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Protein engineering by site-directed recombination seeks to develop proteins with new or improved function, by ac-

cumulating multiple mutations from a set of homologous parent proteins. A library of hybrid proteins is created by

recombining the parent proteins at specified breakpoint locations; subsequent screening/selection identifies hybrids
with desirable functional characteristics. In order to improve the frequency of generating novel hybrids, this paper

develops the first approach to explicitly plan for diversity in site-directed recombination, including metrics for charac-

terizing the diversity of a planned hybrid library and efficient algorithms for optimizing experiments accordingly. The
goal is to choose breakpoint locations to sample sequence space as uniformly as possible (which we argue maximizes

diversity), under the constraints imposed by the recombination process and the given set of parents. A dynamic pro-

gramming approach selects optimal breakpoint locations in polynomial time. Application of our method to optimizing
breakpoints for an example biosynthetic enzyme, purE, demonstrates the significance of diversity optimization and

the effectiveness of our algorithms.

1. INTRODUCTION

Protein engineering aims to create amino acid se-
quences encoding proteins with desired characteris-
tics, such as improved or novel function. Two con-
trasting strategies are commonly employed to at-
tempt to improve an existing protein. One approach
focuses on redesigning a single sequence towards a
new purpose, selecting a small number of mutations
to the wild-type1–5. Another approach creates li-
braries of variant proteins to be selected or screened
for desired characteristics. The library approach
samples a larger portion of the sequence space, accu-
mulating multiple mutations in each library member,
increasing both the ability to reveal novel solutions
to attaining function, as well as the risk of obtaining
non-functional sequences.

Protein engineering by site-directed recombi-
nation (Fig. 1) provides one approach for gener-
ating libraries of variant proteins. A set of ho-
mologous parent genes are recombined at defined
breakpoint locations, yielding a combinatorial set
of hybrids6–9. In contrast to stochastic library
construction methods10–12, site-directed approaches
choose breakpoint locations to optimize expected li-
brary quality, e.g., predicted disruption7, 13, 14. In
both cases, the use of recombination enables the cre-
ation of protein variants that simultaneously accu-

mulate a relatively large number of “natural” mu-
tations relative to the parent. The mutations have
been previously proven compatible with each other
and within a similar structural and functional con-
text, and are thus less disruptive than random muta-
tions. Recombination-based approaches, when com-
bined with high-throughput screening and selection,
can avoid the need for precise modeling of the bio-
physical implications of mutations. They employ
an essentially “generate-and-test” paradigm. As al-
ways, the goal is to bias the “generate” phase to im-
prove the hit rate of the “test” phase.

A library is completely determined by selecting
a set of parents and a set of breakpoint locations.
To optimize an experiment so as to improve the ex-
pected quality of the resulting library, there are es-
sentially two competing goals—we want the resulting
proteins to be both viable and novel. Most previous
work on planning site-directed recombination experi-
ments has focused on enhancing viability, by seeking
to minimize the amount of structural disruption due
to recombination6, 14–17. However, breakpoints can
also be selected so as to enhance novelty by max-
imizing the diversity of the hybrids. For example,
consider choosing one internal breakpoint (in addi-
tion to the one at the end) for the three parents in
Fig. 1, left. If we put the breakpoint between the
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last two residues, all hybrids will be the same as the
parents (i.e., a zero-mutation library). To improve
the chance of getting novel hybrids, we must choose
breakpoints that make hybrids different from each
other and/or from the parents (Fig. 1, right).

Fig. 1. Diversity optimization in site-directed protein recom-
bination. (Left) Recombination of three parent sequences at

a set of three breakpoints (we always include an extra break-

point at the end of the sequence). A total of 33 = 27 hybrids
results, including three sequences equivalent to the parents.

(Right) Repulsive spring analogy for library diversity. Hy-

brids (circles) are defined by parents (stars) and breakpoint
locations. In order to sample the sequence space well, we want

to choose breakpoint locations to push hybrids away from each
other. (For clarity, only some relationships are illustrated.)

Since the parents will also appear in the hybrid library, the

hybrids are pushed away from them as well. Alternatively, an
explicit goal may be to push the hybrids away from the parents

as much as possible, so as to maximize the possibility for novel

characteristics that are not found in the parents. We capture
these two goals as the vHH (hybrid-hybrid) and vHP (hybrid-

parent) metrics below, and demonstrate that they are highly

correlated as a function of breakpoint location. Note that at
all times, the hybrids are restricted to being a combination of

the parents.

Diversity has been experimentally demonstrated
to be important to obtaining new characteristics.
The number of mutations has been correlated with
functional change from wild-type in several pro-
teins modified by different methodologies. Hybrid
cytochromes P450 with the most altered profiles
and greatest activity on a new substrate (allyloxy-
benzene) were found to have higher effective muta-
tion levels (30–50 mutations among the 460 residues)
than the enzymes with similar activities to the
parents16. A random mutant library of TEM-1 β-
lactamase with a minimal mutation load (8.2 muta-
tions/gene) was found to have the highest frequency
of clones carrying wild-type or minimally different
activity, while a mutant library with maximal muta-
tion load (27.2 mutations/gene) had the highest fre-

quency of clones with improved activity on the nor-
mally poor substrate cefotaxime18. In a study of sin-
gle chain Fv antibodies, the greatest affinity improve-
ment was exhibited by libraries of moderate to high
mutation levels (3.8–22.5 mutations/gene)19. Mu-
tants with significantly higher affinity than the wild-
type were well represented within the active fraction
of the library population with high mutation levels.

This paper represents the first approach to ex-
plicitly plan for diversity in site-directed recombina-
tion. We develop metrics for evaluating diversity, in
terms of both the differences among hybrids and the
differences between hybrids and parents. We develop
polynomial-time dynamic programming algorithms
to select optimal breakpoint locations for these di-
versity metrics. We show that the algorithms are
effective and significant in optimizing libraries from
the purE family of biosynthetic enzymes.

2. METHODS

We are given a set of n parent sequences
P = {P1, P2, . . . , Pn}, forming a multiple se-
quence alignment with each sequence of length
l including residues and gaps. Our goal is
to select a set of λ breakpoint locations X =
{x1, x2, . . . , xλ | 1 ≤ x1 < x2 < ... < xλ = l}. For
simplicity in notation, we always place the final
breakpoint after the final residue position (i.e.,
xλ = l). The breakpoints partition each parent Pa

into λ fragments with sequences Pa[1, x1], Pa[x1 +
1, x2], . . . , Pa[xλ−1 + 1, xλ], where in general we use
S[r, r′] to denote the amino acid string from position
r to r′ in sequence S, and S[r] to denote the single
amino acid at position r. A hybrid protein Hi is a
concatenation of chosen parental fragments, assem-
bled in the original order. Thus it is also of length l.
Then a hybrid library H(P, X) = {H1, H2, . . . , Hnλ}
includes all combinations. Our goal is to choose X

(such that |X| = λ and xλ = l) to optimize the di-
versity of library H(P, X), for a set P of parents.

2.1. Library Diversity

For two amino acid sequences S and S′ of length l,
we define the mutation level m(S, S′) as the number
of corresponding residues that differ:

m(S, S′) =
∑

1≤r≤l

I{S[r] �= S′[r]}, (1)
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where indicator function I is 1 when the predicate
is true and 0 when it is false. To mitigate the
effect of neutral mutations, rather than using lit-
eral equality we measure functional relatedness us-
ing one of the standard sets of amino acid classes
{{C},{F,Y,W},{H,R,K},{N,D,Q,E},{S,T,P,A,G},
{M,I,L,V}}. In either case, a “gap” in the align-
ment is taken as a distinct amino acid type. Our
approach can be used with any similarly-structured
metric for mutation level.

While our goal is to optimize library diversity,
we show that the choice of parents and number of
breakpoints, independent of breakpoint location, de-
termines the mutation level between all pairs of hy-
brids (Claim 2.1), between one parent and all hybrids
(Claim 2.2), and between all hybrids and all parents
(Claim 2.3).

Claim 2.1.
∑nλ−1

i=1

∑nλ

j=i+1 m(Hi, Hj) = n2(λ−1) ×∑n−1
a=1

∑n
b=a+1 m(Pa, Pb).

Claim 2.2. ∀Pa ∈ P :
∑nλ

i=1 m(Hi, Pa) = nλ−1 ×∑n
b=1 m(Pa, Pb).

Claim 2.3.
∑n

a=1

∑nλ

i=1 m(Hi, Pa) = nλ−1 ×∑n
a=1

∑n
b=1 m(Pa, Pb).

Proof. Consider residue position r, where 1 ≤ r ≤ l.
Over the set of nλ hybrids, there must be nλ−1 in-
stances of P1[r], nλ−1 of P2[r], . . . , and nλ−1 of Pn[r].
Thus we have

nλ∑
j=1

m(Hj , Hi) =
l∑

r=1

n∑
a=1

nλ−1 × I{Pa[r] �= Hi[r]}

= nλ−1 ×
n∑

a=1

m(Pa, Hi). (2)

By extending this to all pairs we have (Claim 2.1):

nλ−1∑
i=1

nλ∑
j=i+1

m(Hi, Hj)

=
l∑

r=1

n−1∑
a=1

n∑
b=a+1

n2(λ−1) × I{Pa[r] �= Pb[r]}

= n2(λ−1) ×
n−1∑
a=1

n∑
b=a+1

m(Pa, Pb), (3)

and by similarly comparing to a fixed parent we have

(Claim 2.2):

nλ∑
i=1

m(Hi, Pa) =
l∑

r=1

n∑
b=1

nλ−1 × I{Pa[r] �= Pb[r]}

= nλ−1 ×
n∑

b=1

m(Pa, Pb). (4)

Claim 2.3 follows immediately from Claim 2.2.

The right-hand sides of the claims involve the
parents but not the hybrids. Thus, surprisingly,
the total number of mutations differentiating hybrids
from each other and from the parents are indepen-
dent of breakpoint locations and determined solely
by the choice of parents. However, the distribution
of the diversity within the library does depend on
the breakpoints.

2.2. Metrics for Breakpoint Selection

Intuitively (Fig. 1, right), hybrids sample a sequence
space defined by the parents and the breakpoint lo-
cations. A priori, we don’t know what parts of the
space are most promising, and thus we seek to gener-
ate novel proteins by sampling the space as uniformly
as possible, rather than clustering hybrids near each
other or near the parents.

More formally, consider one particular hybrid
Hi. We want to make other hybrids roughly all as
different from Hi; i.e., for the other Hj , the various
m(Hi, Hj) should be roughly equal. If we do this
for all Hi, then we will also make the Hj different
from each other (and not just from one particular
Hi). That is, we want to make m(Hi, Hj) relatively
uniform, or minimize its deviation:√√√√ 2

nλ(nλ − 1)
×

nλ−1∑
i=1

nλ∑
j=i+1

(m(Hi, Hj) − m)2, (5)

where m is the mean value of m(Hi, Hj).
Expanding the square in Eq. (5) yields an

m(Hi, Hj)2 term, a constant m2 term, and an m ×
m(Hi, Hj) term whose sum is constant by Claim 2.1.
Thus we need only minimize the m(Hi, Hj)2 term,
which we call the “variance.” This gives us the first
of two diversity optimization targets.

Problem 2.1. (Hybrid-Hybrid Diversity Opti-
mization) Given n parent sequences P of l residues
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and a positive integer λ, choose a set X of λ break-
points (with xλ = l) to minimize the hybrid-hybrid
“variance” vHH(X) of the resulting library, where

vHH(X) =
nλ−1∑
i=1

nλ∑
j=i+1

m(Hi, Hj)2 (6)

for Hi, Hj ∈ H(P, X).

In addition to making hybrids different from
each other, we also may want to focus on making
them different from the parents. Following a similar
intuition and argument as above, we obtain a second
diversity optimization target:

Problem 2.2. (Hybrid-Parent Diversity Opti-
mization) Given n parent sequences P of l residues
and a positive integer λ, choose a set X of λ break-
points (where xλ = l) to minimize the hybrid-parent
“variance” vHP (X) of the resulting library, where

vHP (X) =
nλ∑
i=1

n∑
a=1

m(Hi, Pa)2 (7)

for Hi ∈ H(P, X), Pa ∈ P.

Intuitively (Fig. 1, right), both H-H and H-P
diversity optimization will spread hybrids out in se-
quence space. In fact, we can show that for any set
X of λ breakpoints,

nλ−2 <
vHH(X)
vHP (X)

≤ nλ−1. (8)

Due to lack of space, we omit the proof, which is an
algebraic manipulation of the terms. This relation-
ships means that the two criteria should be highly
correlated, as our results below confirm.

2.3. Dynamic Programming for Breakpoint

Selection

In order to select an optimal set of breakpoints,
we select breakpoints from left to right (N- to C-
terminal) in the sequences. We slightly abuse our
previous notation, truncating the parents at the
last breakpoint selected (consistent with our pre-
vious use of the end of the sequence as the final
breakpoint). As Fig. 2 illustrates, a hybrid library
with breakpoints X = {x1, . . . , xk−1 = r′, xk = r}
extends a hybrid library with breakpoints X ′ =

{x1, . . . , xk−1 = r′} by concatenating each of the hy-
brids with each parent fragment Pa[r′ + 1, r]. Opti-
mal substructure holds, since the best choice for xk

depends only on the best choice for xk−1.

H (P,X ’) { +

H (P,X ’) { +

H (P,X ’) { +

} H (P,X)

1

2

9

1

2
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1

P
a
[r ’+1,r]

=2

2

2

1

1

9

9

9

10

11

18

19

20

27

H’
i

H
i+9(a-1)

1 r ’ r ‘+1 r

Fig. 2. Library substructure: library H(P, X) ending at po-

sition r extends library H′(P, X′) ending at position r′ by
adding each parent fragment Pa[r′ + 1, r] to each hybrid H′

i
in H′(P, X′).

H-H Diversity Optimization. We use this insight to
devise a dynamic programming recurrence to com-
pute the optimal value of vHH for the kth break-
point location, based on the optimal values of vHH

for the possible (k− 1)st locations. Define dHH(r, k)
to be the minimum value of vHH(X), for any X =
{x1, . . . , xk = r}. Then dHH(l, λ) is the optimal
value for H-H diversity optimization.

Claim 2.4. We can compute dHH(r, k) recursively
in time O(λn2l2) as{∑n−1

a=1

∑n
b=a+1 m(Pa[1, r], Pb[1, r])2 if k = 1,

minr′<r{n2 × d(r′, k − 1) + eHH(k, r, r′)} if k > 1,

where eHH is defined in Eq.(10).

Proof. As discussed above, the hybrid library
H(P, X) is extended from H(P, X ′), where X ′ is
missing the final breakpoint in X. Let us use Hi

for the members of H(P, X) and H ′
i for those of

H(P, X ′), and “+” to denote sequence concatena-
tion. Following the structure in Fig. 2, we can sep-
arate vHH into terms H(P, X ′) + Pa[r′ + 1, r] from
hybrids in a single “sub-library” sharing the same
added fragments, and terms H(P, X ′) + Pa[r′ + 1, r]
and H(P, X ′) + Pb[r′ + 1, r] between separate “sub-
libraries” with distinct added fragments. This gives
Eq. (11).
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Expanding the second term on the right-hand
side in Eq. (11) gives Eq. (12).

By Claim 2.1 for parents with k − 1 breakpoints
(and thus truncated at r′), we have Eq. (13).

We can substitute twice the right-hand side of
Eq. (13) into the third term in Eq. (12) (with “twice”
to account for summing over all pairs vs. all dis-
tinct pairs), noting that the sums over the parents
a and b in Eqs. (12) and (13) are independent. We
can then substitute the resulting formula back into
Eq. (11). Simplification yields Eq. (14), where most
terms are collected into eHH , except for the sums

of m(H ′
i, H

′
j)

2, including n from the first term in
Eq. (11) and twice

(
n
2

)
from the first term in Eq. (12)

(with “twice” again due to all vs. all distinct). Be-
cause Eq. (14) only depends on r′ and not the pre-
vious breakpoints,

d(r, k) = min
r′<r

{n2 × d(r′, k − 1) + eHH(k, r, r′)}. (9)

Computing this recurrence using dynamic program-
ming requires a table of size λ×l; filling in each entry
requires time O(n2) to compute eHH and must look
back at O(l) previous entries to compute the mini-
mum, for a total time of O(λn2l2).

eHH(k, r, r′) = 4n2(k−2) ×
n−1∑
a=1

n∑
b=a+1

m(Pa[1, r′], Pb[1, r′]) ×
n−1∑
a=1

n∑
b=a+1

m(Pa[r′ + 1, r], Pb[r′ + 1, r])

+n2(k−1) ×
n−1∑
a=1

n∑
b=a+1

m(Pa[r′ + 1, r], Pb[r′ + 1, r])2. (10)

nk−1∑
i=1

nk∑
j=i+1

m(Hi, Hj)2 =
n∑

a=1

nk−1−1∑
i=1

nk−1∑
j=i+1

m(H ′
i + Pa[r′ + 1, r], H ′

j + Pa[r′ + 1, r])2

+
n−1∑
a=1

n∑
b=a+1


nk−1∑

i=1

nk−1∑
j=1

m(H ′
i + Pa[r′ + 1, r], H ′

j + Pb[r′ + 1, r])2


. (11)

n−1∑
a=1

n∑
b=a+1

( nk−1∑
i=1

nk−1∑
j=1

m(H ′
i + Pa[r′ + 1, r], H ′

j + Pb[r′ + 1, r])2
)

=

n−1∑
a=1

n∑
b=a+1


nk−1∑

i=1

nk−1∑
j=1

m
(
H ′

i, H
′
j

)2

+
n−1∑
a=1

n∑
b=a+1


nk−1∑

i=1

nk−1∑
j=1

m (Pa[r′ + 1, r], Pb[r′ + 1, r])2



+
n−1∑
a=1

n∑
b=a+1


nk−1∑

i=1

nk−1∑
j=1

2 m
(
H ′

i, H
′
j

)× m (Pa[r′ + 1, r], Pb[r′ + 1, r])


. (12)

nk−1−1∑
i=1

nk−1∑
j=i+1

m(H ′
i, H

′
j) = nn2(k−2) ×

n−1∑
a=1

n∑
b=a+1

m(Pa[1, r′], Pb[1, r′]). (13)

nk−1∑
i=1

nk∑
j=i+1

m(Hi, Hj)2 = n2 ×
nk−1−1∑

i=1

nk−1∑
j=i+1

m(H ′
i, H

′
j)

2 + eHH(k, r, r′). (14)
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H-P Diversity Optimization. A similar dynamic
programming algorithm to the H-H one above al-
lows us to optimize H-P diversity. Let dHP (r, k)
be the minimum value of vHP (X) for any X =
{x1, . . . , xk = r}, so that dHP (l, λ) is the optimal
value for H-P diversity optimization.

Claim 2.5. We can compute dHP (r, k) recursively
in time O(λn2l2) as{∑n

a=1

∑n
b=1 m(Pa[1, r], Pb[1, r])2 if k = 1,

minr′<r{n × dHP (r′, k − 1) + eHP (k, r, r′)} if k > 1,

where eHP is defined in Eq. 16.

Proof. The proof is similar to that for H-H diversity.
By partitioning the library, we have Eq. (17).

By Claim 2.2 for parents with k − 1 breakpoints
truncated at position r′, we have Eq. (18).

Substituting the right-hand side of Eq. (18) into
the third term in Eq. (17), and simplifying, we get
Eq. (19). Here eHP (k, r, r′) also depends only on r′

and not the preceding breakpoints, so we have

d(r, k) = min
r′<r

{n× d(r′, k − 1) + eHP (k, r, r′)}. (15)

The table size and time to fill in each entry are the
same as with H-H diversity.

eHP (k, r, r′) = 2nk−2 ×
n∑

a=1

(
n∑

b=1

m(Pa[1, r′], Pb[1, r′]) ×
n∑

b=1

m(Pa[r′ + 1, r], Pb[r′ + 1, r])

)

+nk−1 ×
n∑

a=1

n∑
b=1

m(Pa[r′ + 1, r], Pb[r′ + 1, r])2. (16)

n∑
a=1

nk∑
i=1

m(Hi, Pa[1, r])2 =
n∑

a=1

n∑
b=1

nk−1∑
i=1

m(H ′
i + Pb[r′ + 1, r], Pa[1, r′] + Pa[r′ + 1, r])2

=
n∑

a=1

n∑
b=1

nk−1∑
i=1

m(H ′
i, Pa[1, r′])2 +

n∑
a=1

n∑
b=1

nk−1∑
i=1

m(Pb[r′ + 1, r], Pa[r′ + 1, r])2

+
n∑

a=1

n∑
b=1

nk−1∑
i=1

2 m(H ′
i, Pa[1, r′]) × m(Pb[r′ + 1, r], Pa[r′ + 1, r]) (17)

nk−1∑
i=1

m(H ′
i, Pa[1, r′]) = nk−2 ×

n∑
b=1

m(Pa[1, r′], Pb[1, r′]). (18)

n∑
a=1

nk∑
i=1

m(Hi, Pa[1, r])2 = n ×
n∑

a=1

nk−1∑
i=1

m(H ′
i, Pa[1, r′])2 + eHP (k, r, r′). (19)

3. RESULTS AND DISCUSSION

The orthologous proteins of the purE family (COG
41 and pfam 731) form a valuable target for engi-
neering a diverse hybrid library. The small (gener-
ally about 120 residue) purE sequences, which form
either a single protein or a single domain in a fu-
sion protein, catalyze steps in the de novo synthe-
sis of purines. While clear orthologs, purE pro-
teins carry out substantially different enzymatic ac-
tivities in different organisms: in eubacteria, fungi
and plants (as well as probably most archaebacteria),
the purE product functions as a mutase in the sec-

ond step of a two-step reaction, while in metazoans
and methanogenic archaebacteria, the purE product
functions as a carboxylase in a single-step reaction
that yields the same product20, 21. A genetic system
allows selection in vivo for both the catalytic mech-
anism and different levels of enzymatic activity.

In order to uncover explanations for the strik-
ing divergence of function (mutase vs. carboxylase
activity) within homologous sequences, we sought to
evenly partition the sequence space, bridging the two
“islands.” To establish a set of purE parents, we
performed standard sequence search and alignment
techniques, and eliminated columns not mapped to
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the structure of E. coli purE (PDB id: 1qcz) and
eliminated sequences with more than 20% gaps. This
yielded a diverse set of 367 sequences of 162 residues
each, including 28 of the rarer class of metazoans and
methanogens with inferred carboxylase activity. The
average pairwise sequence identity (under the classes
of Sec. 2.1) is 65.8%.

We first chose three diverse parent sequences
from the purE family: P1 from the eubacterium Es-
cherichia coli, P2 from the vertebrate chicken (Gal-
lus gallus) and P3 from the methanogenic archae-
bacterium Methanothermobacter thermautotrophi-
cus. The mutation levels among these three parent
sequences are m(P1, P2) = 94, m(P1, P3) = 65 and
m(P2, P3) = 85. We applied our algorithms to choose
a set of 4, 5, 6 and 7 internal breakpoints (Fig. 3).
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Fig. 3. Breakpoint locations for three purE proteins, under

(top) H-H and (bottom) H-P diversity optimization. The se-

quence is labeled with residue indices, with α-helices shown
with light boxes and β-sheets with dark ones, according to

the crystal structure of E. coli purE (PDB id: 1qcz). Num-
bers above the dashed lines indicate the positions of break-

points. Numbers within the fragments give the sum of the

intra-fragment mutation levels between all pairs of parents.

For 4, 5, and 6 internal breakpoints, both H-
H and H-P optimization yield the same breakpoint
locations. For 7 internal breakpoints, the locations
only differ by a few residues for the last two break-

points. As the mutation levels show, in seeking to
make hybrids distributed uniformly in the sequence
space, breakpoint selection optimization equalizes
the contributions to diversity from the fragments.

To show that it is not likely to generate equiv-
alent diversity by chance, we chose 10000 random
sets of four internal breakpoints. The distributions
of vHH and vHP for these random sets are plotted in
Fig. 4.
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Fig. 4. Distribution of diversity values for random breakpoint

selection compared with dynamic programming optimization.
The x-axis indicates different diversity values. The y-axis in-

dicates the frequencies of the diversity value among 10000
random sets of four internal breakpoints. Dark diamonds indi-

cate diversity values for breakpoints selected by our algorithm:

9.63× 107 for H-H, 2.39× 106 for H-P, and 8565 for sum-min
(using the H-P breakpoints).

The breakpoints selected by our algorithms are
better than any random selection. For compar-
ison, we also calculated the “sum-min” diversity
metric

∑nλ

i=1 mina m(Hi, Pa) used by Arnold and
colleagues13. Currently no efficient algorithm has
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been found to directly maximize sum-min diversity,
but our H-H and H-P optimization algorithms also
apparently do a good job of optimizing it; no random
breakpoint selection was found to do better.

As we proved in Claims 2.1–2.3, the choice of
parent sequences determines the total number of mu-
tations. We also expect it to affect library diversity,
since the choice of parents defines the available se-
quence space (we can only recombine the parents).
To test the effect of parent diversity on optimization
of library diversity, we randomly chose 1000 three-
member purE parent sets. For each set, we selected
optimized breakpoints with our algorithms, and cal-
culated the three diversity values as above (using the
H-P breakpoints for calculation of sum-min diver-
sity). For each parent set, we also calculated the
means of the three diversity metrics over 1000 ran-
dom sets of four internal breakpoints. Fig. 5 plots
the additive difference between values under our op-
timized breakpoint sets vs. mean values for random
breakpoint sets. As the total mutation level of the
parents increases, so does the improvement of our
breakpoints over random. Presumably, more parent
diversity provides more opportunity to explicitly op-
timize library diversity.

As shown by the ratio analysis of vHH and
vHP in Eq. (8) and confirmed empirically in Fig. 3,
hybrid-parent diversity optimization is highly corre-
lated with hybrid-hybrid diversity optimization. It
also appears to be highly correlated with the sum-
min diversity of Arnold and co-workers. Fig. 6(a,c)
shows the relationship among these values, using the
same random breakpoint selections as in Fig. 4. Op-
timization for hybrid-parent diversity also achieves
good diversity according to the other two metrics.
Fig. 6(b,d) shows that the correlation remains ex-
tremely high (R near 1 and −1) over the ran-
dom parent sets and random breakpoint sets used
in Fig. 5. These correlations allow us to do just
one polynomial-time diversity optimization, achiev-
ing three goals simultaneously.
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Fig. 5. Effect of parent selection on diversity optimization.

The x-axis indicates the total number of mutations between
pairs of purE parents in 1000 randomly chosen three-parent

plans. The y-axis indicates, for each parent choice, the im-

provement in diversity from 1000 random plans to the opti-
mized plan (larger y values indicate more improvement). For

H-H and H-P, improvement is measured as the mean random

plan value minus the value of our plan; for sum-min, improve-
ment is the value of our plan minus the mean random plan

value.
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Fig. 6. Relationship among three diversity metrics. (a,c):
Correlation over random four-breakpoint sets with the fixed

three-parent set of Fig. 4. The x-axis indicates H-P variance

(vHP ), the y-axis indicates H-H variance (vHH) or sum-min
diversity, respectively. (b,d): Histogram of correlation coef-

ficients of diversity metrics for random sets of four internal

breakpoints with the same random parent sets as Fig. 5. Note
that the histograms are focused on a small region very near 1

and −1, respectively.

4. CONCLUSION

While diversity in hybrid libraries is the key to find-
ing novel function, library design has instead previ-
ously focused on reducing the fraction of non-viable
hybrids. Diversity has been a side-effect, rather than
an explicit optimization target. In this initial ap-
proach to optimizing diversity, we showed here that
the total number of mutations in a library is fixed
by the choice of parents, but that their distribution
among hybrids can be optimized so that the hybrids
broadly sample sequence space. Our metrics and al-
gorithms enable efficient selection of breakpoint lo-
cations to optimize diversity. In practical applica-
tions, a suitable combination of diversity and viabil-
ity will be desired. Since the dynamic programming
approach here has a similar structure to algorithms
for minimizing disruption13, 14, it might be possible
to optimize for a desired trade-off between these two
competing goals. We likewise anticipate integrating
knowledge of important residues (e.g., targeting an
active site), via appropriate weights. Finally, since
the parents define the searchable sequence space and
the total possible diversity, the importance of parent
selection is reemphasized.
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