in G1 from M. 

                Re-estimate M1 in G1 from Z1. 

                M = merge(M1 , M2)  

                Re-estimate Z2 in G2 from M. 

         endwhile 

         Return M2.  

Figure 1. IEM Algorithm 

In summary, IEM algorithm does the following 4 

steps iteratively: 

1. In the first E step, the probabilities that each 

site in the reference genome belongs to the 

profile M1 are computed by using formula (2). 

2. In the first M step, the new profile M1 is esti-

mated by using every (indicated) binding site in 

the reference genome (i.e., weighted with Zpq). 

Profile M  is updated using the new sites. 

3. In the second E step, the probabilities that each 

site in the related genomes belong to the profile 

M2 are computed by using formula (2). 

4. In the second M step, the new profile M2 is es-

timated by using every (indicated) binding site 

in the related genomes (i.e., weighted with Zpq). 

Profile M is updated by using the new sites. 

The “merge” operation mentioned in the algorithm is 

achieved by creating the profile matrix from the in-

stances of the sites with indicator value 1 from all the 

genomes. Note that a generalization of the merging step 

is possible where the sites are weighted by the probabil-

ity of that site belonging to a model (i.e., its score 

against the profile).  

2.2.   Evaluation Approaches 

Evaluation of the IEM algorithm is a nontrivial task 

because very little experimentally verified data is avail-

able. Even the available experimentally verified data is 

often only partial information. In one of the experiments 

described below, we consider the critical regulation ac-

tivities in the arginine metabolic pathways in the bacte-

rium P. aeruginosa (PAO1). We show that our algo-

rithm, with the help of the complete genomes of six 

strains of P. aeruginosa, produces refined motifs with 

improved accuracy (see the Results section for details). 

The performance in such cases can be measured in terms 

of true positives and false positives from the available 

partial information. Here the true positives measure in-

dicates the number of known binding sites that are pre-

dicted, while the false positives are the number of 

known non-binding sites that are predicted.  

In another experiment, where no experimentally 

verified data was available, we have proposed two ap-

proaches to evaluate our results. One approach is to in-

vestigate the functional enrichment of the genes whose 

upstream regions have a predicted binding site. Using 

gene ontology analysis, we observed that the terms that 

were enriched were closely related to what is known 

about the regulator. 

Another approach is to compute meaningful meas-

ures of motif scores. Traditional ones such as MAP and 

IC scores are not well-suited for comparative genomics 

data. A better approach is to use scores based on how 

well the predicted binding site is conserved across all the 

genomes under consideration. The simplest measure 

along these lines is what we will refer to as the conser-

vation score. It is the average number of genomes in 

which any given predicted binding site occurs simulta-

neously in the upstream sequences of orthologous genes. 

This value ranges between 0 and m, where m is the 

number of genomes (besides the reference genome) be-

ing analyzed. Such a measure was proposed earlier 

(Gertz, Riles et al. 2005). Let m denote the number of 

genomes (besides the reference genome) being consid-

ered. Let n be the total number of genes in the reference 

genome whose upstream sequence has at least one pre-
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dicted site of the motif, and let si be the number of ge-

nomes in which the ortholog of gene i contains a site in 

its upstream region. Then the conservation score S is 

defined as: 

1

n i

i

s
S

n=
=∑                                                        (3) 

The weakness of this conservation score is that it 

does not account for some key facts. In the following 

discussion, let A and B be two predicted motifs with the 

same conservation score, i.e., same average hits per ge-

nome.   

1. If A has more instances than B in which si

equals to m, it should be considered more sig-

nificant.  

2. If A has more hits than B in the reference ge-

nome, then it should be considered more sig-

nificant. 

To overcome the above disadvantages, we propose a 

new score, which we refer to as the weighted conserva-

tion score. It is given as: 

[ ] 1

1

log

m
i i

i
c

m
i

i

iw n
S mn

n w

=

=

=
∑

∑
, 1i iw w −>   i∀ ,             (4) 

where m is the number of genomes being considered, n

is the number of genes in the reference genome whose 

upstream regions contain at least one instance of the 

predicted motif, ni is the number of genes that has i

number of genomes in which the corresponding ortholog 

contains at least one instance of the motif in its upstream 

region, and wi is a suitable weight constant that satisfies 

wi > wi-1 for all i, implying that if a motif instance occurs 

in more orthologs then it should be weighted higher. wi

is chosen to be i in following example. 

We highlight the differences between the conserva-

tion score and the weighted conservation score using 

simple examples. In  Figure 2, motifs A and B have the 

same conservation score. Unlike motif B, motif A has 

instances across all related genomes in the upstream 

regions of three orthologous gene sets. We argue that 

motif A is more conserved than motif B. The weighted 

conservation score reflects this intuition. Motif C, with 

the same conservation score as motif D, has more in-

stances in the reference genome, which may indicate a 

more important biological role. The weighted conserva-

tion score rewards motifs A and C. 

3.   RESULTS 

3.1.    

Metabolic pathways have been widely studied. They can 

be extremely complex, and may involve large numbers 

of genes. Often every path in the network involves one 

or more TFs and the genes regulated by them. However, 

only a few of genes and TFs in the pathways may have 

been identified, and even fewer of the TF binding sites 

may be known. A useful problem is to identify the genes 

and TFs and their binding sites specifically involved in a 

specific pathway. Starting from one or two experimen-

tally verified binding sites, can we predict the rest of the 

relevant binding sites of the genes in the pathway? Fur-

thermore, can we identify such a gene set? We will show 

that our IEM algorithm can help to address these ques-

tions. 

In order to evaluate our results, we used a well stud-

ied pathway - the arginine metabolic pathway in P. 

aeruginosa, as an example. It is already known that P. 

aeruginosa possesses four different pathways for utiliza-

tion of arginine (Lu, Yang et al. 2004): the arginine 

deiminase (ADI) pathway, the arginine succinyltrans-

ferase (AST) pathway, the arginine decarboxylase (ADC) 

pathway, and the arginine dehydrogenase (ADH) path-

way. Under anaerobic conditions, arginine can be used 

as a direct source of ATP via the ADI pathway. ArgR is 

a TF in the ADH pathway. Lu  et al. used microarray 

experiments to identify candidate genes for the ArgR 

regulon (Lu, Yang et al. 2004).  It was reported that 

ArgR regulated 37 (28 induced and 9 repressed) genes 

from 17 operons. Eighteen of the 28 arginine-inducible 

genes are in 4 transcriptional units that have been re-

ported previously as members of the ArgR regulon (Itoh 

1997; Park, Lu et al. 1997; Nishijyo, Park et al. 1998; 

Lu, Winteler et al. 1999; Lu and Abdelal 2001; Hashim, 

Kwon et al. 2004). Lu et al. also identified several new 

ArgR regulon members among these 37 genes, and veri-

fied them by wet lab experiments. Since the ArgR sys-

tem is well studied, we used it to test the IEM algorithm. 

3.1.1.   Arginine pathway data set    

Upstream regions of the 17 transcriptional units (operons) 

were obtained for five strains of P. aeruginosa (PAO1, 

PA14, PACS2, PA2192, and PA3719). We also included 

6 genes involved in the ADC pathway and the ADH 

pathways that were known not to bind to ArgR.  
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Figure 2. Shown are examples that highlight the differences 

between the conservation score, S, and the weighted 

conservation scores, Sc.  

3.1.2.

To show the power of our technique, we assumed for our 

experiments that we know only one (randomly chosen) 

instance of a binding site for ArgR. We used a subset of 

the operons mentioned above (12 out of 17 from ADI 

pathways and all 6 from ADC/ADH pathways). We then 

set out to see if the algorithm successful in locating 

previously known binding sites in the remaining 5 oper-

ons. On an average the refined motif missed 1.2 of the 5 

known binding sites. 

We applied MEME, AlignACE, and IEM to the 

same data set. The results were compared for an experi-

ment with data from two genomes (PAO1 and PA14) 

and another experiment with data from five genomes 

(PAO1, PA14, PACS2, PA2192, and PAC3719). The 

idea was to get a sense of how much the comparative 

genomics data helped in the task. MEME and AlignACE 

were applied to the pooled data. For IEM, the initial pro-

file was created using the motif instance. The frequency 

of the base from the consensus sequence was set at 0.7, 

and the frequencies of other bases were set at 0.1. Each 

of the three programs was run 10 times for the data set 

introduced earlier. We counted the number of true pre-

dictions (TP, True Positives), the number of false predic-

tions (FP, False Positives) and the motif scores IC (In-

formation Content), MAP (maximum a posteriori prob-

ability) and the weighted conservation scores Sc. 

3.1.3.

Tables 1 and 2 present the results from two experiments 

(two genome case vs five genome case) for the 10 runs. 

The three columns present the results with the three pro-

grams. In cases where a motif was reported, the number 

of TPs and FPs along with three measures of quality of 

the motif are reported. The IEM algorithm finds the 

ArgR binding motif in every instance. In the experi-

ments involving two genomes, the motif scores (using 

the MAP, IC, and Sc measures) are comparable to the 

reported ones using MEME or AlignACE. However, 

when four genomes were used, the scores using the IEM 

algorithm was markedly superior to those with the other 

two methods (when they were reported). 

3.2.

In this section, we discuss our experiments with the IEM

algorithm applied to data from experiments on the tran-

scription factor, AmpR, in P. aeruginosa. AmpR was 

recently reported as a global transcription factor that 

regulates the expression of many virulence factors 

(Kong, Jayawardena et al. 2005). To better understand 

the regulon of AmpR, the consensus sequence (5’-

TCTGCTGCAAATTT-3’) of AmpR binding sites in C. 

freundii and E. cloacae was used by Kong et al. to find 

an exactly conserved sequence site within the upstream 

region of ampC in PAO1 (Kong, Jayawardena et al. 

2005). They also analyzed the upstream regions of all 

the genes putatively regulated by AmpR with the hope 

of finding a potential AmpR binding site. Tools such as 

MEME and AlignACE failed to find anything resem-

bling the binding site from the upstream region of ampC.

The IEM algorithm was then applied using the con-

sensus sequence mentioned above, a potential hand-

crafted list of 10 genes possibly regulated by AmpR, and 

newly available comparative genomics data sets from 

four closely related strains of Pseudomonas (PA14, 

PA2192, PACS2, and PAC3719). As mentioned in the 

previous section, a crude motif profile was constructed 
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based on the consensus sequence. The results before and 

after applying the IEM algorithm are shown in Table 3.  

Table 1. Motif predicted by IEM, MEME, and AlignACE 

using data on 2 strains of P. aeruginosa (PA01and PA14).  

  

Table 2. Motif predicted by IEM, MEME, and AlignACE 

using data on 5 strains of P. aeruginosa (PA01, PA14, 

PA2192, PACS2, and PAC3719). 

The refined motif showed improved scores according to 

three different motif scores. After refinement, we found 

that putative AmpR binding site appears only in 3 of the 

10 genes mentioned above (lasA, lasR, and ampC) 

across all five strains of P. aeruginosa. Support for these 

3 predictions was obtained using lacZ fusions in the 

Mathee lab. Further experimental verification is needed 

and work is underway in the Mathee lab. We conjecture 

that the remaining 7 genes are only indirectly regulated 

by AmpR. 

We then used the refined motif to scan the entire 

PAO1 genome for instances of the motif in the  up-

stream regions. Based on the likelihood value calculated 

in formula (2), we ranked the “hits” and chose the top 

150 genes and followed it up with gene function en-

richment analysis. See Table 4 for the results. The term 

with the top hit, i.e., the lowest P-value was “periplasmic 

space”. This is considered significant because, ampR is 

known to be involved in cell-wall recycling. A similar 

search with the motif before refinement did not find this 

GO-term.  

Table 3. Characteristics of motif before and after refinement 

3.3.    

Next we discuss our experiments with yeast data sets. 

Recently, Kellis et al. compared five yeast species to 

identify regulatory elements in the entire genome by 

searching for conserved segments across different yeast 

species (Kellis, Patterson et al. 2003). They developed a 

motif score called MCS (Motif Conservation Score) to 

measure the conservation ratio of a motif compared to 

the random patterns of the same length and degeneracy 

(Kellis, Patterson et al. 2003).  A list of 72 full motifs 

having MCS at least 4 was reported. These 72 predicted 

motifs showed strong overlap with 28 of the 33 known 

motifs in yeast. However, the motifs used in the paper 

were represented using generalized consensus sequences 

(i.e., using IUPAC codes to represent nucleotide degen-

eracy) instead of the more powerful profile matrix. We 

set out to consider whether the IEM algorithm could 

improve the predictions from that work.  

Starting from the results of Kellis et al., we used 

IEM to refine each of the 72 motifs mentioned above. 

�
���������	��
������	����������

                           233



Data from four yeast genomes (S. cerevisiae, S. para-

doxus, S. mikatae and S. bayanus) were used. Complete 

results on the refined motifs are available at our supple-

mentary results website: [http://biorg.cs.fiu.edu/IEM/]. 

Below we show some of the highlights in Table 5. In 

each case the number of hits went down after the re-

finement.  

4.   DISCUSSION AND CONCLUSION  

In this paper we propose a new algorithm to refine mo-

tifs with the help of comparative genomics data. The 

algorithm incorporates an improved scoring scheme that 

is sensitive to hits in the related genomes. The algorithm 

is inspired by the technique of “co-training” from the 

field of data mining, where lessons learnt from one data 

source is iteratively used to model the situation for an-

other data source. The results show clear improvements 

in the quality of the motifs output.  

The IEM algorithm does have its own shortcomings, 

which we continue to improve. First, it does not attempt 

to change the length of the motif from the initial motif it 

started with. Second, it works best if the genomes con-

sidered are very closely related and is useful in cases 

where the phylogenetic relationships between the ge-

nomes are not known. If phylogentic information is 

available, then the algorithm can be modified to factor 

this in, along the lines of several previous algorithms.  
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Table 5. Results of motif refinement for the yeast data set. For 
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