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The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult
experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative
of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity
between motifs representing known active sites and target protein structures with unknown function. In earlier work,
statistically significant matches of certain effective motifs have identified functionally related active sites. Effective
motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental
similarities to functionally unrelated protein geometry (specificity).

Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure
can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address
this problem, this paper presents composite motifs, which combine structures of functionally related active sites to
potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs

designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing
showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity
comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture
variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of
protein structures from diverse data sources.

1. INTRODUCTION

Developing an improved understanding of biological

systems, the molecular basis of disease, and the de-

sign of novel and effective drugs are important ef-

forts which could be enhanced with a broader under-

standing of the biological function of proteins. How-

ever, elucidating protein function is an expensive and

time consuming experimental process, depending on

the insight of experienced investigators and expen-

sive laboratory equipment. To support and acceler-

ate this cause, computational techniques for protein

function prediction have been developed to gather

evidence suggesting hypothetical functions of target

proteins.

This paper focusses on one family of function

prediction techniques that we call motif matching

algorithms, such as Match Augmentation (MA) 8,

Jess 1, PINTS 32, and pvSOAR 3, among many oth-

ers. The evidence gathered by motif matching algo-

rithms are instances of geometric and chemical simi-

larity, matches, between motif structures, represent-

ing sites of known biological function, and substruc-

tures of target proteins, for which functional informa-

tion is unavailable. In the past, matches with statis-

tically significant geometric and chemical similarity

have identified targets with sites functionally similar

to the motif 1, 3, 8, 32, suggesting that matches may

provide meaningful evidence of similar function.

One major challenge confronting the motif

matching strategy is the fact that motifs are imper-

fect markers of function. While generally motifs are

designed to represent a known active site, the geo-

metric form and chemical composition of active site

characteristics can drastically affect the number of

matching functionally related targets (motif sensi-

tivity), as well as the number of unintended matches

to unrelated sites (motif specificity). Effective mo-

tifs, which are both sensitive and specific, are crit-
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ical for a successful application of motif matching,

but difficult to design. For this reason, motif refine-

ment towards heightened sensitivity and specificity

is a critical open problem. This paper contributes

one practical method for motif refinement.

Motif refinement strategies in earlier work
9, 10, 31 implement analyses which ultimately select

geometric components for motifs from only one pro-

tein structure. We refer to these motifs as Simple

Motifs. In response, this paper asks if Composite

Motifs, which combine the geometry of several ac-

tive site structures, could better capture the natu-

ral variability inherent in functionally related active

sites. We also asked if the design of motifs based on

multiple protein structures could escape the poten-

tially negative effects of using simple motifs.

This paper proposes two specific types of com-

posite motifs, averaged motifs and centered motifs,

which are constructed from a multiple structural

alignment of related active sites. Beginning with a

data set of 6 distinct families of functionally related

proteins, we conducted a series of leave-one-out ex-

periments to test the sensitivity and specificity of

averaged and centered motifs. In comparison to all

possible simple motifs from the same family, aver-

aged and centered motifs performed with high sen-

sitivity and average specificity, while simple motifs

exhibited wildly varying sensitivity and specificity,

demonstrating that composite motifs diminish the

need to select individual motifs. Furthermore, the

high sensitivity of averaged motifs also demonstrates

that composite motifs can better capture geometric

variations within a family of related sites.

This paper does not argue that composite mo-

tifs are a solution to the difficult problem of motif

design. Rather, we propose that composite motifs

are one method for achieving effective motifs which

could compliment existing strategies for motif refine-

ment, such as MULTIBIND 31, Geometric Sieving 9,

Cavity Scaling 10, and Surfnet-Consurf 17.

Composite motifs contribute to the study of mo-

tif refinement with three unique strengths: First,

composite motifs capture variations in active site

conformations, which are not apparent in any indi-

vidual protein structure. Improved representation

of active site conformations can enhance motif ef-

fectiveness. Second, composite motifs eliminate the

problem of selecting an individual protein structure,

sidestepping the risk of selecting ineffective simple

motifs. Finally, composite motifs provide a novel

opportunity for the integration of protein structures

from novel sources. Since the effectiveness of the mo-

tif is based on the geometry of a potentially large set

of protein structures, alternative sources of protein

structure data, such as snapshots from molecular dy-

namics simulations and NMR data, could be incor-

porated into the design of composite motifs. Com-

posite motifs are a first step towards the synthesis

of multiple protein structures for improved function

prediction.

2. RELATED WORK

The application of motif matching to protein func-

tion prediction is affected by at least three distinct

subproblems:

(1) selecting a functional site representation

(2) designing a matching algorithm

(3) filtering biologically irrelevant matches

This paper describes composite motifs, which

contribute to the first subproblem. However, a com-

plete demonstration of the effectiveness of composite

motifs, in the context of function prediction, also re-

quires solutions to the other two subproblems. This

section explains existing approaches to all three sub-

problems in relation to our contributions.

2.1. Related Work in Motif Design

The design of effective motifs is a two stage problem

requiring a computational representation of protein

structure, or motif type, and the choice of specific

active site elements to include, the motif design.

Motif types in earlier work can be loosely classi-

fied into two classes: point-based motifs, and volume-

based motifs. Point-based motifs have used points

in space to represent atom coordinates, 1, 8, 30, 32,

points 20 on the solvent accessible surface, and chem-

ical binding patterns 31. These motif points can be

labeled with atomic and residue identity 1, 8, 30, 32,

electrostatic potential 20, and evolutionary signifi-

cance and variation 8, among many other chemical

and biological properties. Labeling motif points al-

lows additional chemical and biological knowledge to

be mapped to an otherwise purely geometric compar-

ison process, increasing the relevance of the motif

type.
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Volume-based motifs use spheres 10, 35, grids
23, 24 and other geometric representations, such as

alpha shapes 2, to represent active clefts and cavities

in protein structures. Rather than directly repre-

senting atomic structure, volumetric motifs represent

volumes that can be functionally significant, such as

ligand or cofactor binding sites. While volume-based

motifs are not always labeled, some techniques which

apply volume-based motifs also integrate sequence

analysis and point-based comparison with volumet-

ric comparisons.

Once the motif type is chosen, given a specific

active site to represent, a specific motif design must

be established for the active site. For point-based

motifs, this can involve the selection of the atoms

thought to be most closely involved with the function

of the protein. In the past, functionally documented

amino acids from the literature 9, databases of cat-

alytic sites 1, and evolutionarily significant amino

acids 8 have been used to design point-based motifs.

Volumetric motifs have been designed by identifying

statistically significant cavities and indentations on

protein surfaces 2.

Given the active site to be represented, recent

results suggest that a selection of amino acids can

then be refined for geometric and chemical compar-

ison. For example, identifying geometrically con-

served binding patterns common among several func-

tionally related active sites 31 could yield additional

matches to functionally related proteins. Motifs

can be refined to be geometrically unique, recurring

rarely among functionally unrelated proteins 9. Fi-

nally, point-based motifs can be augmented with vol-

umetric data and eliminate matches lacking function-

ally significant cavities 10.

Volumetric motifs have been refined by identi-

fying indentations on the protein surface that are

distant from evolutionarily significant amino acids
17. In addition, high-impact volumes within a sur-

face clefts, which seem to be essential for function-

ally related matches, can be automatically identified

to refine cavity-aware motifs 10.

This paper provides a unique approach to the

refinement of point-based motifs. While other motif

refinement techniques focus on the selection of amino

acids 9, 31 or integrate additional data 9, 21, this pa-

per improves on existing motif designs by incorpo-

rating the geometry of other protein structures con-

taining similar active sites. In our experimentation,

we asked if this approach would yield motifs that

more closely resemble the population of structures

with functionally related active sites. The possibil-

ity of integrating multiple protein structures yields

the first technique, to our knowledge, where motifs

can contain geometric information not taken directly

from a single protein structure.

Our approach is most related to techniques de-

signed to represent a range of protein structures, such

as hinge-bending point-based motifs 30, and motifs

representing conserved binding patterns 31. Hinge-

bending motifs can represent multiple protein struc-

tures, but only capture structures implied by the

range of hinge motions, which can differ from the

population of proteins containing similar functional

sites. In comparison, the composite motifs studied

in this work are built explicitly from populations of

protein structures with similar functional sites. Mo-

tifs representing conserved binding patterns repre-

sent the largest common set of motif points between

a set of functionally similar active sites, but the

largest common set of motif points may not include

functionally significant motif points with geometric

variations in active site conformations. In contrast,

our techniques for generating composite motifs, de-

scribed in Section 3, can represent a geometric con-

sensus among these variations.

2.2. Earlier Motif Matching Algorithms

Motif matching algorithms are designed for compat-

ibility and efficiency with a specific motif type. In

addition to full structure alignment methods such as

DALI 19, which could be applied to the motif match-

ing problem, motif matching algorithms for point-

based motifs include Geometric Hashing 36, JESS 1,

PINTS 29, and Match Augmentation 8, 10 (MA). One

unique advantage of composite motifs is that com-

posite motifs are point-based motifs that are assem-

bled in a novel manner but remain compatible with

existing point-based motif matching algorithms.

Motif matching algorithms are also designed for

compatibility with volume-based motifs, such as pv-

SOAR 3. A wide range of function prediction and

analysis techniques using volume-based analysis ex-

amine a single protein structure to identify charac-

teristics consistent with an active site: Among many,

SCREEN 26 identifies cavities which are likely to be

drug binding sites, SURFNET-Consurf 17 seeks evo-

lutionarily significant catalytic sites, and CASTp 2
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analyzes cavities on the protein surface and identifies

those probable of biological activity.

2.3. Statistical Models for Motif Matching

Having found a set of matches using a motif matching

algorithm, the final subproblem for function predic-

tion via motif matching is to eliminate matches which

are unlikely to have any biological relevance. In sev-

eral approaches to motif matching, statistical models

have been developed which model the degree of ge-

ometric and chemical similarity observed in matches

with functionally related proteins. In comparison to

a baseline degree of similarity observed in matches

at random, matches to functionally related proteins

exhibit statistically significant geometric and chem-

ical similarity. The statistical models employed by

PINTS 32, JESS 1, and MA 8, have been shown to

be capable of identifying functionally related active

sites.

Statistical models can be used to assign p-values

to a given match. The p-value estimates the prob-

ability of observing another target, selected at ran-

dom, with greater geometric and chemical similar-

ity than the target identified with the given match.

Thus, a match is statistically significant if the p-value

falls below a given significance threshold α.

2.4. The MASH pipeline

In earlier work 11, we developed the MASH software

pipeline, which contains a matching algorithm and

a statistical model for identifying matches to point-

based motifs. Because of its availability and com-

patibility with composite motifs, we use MASH to

benchmark the effectiveness of composite motifs in

our experimentation.

As input, MASH takes a simple or composite

motif, a target protein structure, and a reference set

of protein structures. Using MA 8, MASH computes

a match m between the motif and the target as well

as a match between the motif and all members of the

reference set. Then, applying our statistical model
8, MASH uses these matches to assign a p-value to

m. The output of MASH is the match m, and the

p-value of m. If p < α, then we say that the match m

is statistically significant, and a positive prediction

of functional similarity. Otherwise, we say that m is

statistically insignificant, and a negative prediction

of functional similarity.

In our experimentation, we use MASH for exper-

imentation on composite motifs and running control

experiments on simple motifs.

3. GENERATING COMPOSITE MOTIFS

In our experimentation, we asked if composite mo-

tifs represent geometric variations in functionally re-

lated active sites better than simple motifs. For this

reason, we detail both simple and composite motifs

here.

3.1. Simple Motifs

Derived originally from a single protein structure P0,

a simple motif p0 is composed of l points in space

p(0,0), p(0,1), . . . , p(0,l), where the coordinates for each

p(0,i) are derived from an atom in P0.

Each motif point p(0,i) is also labeled with biolog-

ical and chemical information. Initially, each motif

point is identified with its atom type and amino acid

type within P0. Each motif point also bears a ranking

r(p(0,i)) which is associated with the functional im-

portance of the motif point. The matching algorithm

used in this paper, MA 8 is capable of prioritizing its

search for motifs in order of functional importance.

Finally, each motif point also contains a list of as-

sociated amino acids l(p(0,i)), called alternate labels,

which represent acceptable substitutions in matching

target amino acids. This permits our motifs to repre-

sent amino acids substitutions in major evolutionary

divergences 8, 25 or variations between distinct but

chemically related amino acids.

3.2. Composite Motifs

Composite motifs are point-based motifs whose mo-

tif points are positioned by the geometric consensus

of related active site structures. This paper presents

averaged and centered motifs which are two exam-

ples of composite motifs designed from related active

sites.

In the design of composite motifs, we begin with

a set of k protein structures P0, P1, . . . , Pk, where

each Pi is contains a functionally related active site,

which is defined as an individual motif pi = {p(i,0),

p(i,1), . . ., p(i,n)} with exactly n motif points. Given

that these motifs are functionally related, we list the

motif points in p0, p1, . . ., pk in such an order that

for any i, 0 ≤ i ≤ n, the motif points p(0,i), p(1,i),
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Fig. 1. Composite motif construction begins with the multiple structure alignment of the individual motifs p0, p1, etc, yielding
clusters of correlated points in the ultimate alignment. We describe this iterative alignment process in Section 3.2.

. . . , p(k,i) are functionally identical. Furthermore, for

any i, 0 ≤ i ≤ n, the motif points p(0,i), p(1,i), . . .,

p(k,i) are assigned the same ranking and the same

alternate labels.

Using a method from Ref. 34, we first compute a

multiple structural alignment of the individual mo-

tifs, as depicted in Figure 1. This is accomplished by

first computing a least RMSD (LRMSD) alignmenta

of each pi to an arbitrarily selected pj . In each align-

ment between one pi and pj, p(i,0) is correlated to

p(j,0), p(i,1) is correlated to p(j,1), etc, resulting in a

cluster containing all p(i,0), a cluster containing all

p(i,1), and so on. We compute a centroid for each

cluster, and refer to each centroid as c0, c1, . . . , cl.

In the next iteration, we align each pi to this set of

centroids, instead of the arbitrarily selected individ-

ual motif, and recompute the centroids for the new

multiple structural alignment. Repeated iterations

converge rapidly to a single multiple structural align-

ment 34, with centroids C0, C1, . . . , Cl. A completed

alignment of amino acids used in our experimenta-

tion appears in Figure 3.

Once the multiple structural alignment is com-

plete, we use the newly aligned formation of struc-

tures to finalize averaged and centered motifs.

3.2.1. Averaged Motifs

Averaged motifs use C0, C1, . . ., Cl as the coor-

dinates of their motif points. This is demonstrated

in Figure 2. Once we have the coordinates of the

averaged motif points, the labels, ranking, and alter-

nate labels, being identical in each of p0, p1, . . ., pk,

are applied respectively to each of C0, C1, . . ., Cl,

completing an averaged motif.

3.2.2. Centered Motifs

Centered motifs are initially generated with the

same iterative multiple structural alignment. How-

ever, once the alignment is complete, the smallest

sphere containing each cluster of correlated motif

points is computed, and the center of the sphere is

used for each composite motif point. We demon-

strate this in Figure 2. Again, the labels, ranking,

and alternate labels are mapped to each of these

points.

3.2.3. Advantages of Composite Motifs

We designed composite motifs to represent varia-

tions in active site structures, to diminish the need to

select individual structures for simple motifs, and to

promote the fusion of protein structures from vary-

ing data sources. Towards the first goal, averaged

and centered motifs select points in space to rep-

resent the variation exhibited by each motif point.

This straightforward approach is strongly applicable

to the natural variability of protein structures, un-

der the assumption that geometric identity implies

functional similarity.

aAn LRMSD alignment of two sets of points A and B rotates and translates A to the position where root mean squared deviation
(RMSD) between A and B is minimized
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Fig. 2. The multiple structure alignment of the individual motifs generates clusters of correlated motif points, demonstrated on
the left side of this figure. As demonstrated above, averaged motif points are positioned at the centroid of the cluster. Centered
motifs, demonstrated below, compute the smallest containing sphere around the correlated motif points, and use the center of
the sphere for the composite motif point.

Generating a single composite motif that repre-

sents a set of related sites also reduces the problem

of selecting a single protein structure to represent

the entire set. In our experimentation, we will test

the degree to which composite motifs can identify

functionally related proteins, in comparison to sim-

ple motifs based on individual related sites. One con-

cern we had was that some sites might be overrepre-

sented in the family of protein structures, thereby af-

fecting motif points in averaged motifs. Since struc-

tural overrepresentation is inevitable, due to the fact

that structures are unavailable for all proteins, we

designed centered motifs, to use the geometric posi-

tion of the overall cluster (the smallest surrounding

sphere) for motif points.

Composite motifs have the distinctive character-

istic that protein structure data from many sources

could be fused in a single representation. As the

availability of protein structures and functional an-

notations accelerates, composite motifs could pro-

vide a useful method for applying additional knowl-

edge towards function prediction. In particular, be-

cause hundreds of protein structures can be inte-

grated into composite motifs, additional sources of

data, such as snapshots from molecular dynamics

simulations and models from structure prediction

techniques, could be integrated to counterbalance ex-

perimental biases inherent in existing structures and

further expand the set of structural variations repre-

sented by composite motifs.

4. EXPERIMENTATION

In controlled experimentation, we compared the ef-

fectiveness of simple motifs, averaged motifs, and

centered motifs. First, we identified six protein fam-

ilies which contained many distinct protein struc-

tures with functionally related active sites. Treating

these classifications as a gold standard for functional

similarity, we used each family to generate averaged

and centered motifs on a leave-one-out basis. Fi-

nally, we tested the effectiveness of these averaged

and centered motifs to identify statistically signifi-

cant matches with the left out structure, in compar-

ison to simple motifs.

4.1. Protein Families

The six families of proteins used in this work are

taken from the Enzyme Classification (EC) specified

by the Nomenclature Committee of the Internation-

al Union of Biochemistry and Molecular Biology 14,

which, although imperfect, is standard and useful

for our purposes. In each family, we required one

primary structure, with functional amino acids doc-

umented in the literature, as well as at least 10 other

non-mutant protein structures (although EC families

with more structures were preferred), all with resolu-

tion below 3Å. The next six paragraphs describe the

functionally documented amino acids from each pri-

mary structure. We refer to each EC family (bolded

below) using the PDB code (also bolded) of its pri-

mary structure.

1a3h/3.2.1.4 Bacillus agaradherans endoglucanase

is a cellulase and belongs to EC family 3.2.1.4. Five

points were selected for this motif, including trypto-

phan 262, which exists in an orientation that allows

it to interact with substrate, tryptophan 178, which

is an invariant residue in the subfamily 5-2 enzymes

that is part of the aglycon binding sites, and histidine

206, which may play an important role in catalysis,

perhaps as part of substrate binding 13. Glutamic
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Fig. 3. Multiple structural alignment of Peroxidase active sites in EC family 1.11.1.7. The substructures aligned in this image
demonstrate the distinct geometric variability of related sites in each EC family. Structural differences between sites in each
structure are apparent in both sidechain conformations as well as alpha carbon (spheres, in this image) positions. Some families,
such as 1a3h, were distinctly more variable, while others, such as 1did, exhibited less variability.

acid 139 and 228 were also included, being the cat-

alytic acid/base and the enzymatic nucleophile, re-

spectively 13.

1aru/1.11.1.7 Peroxidase from the fungus Arthro-

myces ramosus is a heme protein belonging to EC

family 1.11.1.7. Five points were selected for this

motif, including histidine 184, which binds the heme

iron 22, and the distal arginine (Arg-52 in this struc-

ture 16), which has been proposed to play a role in

substrate binding and stabilization of the product of

the first step of the enzyme reaction 33. Also included

was histidine 56, which is suggested to be responsi-

ble for proton translocation in the hydrogen peroxide

substrate and has been shown to undergo conforma-

tional change in complexes with both cyanide and

triiodide 16. Asparagine 93 and glutamic acid 87

form a hydrogen bond network with histidine 56 16.

1asy/6.1.1.12 Aspartyl-tRNA synthetase is a di-

meric aminoacyl tRNA synthetase responsible for the

translation of genetic information and belongs to EC

family 6.1.1.12. Eight points were selected for this

motif. Serine 329 is part of a loop that interacts with

the discriminator base G73 and the first base pair of

the stem of the tRNA molecule, serine 423 and ly-

sine 428 are the endpoints of a segment that interacts

with the phosphate groups of A72 and G73, and ly-

sine 293 is the only residue making direct contact

with a tRNA molecule bound to the other monomer
6. Arginine 325 and 531 are involved in binding the

ATP substrate, bonded to the α-phosphate and γ-

phosphate, respectively 5, while aspartic acid 342

plays a role in binding the amino groups of the aspar-

tic acid substrate 7. Proline 273 has been confirmed

to be essential in the dimerization 15, and enzymatic

activity has been shown to decrease markedly when

this residue is substituted 5.

1did/5.3.1.5 D-xylose isomerase, belonging to EC

family 5.3.1.5, converts xylose to xylulose, such as

in the conversion of glucose to fructose. Six points

were selected for this motif. It has been proposed

that aspartic acid 56 polarizes and activates histi-

dine 53, which acts as a base to catalyze ring open-

ing, and that lysine 182 aides in isomerization, while

tryptophan 136 and phenylalanine 93 and 25 from

a completely hydrophobic environment in which the
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1asy 1did 1k55 1rx7 1a3h 1aru

Min. Å 0.072773 0.000272 0.018086 0.007937 0.000383 0.00021

Max. Å 3.034972 0.820726 7.134243 5.299205 5.754516 4.169486

Avg. Å 1.947437 0.251243 3.790644 1.514413 2.429289 1.346931

# of Structs. 14 93 181 132 119 28

Fig. 4. A summary of the variations in geometric similarity between all pairs of simple motifs used in experimentation, as well
as the number of structures in each family. Families denoted by the PDB code of their primary structure.

hydride shift occurs 12.

1k55/3.5.2.6 Class D β-Lactamase, a member of

EC family 3.5.2.6, is responsible for the hydrolysis of

β-lactam antibiotics, and as a result, it is one of the

causes of bacterial resistance to this group of antibi-

otics 18. Eight points were selected for this motif.

Serines 67 and 115 and lysine 205 are among the

residues active in catalysis, while phenylalanines 69

and 120, valine 117, tryptophan 154, and leucine 155

create a hydrophobic pocket within the active site 18.

1rx7/1.5.1.3 Dihydrofolate reductase, belong-

ing to EC family 1.5.1.3 and required for normal

metabolism in prokaryotic and eukaryotic cells, is an

enzyme that catalyzes the NADPH-dependent reduc-

tion of 7,8-dihydrofolate to 5,6,7,8-tetrahydrofolate
28. Seven points were chosen for this motif. Histidine

45 creates an ionic interaction with the pyrophos-

phate moiety of the NADP+ coenzyme and makes

a bifurcated hydrogen bond with two oxygens of the

ADP group 4. Glycine 96 also makes such a hydro-

gen bond with two oxygens of the ADP 5’-phosphate
4. Aspartic acid is the single polar residue in the fo-

late binding cleft and participates in the catalyzing

reduction of 7,8-dihydrofolate in two ways: by indi-

rect protonation of N5 and by the precise position-

ing of the dihydropteridine ring through H-bonding
4. Phenylalanine 31 forms a rigid ceiling to the pteri-

dine binding site, which appears to be important for

catalysis 4. Isoleucine 50 is among the residues that

create a hydrophobic pocket surrounding the folate

tail 4. Finally glycine 15 is part of group of amino

acids that function as a lid that controls that entry

and exit of ligands into the enzyme, and tryptophan

22 is involved in the slow, rate-limiting release of

product 28.

4.2. Motifs used in Experimentation

Simple Motifs From every structure in every fam-

ily, we created one simple motif as a control set for

our experimentation.

Creating a simple motif for the primary structure

in each family was accomplished by running the Evo-

lutionary Trace (ET) 25 to identify alternate labels

and a ranking of evolutionary significance (see Sec-

tion 3.1) for all functionally documented amino acids.

The geometric positions of the alpha carbons in func-

tionally documented amino acids, coupled with the

alternate labels and ranking provided by ET, com-

plete a primary motif for each family.

Creating a simple motif for all non-primary

structures in each family is substantially more dif-

ficult, because functional documentation was not

available for many non-primary structures. For this

reason, we applied MA 8, 9 to search for the primary

motif in the other structures of each protein family,

identifying a set of similar sites. In each structure,

we use the most geometrically similar site as the sim-

ple motif.

The lack of functional documentation in many

of the non-primary structures of each family leaves

few alternative methods for discovering similar sites,

but regardless of which site is used, MA is no sub-

stitute for functional documentation. Existing alter-

native methods, such as sequence comparison and

other structure comparison algorithms, do not pro-

vide any improved guarantees to identify cognate ac-

tive sites. A similar approach for identifying related

sites was implemented in the Catalytic Site Atlas 27,

which uses sequence analysis to relate functionally

documented amino acids to similar amino acids in

proteins of related function. Sequence analysis does

not guarantee functional similarity, but significantly

widens the range of similar active sites.

In order to minimize any bias introduced by

MA, we used very broad geometric thresholds when

searching for similar sites. We used MA to consider

all similar sites which had matching alpha carbons

as distant as 10Å in the LRMSD alignment, while

searching for the site with smallest LRMSD. Geo-
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metric thresholds used by MA do not appear to have

significantly biased the set of simple motifs. As doc-

umented in Figure 4, between the simple motifs of

each family, we measured the degree of pairwise ge-

ometric similarity, and observed notable geometric

variations in all families except 1did.

In our experimentation, a statistically significant

match between a simple motif and a structure in the

same family is called a true positive (TP) match,

and a statistically significant match to a structure

outside the family is a false positive (FP) match. A

statistically insignificant match to a structure inside

the family is a false negative (FN), and a statistically

insignificant match to a structure outside the family

is called a true negative (TN).

Composite Motifs For each family of k simple

motifs, we also created k averaged and k centered

motifs in a leave-one-out manner. This is accom-

plished by identifying the k − 1 simple motifs that

are not left out, and using them as individual mo-

tifs in the construction of an averaged or a centered

motif, as described in Section 3.2.

Assembling simple motifs creates a test set where

each composite motif can be tested against the left

out structure. For each leave-one-out motif gener-

ated, if the left-out member of the protein family

has a statistically significant match, then we call this

match a TP. If the left out structure is not statisti-

cally significant we call the match a FN. FPs and

TNs are counted in the same way as simple motifs.

4.3. Experimental Protocol

For every simple and composite motif, we computed

matches between the motif and every member of

the associated protein family. We also computed

matches between the motif and 5000 randomly sam-

pled structures from the PDB, to represent a set of

functionally unrelated proteins. We then assessed

the statistical significance of each match computed,

and counted the number of TPs, FPs, TNs, and FNs

for all motifs.

Given greater computing time, the set of ran-

domly sampled PDB structures could be expanded

further. However, in earlier work 8, 9 we observed

that sampling 5% (5000 is more than 5%) of the

PDB can reasonably represent the geometric com-

position of the proteins in the PDB. For this rea-

son, sampling 5000 functionally unrelated proteins

was deemed sufficient to simulate the number of FP

matches observed in general conditions. Overall, ap-

proximately 4054 distributed CPU hours were spent

gathering these matches.

4.4. Implementation Specifics

This work uses a snapshot of the PDB database from

09.14.2006. Structures with multiple chains were

divided into separate structures, producing 93582

structures. While separating chains might block the

identification of matches to active sites that span

multiple chains, re-integration of separate chains

might yield errors which lead to chemically impos-

sible protein structures. None of the motifs used in

this experimentation span separate chains.

Composite motifs were computed using C/C++

code developed on an Athlon XP 2600+, with 1Gb

of ram, running Debian Linux. Computing averaged

and centered motifs, described in Section 3, takes

approximately 10-15 seconds on this machine. P-

values and matches were computed using distributed

MASH 9 on a 28 chassis Cray XD1 with 672 2.2Ghz

AMD Opteron cores.

4.5. Averaged and Centered Motifs are

Sensitive and Specific

We compared the sensitivity and specificity of aver-

aged and centered motifs to the sensitivity of every

possible simple motif in each protein family.

Observed sensitivity is plotted Figure 5. The

horizontal axis represents each family of EC proteins,

denoted by their primary structure. The vertical axis

represents sensitivity: the proportion of TP matches

observed relative to the number of proteins in the

protein family. The black brackets, each having three

hash marks, signify the minimum, mean, and maxi-

mum number of TP matches identified by simple mo-

tifs in the EC class. Every simple motif in the family

corresponding to 1did matched all members of the

family. The dark grey line represents the number of

TP matches identified by centered motifs, and the

light grey line represents the number of TP matches

identified by averaged motifs. Averaged motifs were

among the most sensitive of all individual matches.

One family of protein structures, 1did, demon-

strated very low structural variability. This is consis-

tent with the observation from Figure 4 that simple

motifs in 1did expressed little geometric variability.

As a result, composite motifs generated from this
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Fig. 5. A comparison of TP matches found by composite motifs, relative to TP matches found by simple motifs from the same

family. On the vertical axis, we normalize the total proportion of TP matches for each family; a value at 1.0 demonstrates that
the motif identified statistically significant matches to all structures in its EC family. On the horizontal axis, we chart the protein
families studied in this work. The vertical black bars indicate the maximum, minimum, and average number of TP matches
identified by single-structure motifs from each EC family. It is apparent, with the exception of 1did, that single-structure motifs
can fall within a wide range of sensitivity. The dark and light grey lines signify the number of TP matches identified by centered
and averaged motifs, respectively. Composite motifs, especially averaged motifs, are significantly more sensitive than most simple
motifs on almost all protein families studied.

family performed perfectly also.

Among individual motifs, sensitivity fluctuates

significantly. For example, in the family of 1rx7,

some individual motifs identify matches with only

2 out of the 136 remaining members of the family,

while other individual motifs identify as many as 112.

In the family of 1aru, some individual motifs identify

matches with only 11 out of the 27 remaining mem-

bers of the family, while others identify as many as

24. The choice of individual structures for motif de-

sign significantly risks the sensitivity and specificity

of the motif created. In comparison, the sensitivity

of averaged motifs was consistently greater than the

mean sensitivity of individual motifs, which was sim-

ilar to the sensitivity of centered motifs as well. With

the exception of averaged motifs for 1a3h, compos-

ite motifs in general did not outperform all individ-

ual motifs. This demonstrates that composite motifs

largely avoid the problem of selecting individual mo-

tifs, and that averaged motifs can achieve very high

sensitivity.

We measured specificity in Figure 6. The hori-

zontal axis again corresponds to each family of EC

proteins, and the vertical axis corresponds to the

number of FP matches, from the random sample

5000 PDB proteins, observed for each motif. We

report the number of FPs observed, instead of speci-

ficity, because there are so many more unrelated pro-

teins than functionally related proteins, that speci-

ficity is almost always close to 99%. Reporting the

number of FPs makes the results easier to observe.

The black brackets correspond to the highest, lowest,

and mean number of FP matches to each individual

Mi. The dark grey and the light grey lines corre-

spond to the number of FP matches to centered and

averaged motifs, respectively. The mean number of

FP matches observed with simple motifs was very

similar to the number of FP matches observed with

centered and averaged motifs.

The number of FPs observed can fluctuate sig-

nificantly among individual motifs. In 1a3h, some

individual motifs identify 123 FP matches, whereas

others identify only 41. In other families, specificity

did not fluctuate as much, such as in 1rx7, where

individual motifs identified between 38 and 57 FP

matches. In comparison, averaged and centered mo-
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Fig. 6. A comparison of FP matches found by composite motifs, relative to FP matches found by simple motifs from the same
family. On the vertical axis, we plot the number of FP matches observed. On the horizontal axis, we chart the protein families
studied in this work. The vertical black bars again indicate the maximum, minimum, and average number of FP matches iden-
tified by single-structure motifs from each EC family. The dark and light grey lines signify the number of FP matches identified
by centered and averaged motifs, respectively. With one exception, composite motifs tend to identify an average number of FP
matches, in comparison to single-structure motifs, demonstrating that composite motifs are not an additional source of prediction
error.

tifs almost always identified an average number of

FP matches. Composite motifs appear to avoid high

false positive rates which can occur with individual

motifs, again reducing the problem of selecting indi-

vidual protein structures.

5. CONCLUSIONS

We have described composite motifs, a unique ap-

proach to motif refinement. Overall, composite mo-

tifs seem to achieve sensitivity among the most sen-

sitive individual motifs, while maintaining average

specificity and eliminating the problem of acciden-

tally selecting an ineffective simple motif.

On 6 families of functionally related proteins,

our experimentation demonstrates, on a small scale,

that composite motifs can capture variations in ac-

tive site conformations. We observed that averaged

motifs performed with sensitivity comparable to the

most sensitive simple motifs, and that centered mo-

tifs performed with sensitivity typical of the average

simple motif. While increasing sensitivity, averaged

and centered motifs tended to identify FP matches

typical of the average simple motif.

We also observed that simple motifs had sensi-

tivity and specificity falling in a very wide range.

Selecting any individual structure for the design of

a motif risks the selection of insensitive or nonspe-

cific simple motifs. In our experimentation, we ob-

served that composite motifs may diminish this prob-

lem, because no selection needs to be made, and be-

cause they performed with high sensitivity and aver-

age specificity.

As the availability of protein structures and func-

tional annotations accelerates, we feel that composite

motifs will become increasingly applicable for effec-

tive annotation of protein structures and for the inte-

gration of additional types of structural information

from diverse data sources.
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