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The ability to identify gene mentions in text and normalize them to the proper unique identifiers is crucial for “down-stream” text 
mining applications in bioinformatics.  We have developed a rule-based algorithm that divides the normalization task into two steps. 
The first step includes pattern matching for gene symbols and an approximate term searching technique for gene names.  Next, the 
algorithm measures several features based on morphological, statistical, and contextual information to estimate the level of confidence 
that the correct identifier is selected for a potential mention.  Uniqueness, inverse distance, and coverage are three novel features we 
quantified.  The algorithm was evaluated against the BioCreAtIvE datasets.  The feature weights were tuned by the Nealder-Mead 
simplex method.  An F-score of .7622 and an AUC (area under the recall-precision curve) of .7461 were achieved on the test data using 
the set of weights optimized to the training data. 

1.   BACKGROUND 

Identification of gene and protein mentions is arguably 
one of the most difficult named entity recognition
(NER) tasks in the life sciences domain because of the 
irregularity and ambiguities in gene nomenclature1.  A 
majority of genes can be referred to by more than one 
name and symbol.  Some of these terms are common in 
the English language and some are even shared by two 
or more genes, of the same and/or different species2.  An 
evaluation that was conducted for the BioThesaurus 
found that a gene/protein has an average of 3.53 
synonyms, and that the same term is associated with 
2.31 different concepts on average3.  In search of 
records for a particular gene, most search engines, 
including PubMed, performs only basic keyword 
matching.  This leads to substantial number of false 
positives and false negatives, making it difficult for 
users to locate the information that are truly useful to 
them. 

A number of systems have been developed in the 
past few years to address the problem of gene 
recognition.  The techniques fall into two broad 
categories, machine-learning and rule-based methods, 
which vary in their degree of reliance on dictionaries, 
statistics, linguistics, and heuristics1.  Machine-learning 
approaches, including hidden Markov Models4 and 
support vector machines5, are very scalable.  However, 
these techniques are very sensitive to the selection of 
features6 and the results are difficult to interpret.  In 
rule-based approaches, hand-crafted rules for specific 
datasets are derived by experts with domain knowledge. 
These rules are often implemented as regular expression 
statements.  Although this approach can be quite labor-
intensive, rule-based systems is often superior in 
handling genes that do not appear in training data. 
Traditionally, the more human interventions there are in 
a system, the better the system performs7.  As annotated 
data sets become more readily available and the learning 
techniques become more sophisticated, this trend may 
change in the near future. 
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Many popular tools, such as ABNER8 and 
GAPSCORE9, address the problem of NER without 
uniquely identifying the entities being mentioned.  
However, the ability to accurately associate these text 
mentions with specific entries in biomedical databases is 
of great value to “downstream” text mining applications, 
e.g. document classification and knowledge discovery.  
The next step beyond gene mention tagging is gene 
normalization.  It is a procedure in which each gene 
occurrence in the text is mapped to a unique gene 
identifier10.  In case of mentions associated with 
multiple identifiers, additional steps have to be taken to 
select the correct identifier among all the candidates.  To 
study associations between genes using information in 
the literature, Jenssen et al.11 used simple string 
matching for gene recognition.  Up to 40% of 
associations were incorrect, due to these problems in 
normalization: symbols shared by several genes, 
syntactical variations of the terms, and insufficient 
synonym lists.  Thus, a more sophisticated gene 
normalization technique is required. 

Various competitions on text mining have been held 
in the past to create a platform where different text 
mining approaches can be compared objectively using 
common standards and evaluation criteria.  
BioCreAtIvE is one of the several competitions 
specifically tailored to the biological domain.  The first 
evaluation was held in 2003, and attracted 27 
participants from around the world.  We entered Task 2 
of the second BioCreAtIvE challenge12.  The objective 
of this task was to return the EntrezGene identifiers 
corresponding to the human genes and direct gene 
products appearing in a set of MEDLINE abstracts 
annotated by researchers at the European Bioinformatics 
Institute.  

Our gene normalization algorithm is a prototype 
component of the PubMatrix system 13, a text mining 
tool for genetic association studies.  The advent of high-
throughput microarray analysis has made it possible to 
measure the expression of thousands of genes and 
proteins simultaneously.  However, the large volumes of 
data that are being generated create a huge challenge for 
scientists to effectively interpret and evaluate their 
results.  PubMatrix, among others, can be used to 
systematically identify associations between sets of 
genes and diseases using information available in the 
MEDLINE literature.  The assumption is that if the co-

occurrence frequency between a gene and a disease is of 
statistical significance, they probably have an underlying 
biological relationship.  The PubMatrix system thereby 
helps researchers to validate their experimental results 
and to select a manageable set of promising genes for 
further analysis.  Since simple string matching of the 
genes has yielded poor performance in other studies, we 
developed the gene normalization algorithm to help 
improve the accuracy of the PubMatrix results. 

Our system is essentially a rule-based system 
utilizing information from knowledge bases, statistical 
analysis, and empirical evidence.  Section 2 is an 
extension to our paper submitted to the BioCreAtIvE 
Workshop14.  This section describes our gene 
normalization algorithm, in particular the metric we use 
to estimate the confidence level of a match.  In Section 
3, our experimental results on the BioCreAtIvE data will 
be presented.  We conclude with Section 4 by discussing 
performance issues and the significance of each 
component of the confidence measure.     

Table 1.  Regular expression rules applied to gene symbol pattern 
matching to account for several syntactic variations commonly 
encountered in the literature.   

Rules Examples 

Interchange of Roman and Arabic 

numerals 

GAL4  GAL IV 

Interchange of dashes and spaces  NKG2-E  NKG2 E 

Allow a dash or space in front of a 

numeral 

NAT2  NAT-2 

Allow an optional ‘s’ at the end of a 

symbol 

EST  ESTs 

Allow an optional ‘h’ at the 

beginning of a symbol 

B1F  hB1F 

Allow for case difference if symbol 

has more than two characters 

RAC1  Rac1 

2.   IMPLEMENTATION 

2.1.   Identification of Gene Mentions 

The algorithm detects the occurrence of gene mentions 
by matching input text against the EntrezGene 
dictionary from the National Library of Medicine.  The 
procedure effectively combines the tasks of gene 
detection and gene identifier lookup.  Different 
approaches are used in the detection for gene symbols 
(including “Other Aliases” in the EntrezGene database) 
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and gene names (including “Other Designations”).  
Gene-symbol tagging is based on pattern matching.  For 
each symbol in the knowledge base, a set of regular 
expressions rules, as shown in Table 1, are applied to 
evaluate every string separated by space and punctuation 
symbols.  For the official symbols, we also generate new 
symbols by expanding the associated Greek letters into 
their full names, e.g. “CHKB” to “CHK beta” and “beta 
CHK”.  

For gene names, an approximate term matching 
technique has been employed.  After breaking a gene 
name into individual words or tokens, each token is 
searched against the text using rules similar to gene 
symbol matching.  Subsequently, the phrase containing 
the most tokens is identified.  This phrase is 
conditionally accepted if the ratio, rm, between the 
number of tokens in the mention candidate and the total 
number of tokens to be matched is higher than a 
threshold (0.7 in our submissions).  However, the 
candidate has to include specific tokens as measured by 
the number of citations containing those tokens (if a 
token’s frequency of occurrence is low, it is too 
important to be ignored).  The system also maintains a 
list of allowed and prohibited missing words.  If a word 
in the prohibited list, e.g. “receptor”, is missing from the 
phrase, the candidate is rejected.  On the other hand, if a 
word in the allowed list, such as “type” and “subunit”, is 
missing in the candidate, the algorithm calculates rm as if 
the word were not in the gene name.   

As an illustration, consider the gene “angiotensin II 
receptor, type 1,” which consists of five tokens.  The 
term “angiotensin II type 1” has an rm of 0.8, but is 
rejected because “receptor” is missing. On the other 
hand, the term “angiotensin II receptor alpha” has an  rm 

of 1.0.  In addition, another rule is that candidates are 
allowed to contain at most two extra words between any 
two tokens as long as the words are frequently found in 
the biomedical literature.  Besides the names that are 
already in the knowledge base, additional synonyms are 
generated by replacing common chemical names with 
their abbreviations.  For example, “acetyl-CoA 
carboxylase beta” is created from “acyl-Coenzyme A 
carboxylase beta”.  This approximate matching 
technique, which is similar to that proposed by Hanisch 
et al 15, can accommodate typical variations of gene 
name mentions, such as word ordering, found in the 
literature.   

2.2.   Confidence Measure of Gene 
Mention Candidates 

After a gene mention is detected, the algorithm 
calculates a confidence score using several statistical 
and heuristic measures.  The three most novel features
used in our submissions were coverage, inverse 
distance, and uniqueness. 

2.2.1.   Coverage 

The calculation of the coverage score is quite different 
between gene names and gene symbols.  The score for 
symbols, Sψ , is calculated as follows:  
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where 0 ≤ k1 ≤ 1 is a parameter (set to 0.8).  The 
intuition is that the more characters the symbol has, the 
less likely it is that the term is used other than to 
represent the gene.  If the term is enclosed by brackets, 
i.e. ([{}]), the gene name is probably mentioned in the 
text as well and score should be scaled accordingly. 
For gene names, the coverage score is a weighted 
average of two ratios, rL and rm. rL is the ratio of the 
character length of the candidate string to the 
corresponding name in the knowledge base.  Thus,  
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where 0 ≤ k2 ≤ 1 is a parameter (set to 0.5), fmin is the 
minimum occurrence frequency threshold for any 
missing words not in the allowed list (set to 20,000), and 
fm is the occurrence frequency of the least common 
missing word.  In addition to character length, the 
coverage metric for gene names also takes into account 
how many words are matched as well as the specificity 
of the words missing from the mention. 
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2.2.2.

For gene symbols, inverse distance is based on the edit 
distance, dL, of the candidate term to the formal 
reference in the database.  The score, Sδ , is defined as 
follows:   
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where k5 equals to (1-s)/L.  It takes into consideration 
the variations in capitalization, ordering, and any 
omissions/additions of punctuations and spaces.  The 
closer the mention matches the actual symbol, the higher 
the score.  For gene names, since syntactic variations are 
common, Eq. (3) is modified by factoring into the token 
ratio rm:  
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2.2.3.   Uniqueness 

Uniqueness is an estimate of the probability that the 
candidate is referring to something other than the gene 
in question.  If the mention has a very high frequency of 
occurrence in the literature, the score is reduced 
accordingly, because frequently occurring terms may 
have multiple meanings other than just being referred as 
genes. For gene names, the uniqueness score, Nµ , has 
two components, one being influenced by the size of the 
population, T, and the other by a user defined frequency 
threshold,  fmax, which limits the maximum number of 
documents the term can appear in (set to 40,000 in our 
experiments). Thus, Nµ  is given as: 
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where k3 and k4 are parameters (set to 0.5 and 10, 
respectively), and f is the number of documents 
containing the term. The population we use in our 
system is the entire collection of MEDLINE citations. 
Formulation of the uniqueness score for gene symbols is 
the same as Eq. (5), except that the score is further 
multiplied by the scaling factor s. 

2.2.4.   Discrete Features 

We have identified three additional features that 
could assist the algorithm to select the correct identifier 
in case of ambiguity.  First, if more than one unique 
mention of a gene is extracted from the text (e.g. both 
name and symbol), our confidence that the correct 
identifier is selected increases.  This feature is referred 
to as number of mentions.  In addition, many genes in 
the EntrezGene knowledge base have not been approved 
by the HUGO Gene Nomenclature Committee.  We 
believe that the references for these genes are unstable 
and few articles on these genes have been written.  
Therefore, in the official status feature preference is 
given to genes that have been approved.  A related 
feature is mention type.  A recent study16 suggests that 
scientists do not usually follow standard nomenclatures.  
Suspecting that there exists some degree of correlation, 
we take into consideration whether the mention is an 
officially approved term. 

We also incorporate a boosting factor into the 
confidence measure to reward or punish a candidate 
when there is contextual clue in the citation suggesting 
whether the mention actually refers to a gene.  For 
example, if the text contains the chromosome location or 
accession numbers of the gene, its score will be boosted.  
If the mention is preceded or followed by supporting 
modifiers, such as “gene” and “encode”, we have a 
much higher level of confidence that this mention is a 
true positive.  On the contrary, if counter-indicators, 
such as “test” and “cell line”, appear adjacent to the 
candidate, the mention should be penalized by inverting 
the boosting factor.  Therefore in addition to the allowed 
and prohibited missing word lists, we also maintain a list 
of indicator terms and a list of counter-indicator terms.  
Whereas all the other factors are combined linearly to 
compute the final score, the boosting factor is added last 
as an exponent to the score.  The final confidence score 
for a mention is simply calculated as: 
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where b is the boosting factor, n is the number of 
features not considered in the boosting, and iw  and ic
are the weight and sub-score for feature i, respectively.  
Consequently, a list of gene mentions with their 
associated identifiers and confidence scores is created 
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for each citation.  An acceptance threshold can be 
applied to improve precision.  If a gene has more than 
one unique mention in the text, the maximum score is 
used.   

2.3.   Overlapping of Gene Mention 
Boundaries 

When a string is associated with more than one gene 
identifier, the algorithm needs to determine which gene 
the authors actually intended.  The disambiguation 
procedure is as follows.  First, if a mention appears 
entirely within another longer mention (Fig. 1a), the 
algorithm removes the shorter mention if it does not 
appear anywhere else by itself in the text.  If some words 
of a mention overlap with another mention (Fig. 1b) or 
if two mentions share the exact same term (Fig. 1c), the 
one with a lower score is removed.  If the scores of two 
conflicting candidates are equal, their uniqueness scores 
are both reduced by half.  The effect of this operation is 
that if the mentions are weak at the first place, they can 
both be eliminated with a smaller threshold.  If the 
candidate had more than one form of occurrence, e.g. 
both the symbol and the name were detected, the highest 
score was considered.  Moreover, if two genes are 
adjacent to each other without being separated by any 
punctuation (Fig. 1d), we remove either the first mention 
or the mention with a lower score. 

Fig. 1.  Four cases of boundary conflicts are illustrated.  When a 
mention is completed covered by another mention (a), the shorter 
mention is taken out from the gene list.  The confidence score is used 
to determine which mention is more probable in cases (b), (c), and 
(d).  For (d), if the score is the same for both mentions, the first 
mention is removed. 

3.   EVALUATION 

We evaluated our gene-normalization system by 
finding a (locally) optimized set of weights wtrain on a 
training-data set, testing the performance of the system 
using wtrain on a testing-data set, and then cross-
validating the performance by training on the testing-
data set to generate a set of weights wtest which were 
evaluated on the training data set.  The training and test 
data sets were those provided by the by the 

BioCreAtIvE II gene normalization task.  These data 
sets comprise and 286 and 262 documents, respectively.  
The results of the optimization process are summarized 
in Tables 2 and 3.  Table 2 provides the values of the 
original weights w0 we used in the competition as well 
as the tuned weights wtest and wtrain.  Table 3 gives the 
results obtained from running the optimized weights 
through the data set on which they were trained as well 
as on the other data set.  The maximum F-score and area 
under the recall-precision curve (AUC), which were 
obtained by testing wtrain on the testing data set, were 
found to be 0.7622 and 0.7554 respectively.  With the 
original weights, prior to optimization, these values were 
0.7523 and 0.7423 respectively.  

To generate wtrain and wtest, the set of starting 
weights w0 was first obtained through empirical 
evidence and knowledge gained through the experience 
of developing the system.  A good starting point for the 
optimizer was then found by manually exploring the 
energy landscape of the maximum F-score and AUC.  A 
set of weights was then selected from the trial set which 
we felt could be considered “close to the maximum.”  
These weights were entered as a starting point to the 
Nelder-Mead simplex method17, an unconstrained 
derivative-free method which can find a local maximum 
via a geometric process involving reflection, 
contraction, and expansion.  Although it has poor 
theoretical properties, the Nelder-Mead method is 
surprisingly robust for objective functions that are not 
analytical.  Although we are using an unconstrained 
optimizer, our problem is actually constrained, namely 
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where Fmax(w) is the maximum F-score obtained over a 
set of thresholds and AUC(w) is the AUC from those 
same set of thresholds.  In the results that we report, we 
used a threshold interval of 0.01, or 100 estimates when 
the maximum threshold is 1.  As is clear from Table 3, 
we obtained an optimal solution well within the bound 
constraints. 

We also pondered imposing an equality constraint 
w1 + w2 + …. + w6 = 1 to enforce the idea that the 
maximum threshold must be 1 and that the result is 
properly “scaled.”  Doing so would have necessitated a 
genuinely constrained optimizer.  Rather than facing 
these complications, we adjusted the method to allow 
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for arbitrary thresholds.  As a precaution, we used a 
starting point that was normalized according to the 
equality constraint.  

Table 2.  Weights obtained through an optimization process (wtrain

and wtest) as well as starting weights w0.   The actual value of the 
weights w1 through w6 are the product of the values shown and the 
denormalization factor.   

  Original 

weights 

w0

Train on 

training set  

wtrain

Train on 

testing set 

wtest

Mention type  w1 0.1800 0.1224 0.1389 

Coverage  w2 0.2333 0.2082 0.1743 

Inverse distance  w3 0.2333 0.2744 0.2414 

Uniqueness w4 0.2333 0.1961 0.2357 

Number of 

mentions 

w5 0.1000 0.0580 0.0629 

Official status w6 0.0200 0.1407 0.1467 

Boosting factor w7 1.2500 1.4514 1.4402 

Denormalization 

factor 

 1.0000 1.0207 0.9699 

Table 3.  Result of running the normalization system on the training 
and testing data provided for the BioCreAtIvE II gene normalization 
task.  The combination measure is equal to half the F-score plus half 
the area under the recall-precision curve (AUC).    

Test on: Measure w0 wtrain wtest

Training 

set 

Max. F-score 0.7703 0.7757 0.7733 

 AUC 0.7516 0.7586 0.7593 

 Combination 0.7609 0.7671 0.7663 

Testing 

set 

F-score 0.7523 0.7622 0.7677 

 AUC 0.7423 0.7485 0.7546 

 Combination 0.7473 0.7554 0.7611 

Figs. 2 and 3 plot the Fmax and AUC, respectively, 
versus feature weight values for the first six features, i.e. 
w1 through w6.  These figures each contain six plots 
corresponding to the six features.  In each plot, only the 
corresponding weight is allowed to change through the 
range of 0 to 1 while the other weights are held to their 
wtrain values.  Since the results were obtained by testing 
the training-data-optimized weights against the test data, 
not surprisingly there exist solutions on the test data 
with greater maxima than our solution.  Despite this, we 
feel that our solution fared well on a foreign data set.  
Our explorations did reveal a somewhat difficult energy 
landscape with multiple maxima.  Not surprisingly, the 

AUC curve is smoother than the maximum F-score. In 
Fig. 4, the effect of the boosting factor w7 is 
demonstrated by plotting the maximum F-score and 
AUC versus w7 while the other weights are held to their 
wtrain value.  In Fig. 5, the recall-precision curve is 
plotted for weights set to w0 as well as wtrain.  

Fig. 2.  Maximum F-score for the first six features versus variations in 
the weights of the corresponding feature while the other weights were 
set to the wtrain values.  The markers on the lower right indicate the 
wtrain values.  The horizontal lines are the F-score at wtrain.  Results 
obtained in tests against the testing set. 

Fig. 3.  AUC for the first six features versus variations in the weights 
of the corresponding feature while the other weights were set to the 
wtrain values.  The markers on the lower right indicate the wtrain values.   

4. DISCUSSION

We have developed a gene normalization algorithm that 
separates the task into two processes.  First, the 
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algorithm searches for possible gene mentions with the 
goal of high recall.  Different techniques are applied to 
the search for gene symbols and gene names, although 
both rely on the use of dictionaries and rules.  The rules 
are important as they consider many syntactical 
variations that are commonly encountered in gene 
nomenclature.  Since most gene names are phrases 
rather than single words, an approximate term matching 
technique is employed to also account for differences in 
word ordering and word choices.  The second process of 
the algorithm attempts to improve the precision by 
measuring the level of confidence of each match and 
filtering out those mentions that have low confidence 
score.  The confidence score is derived from a set of 
quantitative measures leveraging statistical, 
morphological, and contextual information available to 
the system.  In addition to indicating whether a term 
actually refers to a gene or not, these measures provide a 
means for the system to disambiguate mentions to which 
multiple genes are mapped. 

Fig 4.  Effect of the boosting factor.  F-measure and AUC versus the 
boosting factor w7 while the other weights were set to wtrain.  Results 
obtained against the testing set.   

Using the BioCreAtIvE datasets for evaluation of 
the algorithm, the best F-score we achieved on the test 
data was 0.7622 when the feature weights were 
optimized with the training data.  Without the 
thresholding process, the gene tagging component alone 
could attain an F-score of 0.647 with a recall of 0.869.  
Recall at this step essentially limits the recall obtainable 
in the thresholding process.  A majority of the 
undetected mentions have complex syntax not being 

handled by the rules we defined.  Table 4 provides some 
examples of challenging cases that contributed to the 
false negative counts in the tagging process.  
Nevertheless, many genes are referred to in the text both 
by their name and symbol.  The undetected mentions 
thus result in a smaller impact on the recall performance.  

Figs. 2 and 3 show the individual contribution of 
each internal feature we measure in the confidence 
score.  We call these internal features because the scores 
are computed out-of-context, based solely on the 
evidence presented by the mentions themselves.  The 
only exception is the scaling factor s on gene symbols, 
which is influenced by whether the symbol is extracted 
from text enclosed by a set of brackets.  We can observe 
from the figures that all six features are useful for the 
gene normalization task because their optimal weights 
are all greater than zero.  As the weight of a feature 
increases, the feature becomes more dominant in 
determining the final confidence score.  Inverse distance 
and uniqueness are the only features that produced 
better results (on AUC) or only slightly degraded (on F-
score) results from zero weight to a weight of 1.  All the 
other features posted worse performance when they 
became dominant.  Although the best performance is 
achieved using a combination of these features, our 
observation suggests that inverse distance and 
uniqueness have good enough discriminatory power to 
estimate the level of confidence by themselves when 
other information is not available.  In addition to the 
internal features, several contextual factors are used to 
determine whether the confidence score is boosted or 
not.  Since the boosting factor is added as an exponent, 
the effect is non-linear.  Boosting exerts most of its 
influence on mentions for which the internal features 
may be ineffective.  When a gene is mentioned for the 
first time in the text, the authors often specify that the 
entity of interest is a gene, especially when the gene is 
ambiguous or not very well known.  Boosting is useful 
as illustrated in Fig. 4.  However, sometimes a wrong 
mention can be boosted.  Moreover, when counter-
indicators are detected, the boosting factor is inverted 
and the score is thus reduced.  It can be argued that the 
punishing factor should be made more severe in order to 
successfully remove those mentions that have high 
scores but actually refer to something else.  

Features for confidence measure.  In contrast with 
the other features, the effect of coverage, inverse 
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distance, and uniqueness are clearly pivotal as there is 
significant performance improvement from zero weight 
to their optimal settings.  It can be argued that 
uniqueness is the most important feature in our 
evaluation.  Lack of this feature would result in severe 
degradation of performance, most noticeable in the 
AUC.  Uniqueness is a statistical measure with the 
assumption that gene mentions should have a low 
frequency of occurrence.  This is a good assumption in 
most cases.  However, it is not good with legitimate 
genes that actually appear frequently in the literature 
(e.g. Interleukin 1) and relatively rare terms with 
multiple meanings, one of them being a gene reference.  
For example, “ADA” can stand for the American 
Diabetes Association or the gene adenosine deaminase.  
Our solution to the second issue is to look at whether a 
symbol is mentioned within a set of brackets.  If it is the 
case, presence of the gene name becomes a determining 
factor.  We found this contextual feature to be very 
helpful for improving precision.  Another important 
feature is the inverse distance, which is a dictionary-
based measure that calculates the similarity between the 
candidate mention and the corresponding gene term in 
the database.  Currently, character is the basic unit in the 
calculation of edit distance.  For names, the effect of 
changing the word order is subject to the length of the 
words.  It may be more appropriate to use word as the 
unit of measurement.  Coverage is mostly a heuristic 
measure in which we assume longer mentions are more 
likely to be true.  Albeit that it is a very good measure, 
the performance degraded when it become a dominant 
factor, suggesting that length alone is not reliable.  

Comparison to other gene normalization tools.  A 
number of gene tagging tools are freely available to the 
community, but to our knowledge, no standalone gene 
normalization systems have been made publicly 
accessible.  No comparison is made between our tool 
and ABNER or GAPSCORE because the task of these 
tools (i.e. NER) is different from ours (i.e. 
normalization) and such comparison would not be 
particularly meaningful.  In the second BioCreAtIvE 
challenge, 20 teams entered the gene normalization 
task12.  Many teams followed the same general 
approaches we employed.  Several participants built 
upon “off-the-selves” gene tagging tools.  The best F-
score from each team ranges from 0.810 to 0.394, with a 

median of 0.731.  The highest recall and precision 
achieved are 0.833 and 0.841, respectively.  The 
difference in performance is primarily due to the way 
filtering of candidates, including disambiguation, was 
performed.  Some relied on pruning of the lexicon and 
some implemented rules of various degrees of 
sophistication to reduce false positives.  Nevertheless, 
the results of the top scoring teams, including ours, are 
comparable.  It is important to note that the recall of 
0.869 at a precision of 0.515 which we achieved after 
the first step of the process is advantagous when high 
recall is required.  Another benefit that our system 
provides is that each mention is associated with a 
confidence score.  This feature affords users the ability 
to choose a suitable balance between recall and
precision. 

Description Examples 
Range ORP-1 to ORP-6 
Ambiguity  p32 
Choice of   
words 

IFN-induced protein of 10 kDa 

Boundary Protein kinase C isoforms alpha, 
epsilon, and zeta 

Fig. 5.  Recall versus precision as tested on the test data with the 
original weights (w0) and the optimized weights wtrain.   
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5.   CONCLUSION 

We have developed a gene normalization algorithm that 
relies heavily on rules that combine statistics and 
heuristics.  The confidence measure provides a means to 
quantify the degree of conformance to these rules and 
allow users to choose the proper compromise between 
recall and precision based on the situation.  In our 
evaluation, only basic knowledge about the genes was 
used to disambiguate mentions with multiple mappings.  
A majority of candidates that mapped to more than one 
gene identifier actually referred to gene families.  For 
future work, information about gene families and 
association of various terms can be applied for more 
sophisticated filtering.  Part-of-speech tagging may also 
help to discern mention boundaries and improve system 
efficiency by only considering noun phrases.     
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