
EXACT AND HEURISTIC ALGORITHMS FOR WEIGHTED CLUSTER EDITING

Sven Rahmann, Tobias Wittkop, Jan Baumbach, and Marcel Martin

Computational Methods for Emerging Technologies group,
Genome Informatics, Technische Fakultät,

Bielefeld University, D-33594 Bielefeld, Germany
Address correspondence to: Sven.Rahmann@cebitec.uni-bielefeld.de

Anke Truß and Sebastian Böcker

Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

Clustering objects according to given similarity or distance values is a ubiquitous problem in computational biology
with diverse applications, e.g., in defining families of orthologous genes, or in the analysis of microarray experiments.
While there exists a plenitude of methods, many of them produce clusterings that can be further improved. “Cleaning
up” initial clusterings can be formalized as projecting a graph on the space of transitive graphs; it is also known as the
cluster editing or cluster partitioning problem in the literature. In contrast to previous work on cluster editing, we
allow arbitrary weights on the similarity graph. To solve the so-defined weighted transitive graph projection problem,
we present (1) the first exact fixed-parameter algorithm, (2) a polynomial-time greedy algorithm that returns the
optimal result on a well-defined subset of “close-to-transitive” graphs and works heuristically on other graphs, and (3)
a fast heuristic that uses ideas similar to those from the Fruchterman-Reingold graph layout algorithm. We compare
quality and running times of these algorithms on both artificial graphs and protein similarity graphs derived from the
66 organisms of the COG dataset.

1. INTRODUCTION

The following problem arises frequently in clustering

applications: Given a set of objects V and a sim-

ilarity or distance measure for each unordered pair

{u, v} of objects, we want to partition V into disjoint

clusters. A common strategy is to choose a similarity

threshold and construct the corresponding threshold

graph: The objects constitute the nodes of the graph,

and an edge is drawn between u and v if their similar-

ity exceeds (distance falls below) the given threshold.

In this case, u and v are called “similar”, which we

write as u ∼ v. However, the resulting graph need

not be transitive, meaning that u ∼ v and v ∼ w

do not necessarily imply u ∼ w. We wish to “clean

up” such a preliminary clustering with as few edge

changes as possible. Formal definitions are given be-

low.

The similarity graph. We write V for the set of ob-

jects to be clustered; these are the vertices or nodes

of the graph. We write
(
V
k

)
for the set of k-element

subsets of V . We use uv shorthand for an unordered

pair {u, v} ∈
(
V
2

)
.

We assume the availability of a symmetric sim-

ilarity function s :
(
V
2

)
→ R such that u and v are

similar, u ∼ v, if and only if s(u, v) :≡ s(uv) > 0.

The edge set of the similarity graph is E := {uv :

u ∼ v}. Note that the similarity of an object to it-

self is not and need not be defined here. For any set

F ⊆
(
V
2

)
, we define s(F) :=

∑
uv∈F s(u, v).

A perfect clustering is characterized by the con-

dition that the graph G = (V, E) is transitive, defined

by any of the following equivalent conditions:

(1) For each triple uvw ∈
(
V
3

)
, the implication uv ∈

E and vw ∈ E ⇒ uw ∈ E holds.

(2) G contains no induced paths of length 2, i.e.,

for each triple uvw ∈
(
V
3

)
, we have |E ∩

{uv, vw, uw}| �= 2.

(3) G is a disjoint union of cliques (i.e., of complete

graphs).

Our goal is to edit a given graph G = (V, E)

by removing and adding edges in such a way that it

becomes transitive. Each operation incurs a nonneg-

ative cost: If uv ∈ E, the edge removal cost of uv

is s(u, v). If uv /∈ E, the edge addition cost of uv is

−s(u, v). Note the following subtlety: If s(u, v) = 0,

then initially uv /∈ E, but it costs nothing to add

this edge.

The cost to transform the initial graph G =

(V, E) into a graph G′ = (V, E′) with different edge

set E′ is consequently defined as cost(G → G′) :=

391

s(E \ E′) − s(E′ \ E).

Problem statement. The weighted transitive graph

projection problem (WTGPP) is defined as follows.

Given a similarity function s :
(
V
2

)
→ R and the

weighted undirected graph G = (V, E, s) with E :=

{uv : s(uv) > 0}, compute δ(G) := min{cost(G →

G′) : G′ transitive} and find one or all transitive G∗

with cost(G → G∗) = δ(G). Such G∗ are called best

transitive approximations to G or transitive projec-

tions or least-cost cluster edits of G. We also call

this problem the weighted cluster editing problem.

Previous work and results. The unweighted ver-

sion of this problem, where s(u, v) ∈ {+1,−1} and

cost(G → G′) = |E \ E′| + |E′ \ E| = |E 	 E′|,

has been extensively studied and is also known as

cluster editing in the literature. The first study that

we are aware of goes back to Zahn18 in 1964 and

solves the problem on specially structured graphs (2-

level hierarchies). On the negative side, the problem

has been proven NP-hard in general at least twice

independently4, 16.

On the positive side, fixed-parameter tractability

(FPT) of the unweighted cluster editing problem us-

ing the minimum number of edge changes as param-

eter k is well-studied. Gramm et al.9 give a simple

algorithm with running time O(3k+|V |3) and, by ap-

plying a refined branching strategy, improve the time

complexity to O(2.27k+|V |3). recent experiments by

Dehne et al.3 suggest that the O(2.27k + |V |3) algo-

rithm is indeed faster than the O(3k+|V |3) algorithm

in practice. In theory, the best known algorithm8 for

the problem has running time O(1.92k + |V |3), but

this algorithm uses very complicated branching rules

(137 initial cases) and has never been implemented.

Damaschke2 shows how to enumerate all optimal so-

lutions.

Unfortunately, it is also known that almost all

graphs are almost maximally far away from transitiv-

ity in the following sense, as shown by Moon12. Let

Gn be the set of all 2(n

2
) graphs on n vertices. Note

that each (V, E) = G ∈ Gn satisfies δ(G) ≤
(
n
2

)
/2 be-

cause if |E| ≤
(
n
2

)
/2, we can remove all edges and ob-

tain the transitive empty graph, and if |E| ≥
(
n
2

)
/2,

we can add all missing edges and obtain the tran-

sitive complete graph. Now define the class Gn,ε of

graphs that are “far away” from transitivity in the

sense that δ(G) ≥ (1−ε) ·
(
n
2

)
/2. Then for any ε > 0,

this class contains asymptotically almost all graphs,

i.e., |Gn,ε|/|Gn| → 1 as n → ∞.

Nevertheless, the FPT results are important in

practice because we can expect the preliminary clus-

terings that we obtain from real-world datasets to be

“almost transitive” already.

To our knowledge, the WTGPP has not been

subject to fixed-parameter approaches until now.

Grötschel and Wakabayashi10 formulated it as an in-

teger linear program and gave a cutting plane algo-

rithm, but apparently it has not been tried on large

instances.

Our contributions. We present the first fixed-

parameter algorithm for the WTGPP in Section 2,

which is an extension of the FP algorithm from Ref. 9

for the unweighted case. Assuming |s(uv)| ≥ 1

for all uv ∈
(
V
2

)
, our algorithm checks in time

O(3k + |V |3) if there exists a transitive projection

of cost at most k. In fact, the running time of our

algorithm is much better in practice. We also ap-

proach the problem from another end and present a

new O(|V |3 + |V ||E| + |E|2) time greedy algorithm

that provably returns the correct transitive projec-

tion on a well-defined class of graphs that are “not

too far away” from transitivity, but may return sub-

optimal solutions for other graphs (Section 3). In

Section 4, we present a fast heuristic based on ideas

from graph layouting. In practice, its running time

is O(|V |2), while a worst-case analysis gives O(|V |4)

for cases that do not seem to occur in practice.

Although this paper focuses on the new algo-

rithms, we also present applications to simulated

graphs and to protein similarity graphs derived from

BLAST scores on the 66 organisms of the COG

dataset17; these appear in Section 5. A concluding

discussion is found in Section 6.

Preliminaries. Without loss of generality, the vertex

set will be denoted by V := {1, . . . , n}. The input to

all algorithms in subsequent sections is the (symmet-

ric) similarity function s :
(

V
2

)
→ R, and the initial

edge set E := {ij : s(ij) > 0}. We set m := |E|.

Without loss of generality, we may assume that

the input graph consists of a single connected com-

ponent. If not, we can treat each connected com-

ponent separately, because an optimal solution will

never join separate components; this is easily proved

by contradiction.

392

The output of each algorithm is an edge set E∗

and a cost c∗ := cost(G → (V, E∗)). We say that an

algorithm correctly solves instance G = (V, E, s) if

c∗ = δ(G).

Let N(v) := {u : s(uv) > 0} ⊂ V denote the set

of neighbors of v. We call N∩(u, v) := N(u) ∩ N(v)

the common neighbors of u and v and N�(u, v) :=

(N(u)	N(v))\ {u, v} their non-common neighbors ;

here A	B is the symmetric set difference of sets A

and B.

Let C(G) be the set of all conflict triples, i.e.,

uvw ∈
(
V
3

)
that induce a path of length two: C(G) :=

{uvw ∈
(
V
3

)
: |E ∩ {uv, vw, uw}| = 2}. As noted, G

is transitive if and only if C(G) = {}.

2. FIXED-PARAMETER ALGORITHM

Fixed-parameter algorithmics were introduced by

Downey and Fellows in the late nineties5. They en-

able us to find exact solutions for several NP-hard

problems. The basic idea is to choose a parame-

ter for a given problem such that the problem is

solvable in polynomial time when the parameter is

fixed. A problem is fixed-parameter tractable with

respect to the given parameter if there exists an al-

gorithm which solves the problem in a running time

of O(f(k)·|I|c), where f is a function only dependent

on the parameter k, |I| is the size of the input, and

c is a constant. See Ref. 13 for a recent overview on

fixed-parameter algorithms.

In the following, we propose a fixed-parameter

algorithm for the WTGPP parameterized with the

(real-valued) cost k of an optimal solution. Given an

instance of the problem and fixed k, the algorithm is

guaranteed to find an optimal solution with cost at

most k or to return that no such solution exists. The

algorithm roughly adopts the branching strategy and

data reduction rules of the O(3k + |V |3) algorithm

from Ref. 9 and runs in time O(3k + |V |3) if every

edge deletion or insertion has a cost of at least 1

(if not, costs may be scaled up to fulfill this require-

ment). While our algorithm accepts any positive real

numbers as input, minimum edit costs are required

to achieve a provable running time because there can

be no fixed-parameter algorithm solving the problem

with arbitrarily small weights unless P=NP.

Our algorithm requires a cost parameter k. So

in order to find an optimal solution, i.e., the smallest

k for which a G∗ with cost(G → G∗) ≤ k exists, we

call the algorithm repeatedly, starting with k = 1.

If we do not find a solution with this value, we in-

crease k by 1, call the algorithm again and so forth.

Note that for every k, we have to traverse the com-

plete search tree and find the best solution with cost

≤ k, if any. The overall structure of the algorithm

is recursive. In the beginning, we start with the full

input graph and the given parameter k.

Given G and k ≥ 0, we first call the data re-

duction procedure described below. Then we pick

a conflict triple uvw ∈ C(G) and repair it in each

possible way by recursively branching into three sub-

problems. In order to ensure that the sub-problems

do not overlap, we will in the process set some nonex-

istent edges to “forbidden” (so we can never add

them) and some existent edges to “permanent” (so

they cannot be removed). Initially all edges have no

such label.

Data reduction. The following operations reduce

the problem size. They are performed initially and

for every sub-problem.

• Remove cliques : Identify connected components

and remove all components that are cliques from

the input graph. The algorithm can be called sep-

arately for each component.

• Check for unaffordable edge modifications : For

each uv ∈
(
V
2

)
, we calculate a lower bound icf (uv)

and icp(uv) for setting uv to forbidden or perma-

nent, respectively. When setting uv to forbidden,

we state that u and v should be in different compo-

nents and therefore should have no common neigh-

bors. Conversely, setting uv to permanent means

getting rid of all non-common neighbors. Lower

bounds on the induced costs are obtained as

icf (uv) =
∑

w∈N∩(u,v)

min{s(uw), s(vw)};

icp(uv) =
∑

w∈N�(u,v)

min{|s(uw)|, |s(vw)|}.

We maintain lists in which these costs are sorted by

size and update these lists every time an edit op-

eration is carried out. Data reduction now works

as follows:

(a) For all uv ∈ V where icf (uv) > k (i.e., which

cannot be forbidden): Insert uv if necessary,

and set uv to “permanent”.

(b) For all uv ∈ V where icp(uv) > k (i.e., which

cannot be made permanent): Delete uv if nec-

essary, and set uv to “forbidden”.

393

If there is a pair uv such that both icp(uv) > k

and icf (uv) > k, the (sub-)problem instance is not

solvable with parameter k.

• Merge vertices incident to permanent edges : As

soon as we set an edge uv to permanent, it is ob-

vious that u and v must be in the same clique

in each solution found in this branch of the algo-

rithm. In this case we merge u and v, creating a

new vertex x.

Note that if w is a neighbor both of u and of v,

we create a new edge xw whose deletion costs as

much as the deletion of both uw and vw. If w is

neither a neighbor of u nor of v, we calculate the

insertion cost of the nonexistent edge xw analo-

gously. In case w is a neighbor either of u or of v

but not both, uvw is a conflict triple, and we have

to decide whether we delete the edge connecting w

with u or v or we insert the nonexistent edge. By

summing the similarities (one of which is negative)

to calculate the respective value for xw we carry

out the cheaper operation and maintain the possi-

bility to edit xw later.

Thus, we merge u and v into a new vertex x

as follows: For each vertex w ∈ V \ {u, v}, set

s(xw) ← s(uw)+s(vw). Let k ← k− icp(uv), and

delete u and v from the graph.

Branching Strategy. After data reduction, let

uvw ∈ C(G) be a conflict triple, and let u be the

vertex of degree two and v, w be the leaves. We re-

cursively branch into three cases.

(1) Insert the missing edge vw, and set all edges uv,

uw, vw to “permanent”.

(2) Delete edge uv, and set the remaining edge uw

to “permanent” and the absent edges uv and vw

to “forbidden”.

(3) Delete edge uw, set it to “forbidden” (do not set

the other edge labels).

In each branch, we lower k by the insertion or dele-

tion cost required for the executed operation. If this

would lead to k < 0, we skip this branch. This

branching strategy gives us a search tree of size

O(3k), but usually much smaller in practice.

Time complexity analysis. If we set an edge to for-

bidden or permanent, this can reduce the parameter

k because we have to delete or insert an edge. This,

in turn, may trigger other edges to be forbidden or

permanent. We can show that the running time for

merging two vertices is O(|V |2), and the total run-

ning time for data reduction of an arbitrary input

graph is O(|V |3). A detailed proof is deferred to a

full journal version of this paper.

If every edge deletion or insertion has a cost

of at least 1, then we can show that our data re-

duction results in a problem kernel with at most

2k2 + k vertices. For the weighted cluster editing

algorithm, this would result in a total running time

of O(3k · k4 + |V |3). We use interleaving14 by per-

forming data reduction repeatedly during the course

of the search tree algorithm whenever possible. This

reduces the total running time to O(3k + |V |3).

We stress that the faster O(2.27k + |V |3) al-

gorithm of Gramm et al.9 for the unweighted case

cannot be used to solve the WTGPP, because the

branching strategy is based on an observation that

does not hold for weighted graphs (Lemma 5 in

Ref. 9). We are currently working on adapting this

branching strategy to the weighted case.

3. GREEDY HEURISTIC

As in the fixed-parameter algorithm, all conflict

triples uvw ∈ C(G) must be repaired to make G tran-

sitive. A repair consists of either removing one of the

two existing edges or adding the missing edge. Ob-

serve that the hard part is to correctly “guess” the

set of edges to remove. Thereafter, the edge inser-

tions can easily be found by transitive closure, that

is, adding those edges required to make each con-

nected component a clique.

Our idea is to define a function that scores edge

removals and then let the algorithm greedily delete

the highest-scoring edge in each step until further

deletions do not improve the solution.

Scoring edges. We define G’s deviation from transi-

tivity D(G) as

D(G) :=
∑

uvw∈C(G)

min {|s(uv)|, |s(vw)|, |s(uw)|} . (1)

We can now score edge removals: Let uv be an edge

in G = (V, E, s). Removing it yields G′
uv := (V, E \

{uv}, s′), where s′(xy) = s(xy), except s′(uv) = −∞

(“forbidden”). We call

∆uv(G) := D(G) − D(G′
uv) − s(uv) (2)

the transitivity improvement of edge uv. The term

s(uv) penalizes the edge removal.

394

Algorithm. In addition to the main algorithm, the

greedy heuristic consists of two auxiliary functions,

which we describe first.

Algorithm Remove–Culprit(G) returns the

highest-scoring edge argmaxuv∈E{∆uv(G)} and re-

moves it from G. There are m edges; computing

each ∆uv(G) can be done in O(n) since only triples

containing uv need to be considered. Thus, the run-

time of the first invocation is O(mn). Subsequent

invocations need only O(m+n) time, O(n) to update

scores for edges around the deleted edge, and O(m)

to find the maximum score.

Algorithm Transitive–Closure–Cost(G) as-

sumes G is connected; it returns the total cost of

all edge additions required for a transitive closure of

G,
∑

uv∈
(
V
2

) max{−s(uv), 0}, in time O(n2).

Algorithm Greedy–Heuristic(G) is the main al-

gorithm. It returns a pair (deletions , cost), where

deletions is the list of edges to be removed from G

and cost is the total cost of all edit operations (both

removals and additions). Remember that G is con-

nected.

(1) cost ← Transitive–Closure–Cost(G).

(2) If cost = 0, return an empty list and cost 0.

(3) Set deletions ← empty list ; delcost ← 0.

(4) Repeat the following steps until G consists of two

connected components G1 and G2.

(a) uv ← Remove–Culprit(G)

(b) append uv to deletions

(c) increase delcost by s(uv)

(5) Adjust deletions such that it only includes edges

that contribute to the cut between G1 and G2.

Adjust delcost accordingly, and re-add incorrect

edges to G1 and G2.

(6) Solve the problem recursively for G1 and G2, as

long as there is a chance for a better solution:

If delcost ≥ cost , return (empty list, cost).

(list1 , cost1) ← Greedy–Heuristic(G1).

If delcost + cost1 ≥ cost ,

return (empty list, cost).

(list2 , cost2) ← Greedy–Heuristic(G2)

If delcost + cost1 + cost2 ≥ cost ,

return (empty list, cost).

(7) Append list1 and list2 to deletions .

Return (deletions , delcost+cost1+cost2).

If the “safety net” in step 5 is never invoked,

Greedy–Heuristic deletes each of the m edges at

most once across all recursions. After each dele-

tion, both determining connected components and

Remove–Culprit require O(m + n) time. Also,

Transitive–Closure–Cost takes O(n2) time for

each cut, of which there are at most n−1. Thus, the

runtime is O
(
m(m + n) + n3

)
.

Correctness of the greedy heuristic for special

graphs. We show that the greedy heuristic correctly

computes the transitive projection of certain classes

of graphs in the unweighed case, where s(i, j) ∈

{±1}. Here Eq. (1) becomes D(G) = |C(G)| and

Eq. (2) becomes ∆uv(G) = |C(G′
uv)| − |C(G)| − 1 =

|N�(u, v)| − |N∩(u, v)| − 1, since triples not contain-

ing edge uv cancel out.

Let T be an unweighted transitive graph consist-

ing of r cliques C1, . . . , Cr with ni := |Ci|. Graph G

is obtained from T by edge modifications. Let δu

be the number of u-incident edges deleted from T ,

and ιu the number u-incident edges added to T to

obtain G.

Lemma. (1) Let uv ∈ E(G) ∩ E(T) be an intra-

cluster edge of Ci.

Then ∆uv(G) ≤ 2δu + 2δv + ιu + ιv − ni + 1.

(2) Let xy ∈ E(G) \ E(T) be an inter-cluster edge

between Ci � x and Cj � y.

Then ∆xy(G) ≥ ni + nj − (δx + δy + 2ιx + 2ιy) + 1.

Proof. We count the common and non-common

neighbors of u.

(1) There are no non-common neighbors of uv

in T , and each edge deletion or insertion incident to

u or v creates at most one. Therefore |N�(u, v)| ≤

δu + δv + ιu + ιv. There are ni − 2 common neigh-

bors of uv in T , and each edge deletion incident to

u or v removes at most one. Thus |N∩(u, v)| ≥

ni − 2 − (δu + δv).

(2) After inserting xy into T , this edge has

(ni − 1) + (nj − 1) non-common neighbors. Each

deletion incident to x or y decreases this number,

and each of the ιx−1 plus ιy−1 additional insertions

incident to x or y might also decrease this number.

Thus |N�(x, y)| ≥ ni+nj−(δx+δy+ιx+ιy). On the

other hand, each insertion can also create a common

neighbor; thus |N∩(x, y)| ≤ ιx + ιy − 2.

395

Theorem. Greedy–Heuristic(G) recovers the

original transitive graph T if the following assump-

tion holds: For each vertex from any Ci in T , at

most 2ni/9 edges to vertices in other clusters are

added and at most 2ni/9 of the edges to vertices in

the same cluster are removed to obtain G.

Proof. We show that ∆e(G) > ∆f (G) for any inter-

cluster edge e and intra-cluster edge f . Assume that

e = xy lies between Ci and Cj , and that f = uv lies

in Ci. Using the Lemma and the 2/9-assumption,

∆e(G) − ∆(f) ≥ 2ni − (δx + 2ιx + 2δu + 2δv + ιu +

ιv)+nj − (δy +2ιy) ≥ nj/3 > 0, as all ni-terms can-

cel out. Therefore, Greedy-Heuristic will always

remove inter-cluster edges first. This also shows that

the “safety net” (step 5) of the algorithm is unnec-

essary here.

4. LAYOUT-BASED HEURISTIC

Our final heuristic is based on physical intuition and

motivated by graph layouting, initially introduced

by Fruchterman and Reingold6. It has later been ex-

tended and used for the visualization of structural

and functional relationships in biological networks,

e.g., in BioLayout7.

The main idea of these layout algorithms is to

arrange all nodes on a 2-dimensional plane to fit

esthetic criteria (such as even node distribution in

a frame and inherent symmetry reflection). The

graph’s nodes are interpreted as magnets (or elec-

trical charges of the same kind), and edges are re-

placed by rubber bands to form a physical system.

The nodes are initially placed randomly or in a circle,

for example, and then left to the forces of the sys-

tem, so that the magnetic repulsion and the band’s

attraction forces on the nodes move the system to

a minimal energy state. While a physical system

provides the motivation for these algorithms, in the

actual implementation the nodes need not move ac-

cording to exact physical laws.

We have adapted and extended these ideas: The

layout of the graph is used to partition it into disjoint

connected components. Our algorithm proceeds in

three phases: (1) layout, (2) partitioning, and (3)

postprocessing.

Layout phase. The goal is to find a position pos[i] =

(pos[i]1, pos[i]2) ∈ R
2 for each node 1 ≤ i ≤

n, starting with a circular layout of radius ρ0 (a

user-defined parameter) around the origin. We

define the distance d(i, j) of nodes i and j as

their Euclidean distance in the layout: d(i, j) :=(∑2
d=1 (pos[i]d − pos[j]d)

2
)1/2

.

For a user-defined number R of iterations, we

compute the displacement of each node, and up-

date the position pos[i] of each node i accordingly.

We have allowed ourselves some freedom in deriv-

ing a good displacement vector. In particular, we

do not compute forces, accelerations, and velocities

of points, but for simplicity’s sake, directly apply a

displacement vector to a node once it has been com-

puted according to the rules below. In this sense,

the physical system described above serves only as a

motivation, but not as a model for the algorithm.

In round r ∈ {1, . . . , R}, we compute the dis-

placement of node i as follows. For each node j �= i

with s(ij) > 0, we move i into the direction of j (the

unit vector of this direction is (pos[j]−pos[i])/d(i, j))

by an amount of fatt ·Fatt(d(i, j))·s(ij). Here Fatt(d)

is a strictly increasing function of the distance — we

use Fatt(d) := log(d + 1) —, and fatt > 0 is a user-

defined scaling factor for attraction. Conversely, for

each node j �= i with s(ij) < 0, we move i away

from j by an amount of frep · Frep(d(i, j)) · |s(ij)|,

where Frep(d) := 1/Fatt(d) is strictly decreasing, and

frep > 0 is another scaling factor.

Finally, the magnitude of the displacement vec-

tor is cut off at a maximal value M(r) that depends

on the iteration r: We use M(r) = n·M0 ·(1/(r+1))2

to obtain increasingly small displacements in later it-

erations. Again, M0 > 0 is a user-defined parameter.

After the displacement of a node i has been com-

puted, the node is immediately moved, before the

displacement of node i + 1 is computed. While this

does not agree with physical model, we have found

that it speeds up convergence of the layout and saves

memory for the displacement vectors for each node.

After all nodes have been moved, the next iteration

starts. The layout phase obviously runs in Θ(R ·n2)

time. The actions of the algorithm are visualized in

Figure 1.

For the cluster editing problem based on protein

sequence similarities, we use the following parame-

ters: number of iterations R = 186, initial circu-

lar layout radius ρ0 = 200, repulsion scaling factor

frep = 1.687, attraction scaling factor fatt = 1.245,

M0 = 633. The best parameter constellation is

396

Fig. 1. Layout of a graph with 41 nodes after (A) 3, (B) 10 and (C) 90 iterations.

(more or less) specific to the concrete problem and

has been obtained by an evolutionary training proce-

dure by using the cost function as quality function.

It is included in our implementation to enable the

user to perform parameter calibration for arbitrary

applications.

Partitioning phase. The nodes’ positions after R

rounds are used to partition the graph geograph-

ically. Given a distance parameter δ, we single-

linkage cluster all nodes, meaning that nodes i and

j belong to the same cluster if there exist nodes

i = i0, i1, . . . iK = j such that d(ik−1, ik) ≤ δ for

all k = 1, . . . , K. We determine cost(G → G∗
δ) for

the so defined transitive graph G∗
δ .

To find a good G∗
δ , we start with a small distance

parameter δinit := 0 and increase it (δ ← δ + σ) by

a growing step size σ: Initially σ ← σinit := 0.01;

subsequently σ ← σ · fσ with factor fσ := 1.1. This

continues until δ ≥ δmax := 300.

The best value for δ, along with its cost, is re-

membered. Obviously, the time complexity of the

partitioning phase is O(D ·n2), where D is the num-

ber of different values for δ.

Postprocessing. The geometric single-linkage clus-

tering is further improved by the postprocessing,

which takes O(n4) time in the worst case, but this

almost never happens in practice. Effectively, the

running overall time is O(n2). The two postprocess-

ing steps are:

(1) For each pair of clusters, we check if joining them

into a single cluster decreases overall cost and

perform this operation if appropriate. During

this step, we especially reduce the number of er-

roneous singleton nodes. This happens in arbi-

trary but deterministic order as long as merging

a pair of clusters results in an improvement.

(2) For each node i and cluster C with i /∈ C, we

check if moving i to C decreases overall cost and

perform this operation if appropriate. We also

repeat this step as long as further improvements

result.

5. RESULTS

We implemented the FP algorithm in C++, the

greedy heuristic in Python, and the layout-based

heuristic in Java. While with modern Java virtual

machines, running times of Java programs are com-

parable to those of C++ programs, there is a higher

start-up cost, which especially hurts performance for

small problem instances. Python running times are

about 10 times slower than those of the compara-

ble C++ implementation. This should be kept in

mind when comparing the running times of our im-

plementations. All measurements were taken on a

SunFire 880 with 900-MHz UltraSPARC III+ pro-

cessors and 32 GB of RAM.

Artificial graphs. We generate random artificial

graphs as follows. Given the number of nodes n,

we randomly select an integer k ∈ [1, n] and de-

fine the corresponding nodes to be a cluster. We

proceed in the same way with the remaining n − k

397

Table 1. Results on artificial graphs with different numbers of nodes n, resulting in different ranges of edge
numbers m. For each n ≤ 50, ten random instances were generated. For each n ≥ 60, where the FP al-
gorithm did not finish in reasonable time, only five instances were generated. Costs and running times are
averages over these 10 resp. 5 instances. Smallest costs and running times are marked in boldface. The
(Diff.) columns show the relative cost difference against the optimal solution returned by FP, where possi-
ble. Abbreviations: FP: fixed parameter algorithm; Greedy: greedy heuristic; Layout: layout-based heuristic.

Parameters Costs Running Times [s]
n m ∈ FP Greedy (Diff.) Layout (Diff.) FP Greedy Layout

10 [11,30] 95.75 96.17 (+0%) 95.75 (+0%) 0.035 0.242 0.845
20 [65,165] 301.89 305.22 (+1%) 301.89 (+0%) 0.152 0.538 1.407
30 [138,296] 671.25 671.51 (+0%) 671.25 (+0%) 2.756 1.157 1.876
40 [251,533] 1238.3 1238.31 (+0%) 1238.31 (+0%) 72.109 3.167 2.816

50 [402,821] 1859.99 1859.99 (+0%) 1859.99 (+0%) 2204.862 8.315 3.353

60 [515,1252] — 2742.3 (—) 2742.3 (—) — 19.198 3.972

70 [694,1911] — 3608.54 (—) 3609.48 (—) — 58.124 4.358

80 [1141,2094] — 4729.52 (—) 4722.08 (—) — 69.056 4.698

90 [1248,2969] — 6106.56 (—) 6106.56 (—) — 128.986 5.384

100 [1711,3157] — 7494.36 (—) 7494.36 (—) — 207.958 5.464

nodes until no nodes are left. This gives us a ran-

dom number of clusters of random sizes. Then the

similarities of objects within a cluster are drawn

from a Gaussian distribution N (µin, σ2
in); they are

positive on average, but negative with some prob-

ability. Similarities of objects in different clusters

are conversely drawn from a Gaussian distribution

N (µex, σ
2
ex), which leads to negative values on aver-

age. If the parameters are chosen carefully, this con-

struction leads to “almost transitive” graphs. For

our experiments, we choose µin = 21, µex = −21,

σin = σex = 20, so that the probability of seeing an

undesired or missing edge is about 0.147 per node

pair.

Table 1 shows the results. We see that the FP

algorithm is the fastest one for small graphs, but

reaches its limits above 50 nodes. On the other hand,

the greedy and layout-based heuristics perform al-

most as well, while requiring significantly less time.

The layout-based heuristic is much faster on large

components, but first requires a good choice of pa-

rameters, as discussed in Section 4.

Protein similarity graph from the COG dataset.

We test the algorithms on the 66 organisms of the

COG dataset17 from http://www.ncbi.nlm.nih.

gov/COG/, i.e., on the protein sequences from ftp:

//ftp.ncbi.nih.gov/pub/COG/COG/myva/.

We define the similarity score of two pro-

teins as follows: First let s(u → v) :=∑
H∈H(u→v) [− log10 E(H)] − 2 · (|H(u → v)| − 1).

Here H(u→ v) denotes the set of high-scoring pairs

(HSPs) with E-value better than 10−2 returned when

BLASTing u against v. We subtract a penalty of

2 score points for each HSP beyond the highest-

scoring one. We similarly define the score s(v → u)

by BLASTing v against u. Finally we define the

symmetric similarity score s(u, v) := min{s(u →

v), s(v→u)}−T , where we use a threshold of T = 10,

corresponding to an E-value of 10−10.

The resulting similarity matrix defines a graph

of 42563 (trivially transitive) connected components

of size 1 and 2, and 8037 larger components, 3964

of which are not transitive; these are the input to

our algorithms. Figure 2 shows a histogram of ini-

tial component sizes |V |. There are 70 intransitive

components with |V | > 200 that are not shown in

the histogram, the largest of size 8836.

As all three algorithms perform well on very

small components (which could be solved by exhaus-

tive enumeration), we now restrict our attention to

the 1243 components with |V | ≥ 20. For each in-

stance and each algorithm, we limit computation

time to 48 hours; thus we could find the exact FP

solution for 825 of the 1243 components in the al-

loted time.

Figure 3 (left) shows the relative cost of the so-

lutions found by Greedy and Layout in comparison

to the optimal one found by FP for the 825 compo-

nents. Both heuristics work quite well: In 635 out of

825 cases, Greedy returns the optimal solution; and

in 811 out of 825 cases, Layout returns the optimal

solution. This behavior is relatively independent of

the size or complexity of the graph (shown on the

x-axis). The solution returned by Layout deviates in

only two cases by more than 5% from the optimal so-

398

4 6 8 10 12 14 16 18
0

500

1000

1500

2000

component size |V|

nu
m

be
r

of
 c

om
po

ne
nt

s
non−transitive components
transitive components (cliques)

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

component size |V|

nu
m

be
r

of
 c

om
po

ne
nt

s

non−transitive components
transitive components (cliques)

Fig. 2. Initial distribution of component sizes |V | for the complete COG dataset in the range 3 ≤ |V | < 20 (left) and
20 ≤ |V | ≤ 200 (right). Cyan (lower bars): number of non-transitive components. Magenta (upper bars): number of tran-
sitive components.

lution; this happens in 95 cases with Greedy, whose

maximal deviation is about 50% in rare cases.

Figure 3 (right) visualizes the running times of

the different algorithms against component complex-

ity for all 1243 components. It is evident that the

FP algorithm is fastest for small components, but

quickly hits a wall for larger ones. Greedy is quick-

est for medium-sized components, but its running

time grows faster with graph complexity than that

of Layout, which is the only feasible algorithm for

the largest components.

6. DISCUSSION AND CONCLUSION

We have put forward three algorithms for weighted

transitive graph projection or weighted cluster edit-

ing that cover the whole spectrum from an exact

fixed-parameter algorithm to pure heuristics. If

graphs that arise from “real” data are not far away

from transitivity (in contrast to random graphs,

which are highly intransitive with high probability

according to Moon’s result12), we can find the opti-

mal solution to the WTGPP with an FP algorithm

in reasonable time for medium-sized components,

and close-to-optimal solutions with well-engineered

heuristics in guaranteed polynomial time. The FP

and the Greedy algorithm complement each other

well: The former guarantees the exact solution (and

runs quickly for almost transitive graphs); the latter

always runs in polynomial time and guarantees an

optimal solution for close-to-transitive graphs. The

Layout heuristic works very well in practice, but has

no provable guarantees.

Our study shows that real protein similarity

graphs are indeed close-to-transitive, and the three

algorithms perform quite well on these WTGPP in-

stances. Although not in the scope of this paper,

the WTGPP has numerous potential applications

to be investigated. Here we merely used the COG

dataset as a comparative illustration of the respec-

tive capabilities of our three algorithms. Applica-

tions naturally arise in delineating gene and protein

families11, 17 (which in turn can be used as a pre-

processing method for gene cluster discovery15) and

in the discovery of structure in protein complexes or

of communities in social or biological networks.

To further understand and improve the FP al-

gorithm, it is of interest to systematically compare

the branching strategy of our FP algorithm with that

of a general ILP solver, using the cutting plane algo-

rithm of Ref. 10, which so far has not been attempted

on large components.

Acknowledgments and availability.

Tobias Wittkop is supported by the DFG GK Bioin-

formatik. Jan Baumbach is supported by the In-

ternational NRW Graduate School in Bioinformatics

and Genome Research. The fixed-parameter algo-

rithm was implemented and engineered by Sebastian

Briesemeister. We thank M. Madan Babu for many

constructive comments, and Andreas Dress for point-

399

10
3

10
4

10
5

0

10

20

30

40

50

Graph complexity |V|*|E|

R
el

at
iv

e
so

lu
tio

n
co

st
 d

iff
er

en
ce

 [%
]

Solution cost Differences

Greedy vs FP
Layout vs FP

10
3

10
4

10
5

10
6

10
7

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Graph complexity |V|*|E|

R
un

ni
ng

 ti
m

e
[s

]

Comparison of Running Times

FP
Greedy
Layout

Fig. 3. Left : Relative cost differences of the solutions in percent (y-axis) found by Greedy and Layout in comparison to the
exact Fixed-Parameter (FP) algorithm. Only those components whose exact solution could be computed in less than 48 hours
are shown. For both Greedy and Layout, in the majority of cases, the optimal solution is found. Note that the x-axis, which
shows the component complexity (we use |V | · |E|), is logarithmic. Right : Running times of FP, Greedy, and Layout against
component complexity. Both axes are logarithmic.

ing out the work of Grötschel and Wakabayashi.

Supplementary material and source code is

available at http://gi.cebitec.uni-bielefeld.

de/transitivegraphprojection/.

References

1. S. F. Altschul, T. L. Madden, A. A. Schäffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids
Res, 25(17):3389–3402, 1997.

2. P. Damaschke. On the fixed-parameter enumerabil-
ity of cluster editing. In D. Kratsch, editor, Proc.
of International Workshop on Graph Theoretic Con-
cepts in Computer Science (WG 2005), volume 3787
of LNCS, pages 283–294. Springer, 2005.

3. F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw,
and Y. Zhang. The cluster editing problem: Imple-
mentations and experiments. In Proc. of Interna-
tional Workshop on Parameterized and Exact Com-
putation (IWPEC 2006), volume 4169 of LNCS,
pages 13–24. Springer, 2006.

4. S. Delvaux and L. Horsten. On best transitive ap-
proximations to simple graphs. Acta Informatica,
40(9):637–655, 2004.

5. R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

6. T. M. J. Fruchterman and E. M. Reingold. Graph
drawing by force-directed placement. Software -
Practice and Experience, 21(11):1129–1164, 1991.

7. L. Goldovsky, I. Cases, A. J. Enright, and C. A.
Ouzounis. BioLayout(Java): versatile network visu-

alisation of structural and functional relationships.
Applied Bioinformatics, 4(1):71–74, 2005.

8. J. Gramm, J. Guo, F. Hüffner, and R. Nieder-
meier. Automated generation of search tree algo-
rithms for hard graph modification problems. Algo-
rithmica, 39(4):321–347, 2004.

9. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier.
Graph-modeled data clustering: Exact algorithm for
clique generation. Theor. Comput. Syst., 38(4):373–
392, 2005.

10. M. Grötschel and Y. Wakabayashi. A cutting plane
algorithm for a clustering problem. Mathematical
Programming, Series B, 45:59–96, 1989.

11. A. Krause, J. Stoye, and M. Vingron. Large scale
hierarchical clustering of protein sequences. BMC
Bioinformatics, 6:15, 2005.

12. J. W. Moon. A note on approximating symmetric re-
lations by equivalence classes. SIAM Journal of Ap-
plied Mathematics, 14(2):226–227, 1966.

13. R. Niedermeier. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press, 2006.

14. R. Niedermeier and P. Rossmanith. A general
method to speed up fixed-parameter-tractable algo-
rithms. Inform. Process. Lett., 73:125–129, 2000.

15. S. Rahmann and G. W. Klau. Integer linear pro-
grams for discovering approximate gene clusters. In
P. Bucher and B. Moret, editors, Proceedings of
the 6th Workshop on Algorithms in Bioinformat-
ics (WABI), volume 4175 of LNBI, pages 298–309.
Springer, 2006.

16. R. Shamir, R. Sharan, and D. Tsur. Cluster graph
modification problems. Discrete Applied Mathemat-
ics, 144:173–182, 2004.

400

17. R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R.
Jacobs, B. Kiryutin, E. V. Koonin, D. M. Krylov,
R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya,
B. S. Rao, S. Smirnov, A. V. Sverdlov, S. Vasude-
van, Y. I. Wolf, J. J. Yin, and D. A. Natale. The
COG database: an updated version includes eukary-

otes. BMC Bioinformatics, 4:41, 2003.
18. C. T. Zahn Jr. Approximating symmetric relations

by equivalence relations. Journal of the Society of
Industrial and Applied Mathematics, 12(4):840–847,
1964.

401

