
Abstract
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporat-
ing predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein
structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein frag-
ments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and
identify high-quality alignment segments.

We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on
support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information
encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior
results compared to the profile-to-profile scoring schemes.
Keywords: structure prediction, comparative modeling, machine learning, classification, regression

1. INTRODUCTION

Over the years, several computational methodologies
have been developed for determining the 3D structure
of a protein (target) from its linear chain of amino acid
residues 27, 12, 32, 23, 31, 28. Among them, approaches
based on comparative modeling 27, 28 are the most widely
used and have been shown to produce some of the best
predictions when the target has some degree of homology
with proteins of known 3D structure (templates) 3, 42.

The key idea behind comparative modeling ap-
proaches is to align the sequence of the target to the se-
quence of one or more template proteins and then con-
struct the target’s structure from the structure of the tem-
plate(s) using the alignment(s) as a reference. Thus,
the construction of high-quality target-template align-
ments plays a critical role in the overall effectiveness
of the method, as it is used to both select the suit-
able template(s) and to build good reference alignments.
The overall performance of comparative modeling ap-
proaches will be significantly improved, if the target-
template alignment constructed by considering sequence
and sequence-derived information is as close as possi-
ble to the structure-based alignment between these two
proteins. The development of increasingly more sensi-

tive target-template alignment algorithms 1, 22, 25, that
incorporate profiles 7, 2, profile-to-profile scoring func-
tions 5, 17, 39, 8, and predicted secondary structure infor-
mation 13, 24 have contributed to the continuous success
of comparative modeling 37, 38.

The dynamic-programming-based algorithms 19, 33

used in target-template alignment are also used by many
methods to align a pair of protein structures. However,
the key difference between these two problem settings is
that, while the target-template alignment methods score
a pair of aligned residues using sequence-derived infor-
mation, the structure alignment methods use information
derived from the structure of the protein. For exam-
ple, structure alignment methods like CE 30 and MUS-
TANG 15 score a pair of residues by considering how
well fixed-length fragments (i.e., short contiguous back-
bone segments) centered around each residue align with
each other. This score is usually computed as the root
mean squared deviation (RMSD) of the optimal superim-
position of the two fragments.

In this paper, motivated by the alignment require-
ments of comparative modeling approaches and the op-
erational characteristics of protein structure alignment
algorithms, we focus on the problem of estimating the
RMSD value of a pair of protein fragments by consid-
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ering only sequence-derived information. Besides its di-
rect application to target-template alignment, accurate es-
timation of these fragment-level RMSD values can also
be used to solve a number of other problems related to
protein structure prediction such as identifying the best
template by assessing the quality of target-template align-
ments and identifying high-quality segments of an align-
ment.

We present algorithms to solve the fragment-level
RMSD prediction problem using a supervised learning
framework based on support vector regression and clas-
sification that incorporates sequence-derived information
in the form of position-specific profiles and predicted sec-
ondary structure 14. This information is effectively en-
coded in fixed-length feature vectors. We develop and
test novel second-order pairwise exponential kernel func-
tions designed to capture the conserved signals of a pair
of local windows centered at each of the residues and use
a fusion-kernel-based approach to incorporate the profile-
and secondary structure-based information.

An extensive experimental evaluation of the algo-
rithms and their parameter space is performed using a
dataset of residue-pairs derived from optimal sequence-
based local alignments of known protein structures. Our
experimental results show that there is a high corre-
lation (0.681 – 0.768) between the estimated and ac-
tual fragment-level RMSD scores. Moreover, the per-
formance of our algorithms is considerably better than
that obtained by state-of-the-art profile-to-profile scoring
schemes when used to solve the fragment-level RMSD
prediction problems.

The rest of the paper is organized as follows. Sec-
tion 2, provides key definitions and notations used
throughout the paper. Section 3 formally defines the
fragment-level RMSD prediction and classification prob-
lems and describes their applications. Section 4 describes
the prediction methods that we developed. Section 5 de-
scribes the datasets and the various computational tools
used in this paper. Section 6 presents a comprehensive
experimental evaluation of the methods developed. Sec-
tion 7 summarizes some of the related research in this
area. Finally, Section 8 summarizes the work and pro-
vides some concluding remarks.

2. DEFINITIONS AND NOTATIONS

Throughout the paper we will use X and Y to denote pro-
teins, xi to denote the ith residue of X , and π(xi, yj) to
denote the residue-pair formed by residues xi and yj .

Given a protein X of length n and a user-specified

parameter w, we define wmer(xi) to be the (2w + 1)-
length contiguous subsequence of X centered at position
i (w < i ≤ n − w). Similarly, given a user-specified
parameter v, we define vfrag(xi) to be the (2v + 1)-
length contiguous substructure of X centered at position
i (v < i ≤ n − v). These substructures are commonly
referred to as fragments 30, 15. Without loss of general-
ity, we represent the structure of a protein using the Cα

atoms of its backbone. The wmers and vfrags are
fixed-length windows that are used to capture informa-
tion about the sequence and structure around a particular
sequence position, respectively.

Given a residue-pair π(xi, yj), we define
fRMSD(xi, yj) to be the structural similarity score be-
tween vfrag(xi) and vfrag(yj). This score is com-
puted as the root mean square deviation between the
pair of substructures after optimal superimposition. A
residue-pair π(xi, yj) will be called reliable if its fRMSD
is bellow a certain value (i.e., there is a good structural
superimposition of the corresponding substructures).

Finally, we will use the notation 〈a, b〉 to denote the
dot-product operation between vectors a and b.

3. PROBLEM STATEMENT
The work in this paper is focused on solving the follow-
ing two problems related to predicting the local structural
similarity of residue-pairs.

Definition 3.1 (fRMSD Estimation Problem) Given a
residue-pair π(xi, yj), estimate the fRMSD(xi, yj) score
by considering information derived from the amino acid
sequence of X and Y .

Definition 3.2 (Reliability Prediction Problem) Given
a residue-pair π(xi, yj), determine whether it is reliable
or not by considering only information derived from the
amino acid sequence of X and Y .

It is easy to see that the reliability prediction prob-
lem is a special case to the fRMSD estimation problem.
As such, it may be easier to develop effective solution
methods for it and this is why we consider it as a differ-
ent problem in this paper.

The effective solution to these two problems has four
major applications to protein structure prediction. First,
given an existing alignment between a (target) protein
and a template, a prediction of the fRMSD scores of the
aligned residue-pairs (or their reliability) can be used to
assess the quality of the alignment and potentially select
among different alignments and/or different templates.
Second, fRMSD scores (or reliability assessments) can
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be used to analyze different protein-template alignments
in order to identify high-quality moderate-length frag-
ments. These fragments can then be used by fragment-
assembly-based protein structure prediction methods like
TASSER 41 and ROSETTA 26 to construct the structure
of a protein. Third, since residue-pairs with low fRMSD
scores are good candidates for alignment, the predicted
fRMSD scores can be used to construct a position-to-
position scoring matrix between all pairs of residues in
a protein and a template. This scoring matrix can then be
used by an alignment algorithm to compute a high-quality
alignment for structure prediction via comparative mod-
eling. Essentially, this alignment scheme uses predicted
fRMSD scores in an attempt to mimic the approach used
by various structural alignment methods 15, 30. Fourth,
the fRMSD scores (or reliability assessments) can be used
as input to other prediction tasks such as remote homol-
ogy prediction and/or fold recognition.

In this paper we study and evaluate the feasibility of
solving the fRMSD estimation and reliability prediction
problems for residue-pairs that are derived from optimal
local sequence alignments. As a result, our evaluation fo-
cuses on the first two applications discussed in the previ-
ous paragraph (assessment of target-template alignment
and identification of high-confidence alignment regions).
However, the methods developed can also be used to ad-
dress the other two applications as well.

4. METHODS
We approach the problems of distinguishing reli-
able/unreliable residue-pairs and estimating their fRMSD
scores following a supervised machine learning frame-
work and use support vector machines (SVM) 10, 36 to
solve them.

Given a set of positive residue-pairs A+ (i.e., reli-
able) and a set of negative residue-pairs A− (i.e., unreli-
able), the task of support vector classification is to learn
a function f(π) of the form

f(π) =
X

πi∈A+

λ+
i K(π, πi) −

X
πi∈A−

λ−
i K(π, πi), (1)

where λ+
i and λ−

i are non-negative weights that are com-
puted during training by maximizing a quadratic objec-
tive function, and K(., .) is the kernel function designed
to capture the similarity between pairs of residue-pairs.
Having learned the function f(π), a new residue-pair π is
predicted to be positive or negative depending on whether
f(π) is positive or negative. The value of f(π) also sig-
nifies the tendency of π to be a member of the positive
or negative class and can be used to obtain a meaningful

ranking of a set of the residue-pairs.
We use the error insensitive support vector regres-

sion ε-SVR 36, 34 for learning a function f(π) to predict
the fRMSD(π) scores. Given a set of training instances
(πi, fRMSD(πi)), the ε-SVR aims to learn a function of
the form

f(π) =
X

πi∈∆+

α+
i K(π, πi) −

X
πi∈∆−

α−
i K(π, πi), (2)

where ∆+ contains the residue-pairs for which
fRMSD(πi) − f(πi) > ε, ∆− contains the residue pairs
for which fRMSD(πi)− f(πi) < −ε, and α+

i and α−
i are

non-negative weights that are computed during training
by maximizing a quadratic objective function. The objec-
tive of the maximization is to determine the flattest f(π)
in the feature space and minimize the estimation errors
for instances in ∆+ ∪ ∆−. Hence, instances that have
an estimation error satisfying |f(πi) − fRMSD(πi)| < ε

are neglected. The parameter ε controls the width of the
regression deviation or tube.

In the current work we focused on several key con-
siderations while setting up the classification and regres-
sion problems. In particular we explored different types
of sequence information associated with the residue-
pairs, developed efficient ways to encode this information
to form fixed length feature vectors, and designed sen-
sitive kernel functions to capture the similarity between
pairs of residues in the feature spaces.

4.1. Sequence-based Information

For a given protein X , we encode the sequence informa-
tion using profiles and predicted secondary structure.

4.1.1. Profile Information The profile of a protein
X is derived by computing a multiple sequence align-
ment of X with a set of sequences {Y1, . . . , Ym} that
have a statistically significant sequence similarity with X

(i.e., they are sequence homologs).
The profile of a sequence X of length n is repre-

sented by two n × 20 matrices, namely the position-
specific scoring matrix PX and the position-specific fre-
quency matrix FX . Matrix P can be generated directly
by running PSI-BLAST 2, whereas matrix F consists of
the frequencies used by PSI-BLAST to derive P . These
frequencies, referred to as the target frequencies 18 con-
sists of both the sequence-weighted observed frequencies
(also referred to as effective frequencies 18) and the BLO-
SUM62 9 derived-pseudocounts 2. Further, each row of
the matrix F is normalized to one.
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4.1.2. Predicted Secondary Structure Informa-
tion For a sequence X of length n we predict the
secondary structure and generate a position-specific sec-
ondary structure matrix SX of length n×3. The (i, j) en-
try of this matrix represents the strength of the amino acid
residue at position i to be in state j, where j ∈ (0, 1, 2)
corresponds to the three secondary structure elements: al-
pha helices (H), beta sheets (E), and coil regions (C).

4.2. Coding Schemes
The input to our prediction algorithms are a set of wmer-
pairs associated with each residue-pair π(xi, yj). The in-
put feature space is derived using various combinations of
the elements in the P and S matrices that are associated
with the subsequences wmer(xi) and wmer(yj).

For the rest of this paper, we will use PX(i−w . . . i+
w) to denote the (2w+1) rows of matrix PX correspond-
ing to wmer(xi). A similar notation will be used for ma-
trix S.

4.2.1. Concatenation Coding Scheme For a
given residue-pair π(xi, yj), the feature-vector of the
concatenation coding scheme is obtained by first lineariz-
ing the matrices PX(i−w . . . i+w) and PY (j−w . . . j+
w) and then concatenating the resulting vectors. This
leads to feature-vectors of length 2 × (2w + 1) × 20. A
similar representation is derived for matrix S leading to
feature-vectors of length 2 × (2w + 1) × 3.

The concatenation coding scheme is order dependent
as the representations for π(xi, yj) and π(yj , xi) are not
equivalent. We call the feature representations obtained
by the two concatenation orders as forward (frwd) and re-
verse (rvsd) representations. Note that we use the terms
forward and reverse only for illustrative purposes as there
is no way to assign a fixed ordering to the residues of a
residue-pair, as this is the source of the problem in the
first place.

We explored two different ways of addressing this
order dependency. In the first approach, we trained up
to ten models with random use of the forward and back-
ward representation for the various instances. The final
classification and regression results were determined by
averaging the results produced by each of the ten dif-
ferent models. In the second approach, we built only
one model based on the forward representation of the
residue-pairs. However, during model application, we
classified/regressed both the forward and reverse repre-
sentations of a residue-pair and used the average of the
SVM/ε-SVR outputs as the final classification/regression

result. We denote this averaging method by avg.

4.2.2. Pairwise Coding Scheme For a given
residue-pair π(xi, yj), the pairwise coding scheme gen-
erates a feature-vector by linearizing the matrix formed
by an element-wise product between PX(i−w . . . i+w)
and PY (j − w . . . j + w). The length of this vector
is (2w + 1) × 20 and is order independent. If we de-
note the element-wise product operation by “⊗”, then the
element-wise product matrix is given by

PX(−w + i . . . w + i) ⊗ PY (−w + j . . . w + j). (3)

A similar approach is used to obtain the pairwise coding
scheme for matrix S, leading to feature-vectors of length
(2w + 1) × 3.

4.3. Kernel Functions

The general structure of the kernel function that we use
for capturing the similarity between a pair of residue-
pairs π(xi, yj) and π′(x′

i′ , y
′
j′) is given by

Kcs(π, π′) = exp

 
1.0 +

Kcs
1 (π, π′)p

Kcs
1 (π, π)Kcs

1 (π′, π′)

!
, (4)

where Kcs
1 (π, π′) is given by

Kcs
1 (π, π′) = Kcs

2 (π, π′) + (Kcs
2 (π, π′))2, (5)

and Kcs
2 (π, π′) is a kernel function that depends on the

choice of particular coding scheme (cs). For the concate-
nation coding scheme using matrix P (i.e., cs = Pconc),
Kcs

2 (π, π′) is given by

KPconc

2 (π, π′) =
k=+wP
k=−w

〈PX(i + k),PX′ (i′ + k)〉+

k=+wP
k=−w

〈PY (j + k),PY ′ (j′ + k)〉.
(6)

For the pairwise coding scheme using matrix P (i.e.,
cs = Ppair), Kcs

2 (π, π′) is given as

KPpair

2 (π, π′) =
k=+wP
k=−w

〈PX(i + k) ⊗ PY (j + k),

PX′ (i′ + k) ⊗ PY ′ (j′ + k)〉.
(7)

Similar kernel functions can be derived using matrix
S for both the pairwise and the concatenation coding
schemes. We will denote these coding schemes as Spair

and Sconc, respectively. Since the overall structure of the
kernel that we used (Equations 4 and 5) is that of a nor-
malized second-order exponential function, we will refer
to it as nsoe.

The second-order component of Equation 5 allows
the nsoe kernel to capture pairwise dependencies among
the residues used at various positions within each wmer,

314



and we found that this leads to better results over the lin-
ear function. This observation is also supported by earlier
research on secondary-structure prediction as well 14. In
addition, nsoe’s exponential function allows it to capture
non-linear relationships within the data just like the ker-
nels based on the Gaussian and radial basis function 36.

4.3.1. Fusion Kernels We also developed a set of
kernel functions that incorporate both profile and sec-
ondary structure information using an approach moti-
vated by fusion kernels 16, 34. Specifically, we con-
structed a new kernel function as the unweighted sum
of the nsoe kernel function for the profile and secondary
structure information. For example, the concatenation-
based fusion kernel function is given by

K(P +S)conc
(π, π′) = KPconc

(π, π′) + KSconc
(π, π′). (8)

A similar kernel function can be defined for the pairwise
coding scheme as well. We will denoted the pairwise-
based fusion kernel by K(P +S)pair

(π, π′). Note that
since these fusion kernels are linear combinations of valid
kernels, they are also admissible kernels.

5. MATERIALS
5.1. Datasets

We evaluated the classification and regression perfor-
mance of the various kernels on a set of protein pairs
used in a previous study for learning a profile-to-profile
scoring function 21. These pairs of proteins were derived
from the SCOP 1.57 database, classes a-e, with no two
protein domains sharing greater than 75% sequence iden-
tity. The dataset is comprised of 473 protein pairs be-
longing to the same family, 433 pairs belonging to the
same superfamily but not the same family, and 422 pairs
belonging to the same fold but not the same superfam-
ily. For each protein pair, we used the alignment pro-
duced by the Smith-Waterman 33 algorithm to generate
the aligned residue-pairs that were used to train and test
the various algorithms. These alignments were computed
using the sensitive PICASSO 8, 18 profile-to-profile scor-
ing function. For each aligned residue-pair π(xi, yj), we
computed its fRMSD(xi, yj) score by considering frag-
ments of length seven (i.e., we optimally superimposed
vfrags with v = 3).

For the fRMSD estimation problem, we used the
entire set of aligned residue-pairs and their correspond-
ing fRMSD scores for training and testing the ε-SVR-
based regression algorithms. For the reliability predic-
tion problem, we used the aligned residue-pairs to con-

struct two different classification datasets, that will be re-
ferred to as easy and hard. The positive class (i.e., reli-
able residue-pairs) for both datasets contains all residue-
pairs whose fRMSD score is less than 0.75Å. How-
ever, the datasets differ on how the negative class (i.e.,
unreliable residue-pairs) is defined. For the hard prob-
lem, the negative class consists of all residue-pairs that
are not part of the positive class (i.e., have an fRMSD
score that is greater than or equal to 0.75Å), whereas
for the easy problem, the negative class consists only
of those residue-pairs whose fRMSD score is greater
than 2.5Å. Thus, the easy dataset contains classes
that are well-separated in terms of the fRMSD score
of their residue-pairs and as such it represents a some-
what easier learning problem. Both these datasets are
available at the supplementary website for this paper
(http://bioinfo.cs.umn.edu/supplements/fRMSDPred).

We perform a detailed analysis using different sub-
sets of the datasets to train and test the performance of
the models. Specifically, we train four models using (i)
protein pairs sharing the same SCOP family, (ii) protein
pairs sharing the same superfamily but not the family, (iii)
protein pairs sharing the same fold but not the superfam-
ily, and (iv) protein pairs from all the three levels. These
four models are denoted by fam, suf, fold, and all. We
also report performance numbers by splitting the test set
in the aforementioned four levels. These subsets allow us
to evaluate the performance of the schemes for different
levels of sequence similarity.

5.2. Profile Generation

To generate the profile matrices P and F , we ran PSI-
BLAST, using the following parameters (blastpgp
-j 5 -e 0.01 -h 0.01). The PSI-BLAST was
performed against NCBI’s nr database that was down-
loaded in November of 2004 and contained 2,171,938 se-
quences.

5.3. Secondary Structure Prediction

We use the state-of-the-art secondary structure prediction
server called YASSPP 14 (default parameters) to generate
the S matrix. The values of the S matrix are the output of
the three one-versus-rest SVM classifiers trained for each
of the secondary structure elements.

5.4. Evaluation Methodology

We use a five-fold cross-validation framework to evalu-
ate the performance of the various classifiers and regres-
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sion models. To prevent unwanted biases, we restrict
all residue-pairs involving a particular protein to belong
solely in the training or the testing dataset.

We measure the quality of the methods using the
standard receiver operating characteristic (ROC) scores
and the ROC5 scores averaged across every protein pair.
The ROC score is the normalized area under the curve
that plots the true positives against the false positives for
different thresholds for classification 7. The ROCn score
is the area under the ROC curve up to the first n false
positives. We compute the ROC and ROC5 numbers for
every protein pair and report the average results across all
the pairs and cross-validation steps. We selected to report
ROC5 scores because each individual ROC-based evalu-
ation is performed on a per protein-pair basis, which, on
average, involves one to two hundred residue-pairs.

The regression performance is assessed by comput-
ing the standard Pearson correlation coefficient (CC) be-
tween the predicted and observed fRMSD values for every
protein pair. The results reported are averaged across the
different pairs and cross-validation steps.

5.5. Profile-to-Profile Scoring schemes

To assess the effectiveness of our supervised learning al-
gorithms we compare their performance against that ob-
tained by using two profile-to-profile scoring schemes to
solve the same problems. Specifically, we use the profile-
to-profile scoring schemes to compute the similarity be-
tween the aligned residue-pairs summed over the length
of their wmers. To assess how well these scores cor-
related with the fRMSD score of each residue-pair we
compute their correlation coefficients. Note that since
residue-pairs with high-similarity score are expected to
have low fRMSD scores, good values for these correla-
tion coefficients will be close to -1. Similarly, for the
reliability prediction problem, we sort the residue-pairs
in decreasing similarity score order and assess the perfor-
mance by computing ROC and ROC5 scores.

The two profile-to-profile scoring schemes that
we used are based on the dot-product and the PI-
CASSO score, both of which are used extensively
and shown to produce good results 18, 39, 17. The
dot-product similarity score is defined both for the
profile- as well as the secondary-structure-based infor-
mation, whereas the PICASSO score is defined only for
the profile-based information. The profile-based dot-
product similarity score between residues xi and yj is
given by 〈PX(i),PY (j)〉. Similarly, the secondary-
structure-based dot-product similarity score is given by

〈SX(i),SY (j)〉. The PICASSO similarity score 8, 18 be-
tween residues xi and yj uses both the P and F matrices
and is given by 〈FX(i)PY (j) + FY (j)PX(i)〉. We will
use Pdotp, Sdotp, and PFpic to denote these three simi-
larity scores, respectively.

5.6. Support Vector Machines

The classification and regression is done using the pub-
licly available support vector machine tool SVMlight 29

that implements an efficient soft margin optimization al-
gorithm.

The performance of SVM and ε-SVR depends on the
parameter that controls the trade-off between the margin
and the misclassification cost (“C” parameter). In ad-
dition, the performance of ε-SVR also depends on the
value of the deviation parameter ε. We performed a
limited number of experiments to determine good val-
ues for these parameters. These experiments showed that
C = 0.1 and ε = 0.1 achieved consistently good perfor-
mance and was the value used for all the reported results.

6. RESULTS

We have performed a comprehensive study evaluating the
classification and regression performance of the various
information sources, coding schemes, and kernel func-
tions (Section 4) and compare it against the performance
achieved by the profile-to-profile scoring schemes (Sec-
tion 5.5).

We performed a number of experiments using differ-
ent length wmers for both the SVM/ε-SVR- and profile-
to-profile-based schemes. These experiments showed
that the supervised learning schemes achieved the best re-
sults when 5 ≤ w ≤ 7, whereas in the case of the profile-
to-profile scoring schemes, the best performing value of
w was dependent on the particular scoring scheme. For
these reasons, for all the SVM/ε-SVR-based schemes we
only report results for w = 6, whereas for the profile-to-
profile schemes we report results for the values of w that
achieved the best performance.
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6.1. Order Dependency in the Concatena-
tion Coding Scheme

Table 1.: Comparing the classification and regression
performance of the various concatenation based ker-
nels due to order dependency.

Reliability Prediction EST
EASY HARD

Scheme ROC5 ROC ROC5 ROC CC
(P+S)conc -fam (frwd) 0.802 0.937 0.666 0.903 0.693
(P+S)conc -fam (rvsd) 0.803 0.937 0.664 0.902 0.693
(P+S)conc -fam (avg) 0.817 0.941 0.673 0.906 0.700
(P+S)conc -suf (frwd) 0.822 0.938 0.653 0.898 0.687
(P+S)conc -suf (rvsd) 0.821 0.938 0.651 0.899 0.688
(P+S)conc -suf (avg) 0.827 0.940 0.659 0.902 0.694
(P+S)conc -fold (frwd) 0.785 0.918 0.618 0.872 0.660
(P+S)conc -fold (rvsd) 0.800 0.922 0.638 0.881 0.663
(P+S)conc -fold (avg) 0.796 0.922 0.637 0.882 0.667
(P+S)conc -all (frwd) 0.839 0.948 0.680 0.909 0.717
(P+S)conc -all (rvsd) 0.853 0.950 0.692 0.913 0.721
(P+S)conc -all (avg) 0.853 0.952 0.693 0.913 0.725

The test set consisted of proteins from the all set, whereas the train-
ing set uses either the all, fam, suf, and fold sets. The frwd and
rvsd notations indicate concatenation orders of the two wmers,
whereas avg denotes the scheme which uses the average output of
both the results. EST denotes the fRMSD estimation results using
regression. The numbers in bold show the best performing schemes
for each of the sub-tables.

Section 4.2.1 described two different schemes for ad-
dressing the order-dependency of the concatenation cod-
ing scheme. Our experiments with these approaches
showed that both achieved comparable results. For this
reason and due to space constraints in this section we
only present results for the second approach (i.e., aver-
aging the SVM/ε-SVR prediction values of the forward
and reverse representations). These results are shown in
Table 1, which shows the classification and regression
performance achieved by the concatenation-based fusion
kernel for the two representations and their average.

These results show that there exists a difference in
the performance achieved by the forward and reverse rep-
resentations. Depending on the protein set used to train
and/or test the model, these differences can be non-trivial.
For example, for models trained on the fold and all pro-
tein sets, the performance achieved by the reverse repre-
sentation is considerably higher than that achieved by the
forward representation. However, these results also show
that by averaging the predictions of these two represen-
tations, we are able to achieve the best results (or close
to). In many cases, the averaging scheme achieves up to
1% improvement over either the forward or reverse repre-

sentations for both the classification as well as regression
problem. For this reason, throughout the rest of this study
we only report the results obtained using the averaging
scheme for the concatenation-based coding schemes.

6.2. RBF versus NSOE Kernel Functions

Table 2.: Comparing the performance of the rbf and
nsoe kernel functions.

Reliability Prediction EST
EASY HARD

Scheme ROC5 ROC ROC5 ROC CC
Pconc-all (rbf) 0.728 0.910 0.572 0.865 0.537
Pconc-all (nsoe) 0.750 0.918 0.598 0.875 0.566
Ppair-all (rbf) 0.708 0.900 0.550 0.854 0.528
Ppair-all (nsoe) 0.723 0.905 0.559 0.856 0.534

The test and training set consisted of proteins from the all set. EST
denotes the fRMSD estimation results using regression. The num-
bers in bold show the best performing schemes for each of the sub-
tables.

Table 2 compares the classification and regression per-
formance achieved by the standard rbf kernel against
that achieved by the normalized second-order exponen-
tial kernel (nsoe) described in Section 4.3. These re-
sults are reported only for the concatenation and pairwise
coding schemes that use profile information. The rbf re-
sults were obtained after normalizing the feature-vectors
to unit length, as it produced substantially better results
over the unnormalized representation.

These results show that the performance achieved by
the nsoe kernel is consistently 3% to 5% better than that
achieved by the rbf kernel for both the classification and
regression problems. The key difference between the two
kernels is that in the nsoe kernel the even-ordered terms
are weighted higher in the expansion of the infinite expo-
nential series than the rbf kernel. As discussed in Sec-
tion 4.3, this allows the nsoe kernel function to better
capture the pairwise dependencies that exists at different
positions of each wmer.

6.3. Input Information and Coding Schemes

Table 3 compares how the features derived from the pro-
files and the predicted secondary structure impact the per-
formance achieved for the reliability prediction problem.
The table presents results for the SVM-based schemes
using the concatenation and pairwise coding schemes as
well as results obtained by the dot-product-based profile-
to-profile scoring scheme (see the discussion in Sec-
tion 5.5 for a discussion on how these scoring schemes
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Table 3.: Classification performance of the individual kernels for both the easy and hard
datasets.

EASY HARD
fam suf fold fam suf fold

Scheme ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC

Pdotp (6) 0.673 0.826 0.496 0.803 0.341 0.717 0.470 0.753 0.315 0.698 0.236 0.646
Sdotp (3) 0.642 0.786 0.680 0.884 0.706 0.901 0.466 0.771 0.503 0.856 0.567 0.885
Pconc-all 0.817 0.919 0.716 0.917 0.712 0.918 0.621 0.867 0.574 0.880 0.590 0.882
Sconc-all 0.790 0.908 0.794 0.939 0.823 0.951 0.615 0.865 0.631 0.913 0.695 0.923
Ppair-all 0.784 0.902 0.699 0.909 0.679 0.905 0.588 0.849 0.509 0.853 0.572 0.868
Spair-all 0.676 0.837 0.690 0.909 0.727 0.922 0.486 0.803 0.548 0.880 0.636 0.895

The test set consisted of proteins from the fam, suf, and fold sets, whereas the training set used the all set. The
numbers in parentheses for the profile-to-profile scoring schemes indicate the value of w for the wmers that were
used. The numbers in bold show the best performing schemes for each of the sub-tables.

were used to solve the reliability prediction problem).
Analyzing these results across the different SCOP-

derived test sets, we can see that protein profiles lead to
better performance for the family-derived set, whereas
secondary structure information does better for the
superfamily- and fold-derived sets. The performance im-
provements achieved by the secondary-structure-based
schemes are usually much greater than the improvements
achieved by the profile-based scheme. Moreover, the
relative performance gap between secondary-structure-
and profile-based schemes increases as we move from
the superfamily- to the fold-derived set. This holds for
both the easy and hard datasets and for both the kernel-
based methods and the profile-to-profile-based scoring
scheme. These results show that profiles are more im-
portant for protein-pairs that are similar (as it is the case
in the family-derived set), whereas secondary-structure
information becomes increasingly more important as the
sequence similarity between the protein-pairs decreases
(as it is the case in the superfamily- and fold-derived sets).

Analyzing the performance achieved by the differ-
ent coding schemes, we can see that concatenation per-
forms uniformly better than pairwise. As measured
by ROC5, the concatenation scheme achieves 4% to
15% better performance than the corresponding pairwise-
based schemes. However, both schemes perform con-
siderably better than the profile-to-profile-based scheme.
These performance advantages range from 11% to 30%
(as measured by ROC5).

6.4. Fusion Kernels

6.4.1. Reliability Prediction Problem Table 4
shows the performance achieved by the fusion kernels
on solving the reliability prediction problem for both the
easy and hard datasets. For comparison purposes, this

table also shows the best results that were obtained by
using the profile-to-profile-based schemes to solve the
reliability prediction problem. Specifically, we present
dot-product-based results that score each wmer as the
sum of its profile and secondary-structure information
((P +S)dotp) and results that score each wmer as the
sum of its PICASSO score and a secondary-structure-
based dot-product score (PFpic + Sdotp).

From these results we can see that the SVM-based
schemes, regardless of their coding schemes, consistently
outperform the profile-to-profile scoring schemes. In par-
ticular, comparing the best results obtained by the con-
catenation scheme against those obtained by the PFpic +
Sdotp scheme (i.e., entries in bold), we see that the former
achieves 18% to 24% higher ROC5 scores for the easy
dataset. Moreover, the performance advantage becomes
greater for the hard dataset and ranges between 31% to
36%.

Comparing the performance achieved by the fusion
kernels with that achieved by the nsoe kernels (Table 3)
we can see that by combing both profile and secondary
structure information we can achieve an ROC5 improve-
ment between 3.5% and 10.8%. These performance im-
provements are consistent across the different test sets
(fam, suf, and fold) and datasets (hard and easy).

Comparing the performance achieved by the models
trained on different protein subsets, we can see that the
best performance is generally achieved by models trained
on protein pairs from all three levels of the SCOP hi-
erarchy (i.e., trained using the all set). However, these
results also show an interesting trend that involves the
set of fold-derived protein-pairs. For this set, the best
(or close to) classification performance is achieved by
models trained on fold-derived protein-pairs. This holds
for both the concatenation and pairwise coding schemes
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Table 4.: Classification performance of the fusion kernels for the easy and hard datasets.
EASY HARD

all fam suf fold all fam suf fold
Scheme ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC

(P +S)dotp(6) 0.523 0.794 0.679 0.831 0.511 0.814 0.359 0.733 0.365 0.716 0.474 0.758 0.328 0.710 0.249 0.663
PFpic + Sdotp(2) 0.719 0.891 0.733 0.865 0.720 0.911 0.701 0.901 0.526 0.850 0.535 0.820 0.498 0.864 0.543 0.878
(P+S)conc -fam 0.817 0.941 0.829 0.929 0.811 0.948 0.808 0.949 0.673 0.906 0.652 0.879 0.662 0.921 0.714 0.927
(P+S)conc -suf 0.827 0.940 0.820 0.918 0.821 0.948 0.841 0.957 0.659 0.902 0.610 0.866 0.676 0.925 0.711 0.929
(P+S)conc -fold 0.796 0.922 0.751 0.874 0.778 0.931 0.863 0.967 0.637 0.882 0.557 0.822 0.635 0.903 0.753 0.944
(P+S)conc -all 0.853 0.952 0.846 0.936 0.841 0.956 0.873 0.967 0.693 0.913 0.665 0.886 0.679 0.926 0.747 0.939
(P+S)pair -fam 0.783 0.925 0.797 0.909 0.786 0.939 0.762 0.930 0.640 0.888 0.621 0.863 0.627 0.899 0.681 0.911
(P+S)pair -suf 0.810 0.932 0.805 0.907 0.818 0.945 0.808 0.947 0.652 0.890 0.619 0.859 0.653 0.904 0.698 0.919
(P+S)pair -fold 0.805 0.923 0.765 0.879 0.799 0.937 0.855 0.959 0.644 0.882 0.576 0.837 0.636 0.894 0.751 0.936
(P+S)pair -all 0.832 0.942 0.823 0.920 0.825 0.949 0.850 0.958 0.668 0.897 0.634 0.867 0.650 0.907 0.734 0.930

The test and training set consisted of proteins from the all, fam, suf, and fold sets. The numbers in parentheses for the profile-to-profile scor-
ing schemes indicate the value of w for the wmers that were used. The numbers in bold show the best performing schemes for the kernel-
based and profile-to-profile scoring based schemes. The underlined results show the cases where the pairwise coding scheme performs better
than the concatenation coding scheme.

and the easy and hard datasets. These results indicate
that training a model using residue-pairs with high-to-
moderate sequence similarity (i.e., as it is the case with
the fam- and suf-derived sets) does not perform very well
for predicting reliable residue-pairs that have low or no
sequence similarity (as it is the case with the fold-derived
set).

Finally, as it was the case with the nsoe kernels,
the concatenation coding schemes tend to outperform the
pairwise schemes for the fusion kernels as well. How-
ever, the advantage of the concatenation coding scheme
is not uniform and there are certain training and test set
combinations for which the pairwise scheme does better.
These cases correspond to the underlined entries in Ta-
ble 4.

6.4.2. fRMSD Estimation Problem Table 5 shows
the performance achieved by ε-SVR for solving the
fRMSD estimation problem as measured by the corre-
lation coefficient between the observed and predicted
fRMSD values. We report results for the fusion kernels
and the PFpic + Sdotp profile-to-profile scoring scheme.
Note that as discussed in Section 5.5, the scores com-
puted by PFpic + Sdotp should be negatively correlated
with the fRMSD; thus, negative correlations represent
good estimations.

From these results we can see that as it was the
case with the reliability prediction problem, the ε-SVR-
based methods consistently outperform the profile-to-
profile scoring scheme across the different combinations
of training and testing sets. The (P+S)conc models
achieve an improvement over PFpic + Sdotp that ranges
from 21% to 23.2%. The performance difference be-

tween the two schemes can also be seen in Figures 1 and 2
that plots the actual fRMSD scores against the estimated
fRMSD scores of (P+S)conc-all and the PFpic + Sdotp

similarity scores, respectively. Comparing the two fig-
ures we can see that the fRMSD estimations produced
by the ε-SVR-based scheme are significantly better cor-
related with those produced by PFpic + Sdotp.

Finally, in agreement with the earlier results, the con-
catenation coding scheme performs better than the pair-
wise scheme. The only exceptions are the models trained
on the fold-derived set, for which the pairwise scheme
does better when tested on the all- and fam-derived sets
(underlined entries in Table 5).

Table 5.: Regression Performance of the fusion ker-
nels on the hard dataset.

Scheme all fam suf fold
PFpic + Sdotp (3) -0.590 -0.550 -0.611 -0.625
(P+S)conc -fam 0.700 0.662 0.720 0.736
(P+S)conc -suf 0.694 0.612 0.739 0.764
(P+S)conc -fold 0.667 0.557 0.719 0.770
(P+S)conc -all 0.725 0.681 0.744 0.768
(P+S)pair -fam 0.676 0.639 0.695 0.708
(P+S)pair -suf 0.672 0.610 0.705 0.727
(P+S)pair -fold 0.676 0.639 0.695 0.708
(P+S)pair -all 0.694 0.645 0.712 0.746

The test and training set consisted of proteins from the all, fam, suf,
and fold sets. The number in parentheses for the profile-to-profile
scoring scheme indicates the value of w for the wmer that was
used. Good correlation coefficient values will be negative for the
profile-to-profile scoring scheme and positive for the kernel-based
schemes. The numbers in bold show the best performing schemes.
The underlined results show the cases where the pairwise coding
scheme performs better than the concatenation coding scheme.
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7. RELATED RESEARCH

The problem of determining the reliability of residue-
pairs has been visited before in several different settings.
ProfNet 21, 20 uses artificial neural networks to learn a
scoring function to align a pair of protein sequences. In
essence, ProfNet aims to differentiate related and unre-
lated residue-pairs and also estimate the RMSD score be-
tween these residue-pairs using profile information. Pro-
tein pairs are aligned using STRUCTAL 6, residue-pairs
within 3Å apart are considered to be related, and unre-
lated residue-pairs are selected randomly from protein
pairs known to be in different folds. A major difference
between our methods and ProfNet is in the definition of
reliable/unreliable residue-pairs and on how the RMSD
score between residue-pairs is measured. As discussed
in Section 2, we measure the structural similarity of two
residues (fRMSD) by looking at how well their vfrags
structurally align with each other. However, ProfNet only
considers the proximity of two residues within the con-
text of their global structural alignment. As such, two
residues can have a very low RMSD and still correspond
to fragments whose structure is substantially different.
This fundamental difference makes direct comparisons
between the results impossible. The other major differ-
ences lie in the development of order independent coding
schemes and the use of information from a set of neigh-
boring residues by using a wmer size greater than zero.

The task of aligning a pair of sequences has also
been casted as a problem of learning parameters (gap
opening, gap extension, and position independent sub-
stitution matrix) within the framework of discriminatory
learning 11, 40 and setting up optimization parameters for
an inverse learning problem 35. Recently, pair condi-
tional random fields were also used to learn a probabilis-
tic model for estimating the alignment parameters (i.e.,
gap and substitution costs) 4.

8. CONCLUSION AND FUTURE WORK

In this paper we defined the fRMSD estimation and the
reliability prediction problems to capture the local struc-
tural similarity using only sequence-derived information.
We developed a machine-learning approach for solving
these problems by using a second-order exponential ker-
nel function to encode profile and predicted secondary
structure information into a kernel fusion framework.
Our results showed that the fRMSD values of aligned
residue-pairs can be predicted at a good level of accu-
racy. We believe that this lays the foundation for using

estimated fRMSD values to evaluate the quality of target-
template alignments and refine them.
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Fig. 1.: Scatter plot for test protein-pairs at all levels be-
tween estimated and actual fRMSD scores. The color
coding represents the approximate density of points plot-
ted in a fixed normalized area.
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Fig. 2.: Scatter plot for test protein-pairs at all levels be-
tween profile-to-profile scores and actual fRMSD scores.
The color coding represents the approximate density of
points plotted in a fixed normalized area.
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