41
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Knowledge of the pattern of disulfide linkages in a protein leads to a better understanding of its tertiary structure and biological
function. At the state-of-the-art, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) can
produce spectra of the peptides in a protein that are putatively joined by a disulfide bond. In this setting, efficient algorithms are
required for matching the theoretical mass spaces of all possible bonded peptide fragments to the experimentally derived spectra to
determine the number and location of the disulfide bonds. The algorithmic solution must also account for issues associated with
interpreting experimental data from mass spectrometry, such as noise, isotopic variation, neutral loss, and charge state uncertainty. In
this paper, we propose a algorithmic approach to high-throughput disulfide bond identification using data from mass spectrometry, that
addresses all the aforementioned issues in a unified framework. The complexity of the proposed solution is of the order of the input
spectra. The efficacy and efficiency of the method was validated using experimental data derived from proteins with with diverse

disulfide linkage patterns.

1. INTRODUCTION

Cysteine residues have a property unique among the 20
naturally occurring amino acids, in that they can pair to
form disulfide bonds. These covalent bonds occur when
the sulthydryl groups of cysteine residues become
oxidized (S-H + S-H — S-S + 2H)." Because disulfide
bonds impose length and angle constraints on the
backbone of a protein, knowledge of the location of
these bonds significantly constrains the searchspace of
possible stable tertiary structures which the protein folds
into. The disulfide linkage pattern of a protein also can
have an important effect on its function. For example,
the disulfide bond structures of ST8Sia IV are necessary
for its polysialyation activity.’

Methods for determining disulfide bonds in a
protein can be classified as either: (1) purely predictive,
based completely on the protein’s primary structure, or
(2) based on analyzing data from experimental methods,
Crystallography, NMR, and Mass
Spectrometry.™* Predictive approaches typically aim to

such as

infer the disulfide bonding state of cysteine residues in a
protein, primarily by characterizing a heuristically
defined local sequence environment. Towards this goal,
predictive approaches include graph-theoretic methods,’

combinatorial optimization formulations,” techniques

* Corresponding author. Email: rsingh@cs.sfsu.edu

based on efficient indexing of the search space,” and a
variety of supervised learning formulations involving
neural-networks, hidden Markov models, and support
vector machines.®!° However, Vullo and Frasconi
concluded that any prediction algorithm must have a
computational  time  complexity bounded by
Om(~/n /2)"), where n is the number of cysteines in the
protein.®  This limits the application of such an
algorithm to proteins with only a few disulfide bonds.
In addition, the prediction accuracies or these methods,
defined as the fraction of the total number of proteins
whose connectivity patterns are correctly predicted, are
currently limited to about 60%.

By contrast, determination of disulfide bonds can
also be achieved with high accuracy for any number of
bonds by analyzing data from structure elucidation
techniques such as X-ray crystallography and NMR.
These techniques require relatively large amounts (10 to
100 mg) of pure protein in a particular solution or
crystalline state and are fundamentally low-throughput
in nature.

In this context, the use of information from mass
spectrometric (MS) analysis constitutes an important
direction for elucidation of structural features, such as
disulfide bonds. For identification of disulfide linkages,
the general strategy involves mass spectrometry-based
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analysis to make an initial identification of the putative
peptides involved in a disulfide bond. These peptides
are then fragmented, and a tandem mass spectrum
(MS/MS) of the fragments generated. The MS/MS
spectrum is subsequently analyzed to confirm the initial
identification of a disulfide bond. Such an approach can
offer accurate identification and, in principle, can scale
to any number of bonds with much less stringent sample
purity requirements when compared to NMR or X-ray
crystallography. Although the aforementioned approach
is conceptually straightforward, the actual task of
identifying the MS/MS spectra corresponding to
disulfide linkages is non-trivial.

In this paper we investigate this precise problem.
The key contributions of this work lie in addressing the
problem of disulfide bond identification in the context
of the technical challenges arising from the use of the
real-world data from tandem mass spectrometric
analysis. The combination of experimental procedure
and algorithmic analysis proposed is scalable to
structures having a large number of disulfide bonds.
Furthermore, the processing is inherently high-
throughput. Other features of the proposed approach
include:

e [nvariance to the topology of the disulfide bonds:
Disulfide bonds may be classified as intra-
molecular bonded (within a single peptide chains)
or inter-molecular bonded (between different
peptide chains). The proposed methodology can
identify such bonds within a single framework.

e Analysis of experimental errors/noise at the level of
the produced spectrum: Our proposed methodology
requires the mass spectra and tandem mass spectra
to be converted into a finite set of discrete “mass
peaks.” We present algorithms to resolve such
peaks from spectra having peaks of non-zero width.
We also address how to obtain the optimal set of
peaks from each tandem mass spectrum.

e Accounting for neutral loss and isotopic variation:
During the collision induced disassociation step of
an LC/ESI-MS/MS analysis, a peptide fragment
may have undergone neutral loss, resulting in the
loss of a small molecule such as water or ammonia.
In addition, the constituent atoms that comprise an
amino acid exist in a number of isotopic forms. As
a result, peptides consisting of the same sequence of
amino acids will be measured as a series of masses
by the mass spectrometer. This must be considered

when computing the expected mass of a disulfide
bonded peptide fragment.

e [Interpretation of the charge state: Precursor ions
with a high charge state (triply charged ion or
greater) can be misinterpreted by MS data
processing programs commonly supplied as part of
the MS instrumentation. For example, ion trap mass
spectrometers have a relatively low resolution. In
such cases, a quadruply charged ion may not be
well resolved and can be misinterpreted as a triply
charged ion. This error often cannot be identified
unless a higher resolution scan (zoom scan) is
employed during the experiment. Consequently, the
mass of a disulfide bonded pair of peptides is
incorrectly computed, resulting in either not
identifying  (false negative) or incorrectly
identifying (false positive) the bond.

1.1. Comparison of the Proposed
Approach with Related Works

Examples of techniques employing purely predictive
methodology include DiANNA," DISULFIND," and
PreCys.””  Each of these implementations employ
weighted graph matching to predict the final disulfide
connectivity pattern. In fact, these implementations all
use a program (by Rothberg) that implements Gabow’s
algorithmic solution of the maximal weighted graph
matching problem.'* Additionally, a learning strategy is
involved where fundamental assumptions are made
about the relationship between the cysteine residues in
order to obtain the edge weights. Examples of such
assumptions include length of the local sequence
environment to be considered, formulation of the residue
contact potential function used, and assumptions
involved in defining the training set. However, their
reported prediction accuracies indicate that these
underlying assumptions remain open to further
investigations.

Existing web-based programs such as MS-Bridge in
the ProteinProspector tools,”” X! Protein Disulphide
Linkage Modeler,'® and Peptidemap'” are useful when
analyzing MS data from MALDI-TOF (Matrix Assisted
Desorption Flight)
experiments. However, these programs do not analyze
MS/MS data, thus missing the wuseful structural
information inherent in this data. = The program
MS2Assign can be used to analyze disulfide linkages
from MS/MS data."® However, because it was designed
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primarily for the analysis of results from cross-linking
studies, MS2Assign requires the user to input detailed
information on the specific modifications expected. As
a result, there is a need for a software tool that utilizes
both MS and MS/MS data to identify disulfide linkage
patterns in a high throughput manner.

2. THE PROPOSED METHOD

2.1. Problem Formulation

Let a; denote the set of amino acid residues, each with
mass m(a;). A peptide p = {a;} is then a string of amino
acids with mass m(p) = }; m(a;) + 18 Da (Daltons).
Peptides have a specific directionality: the string starts
at the unbonded amide group, called the N terminus, and
ends at the carboxylic acid group, called the C terminus.
The term 18 Da is included in this formula to account
for the masses of H and OH of the N- and C-termini of
the peptide, respectively.

In a LC/ESI-MS/MS experiment, a protease is used
to divide a protein into peptides. A protein A = {p;}
denotes the set of all peptides. A cysteine-containing
peptide cis a peptide of protein A that has at least one of
its amino acids a; identified as a cysteine residue. Thus
if C = {c;} is the set of all cysteine-containing peptides,
then C < A . Inpractice, it is very rare that C = A.

A disulfide bonded peptide D, ,1s a pair of cysteine-
containing peptides ¢; and c,, with mass m(C; ;) = m(c,)
+ m(c,) — 2m(H), where 2m(H) accounts for the mass of
the two protons that are lost when the disulfide bond is
formed. A disulfide connectivity pattern can be
modeled in terms of an undirected graph G = (V, E). The
vertex set V represents the set of bonded cysteines and
an edge e€ £ corresponds to a disulfide bridge
between its adjacent cysteines. Admissible vertex and
edge sets are constrained because an even number of
intra-chain bonded cysteines is required and a cysteine
can only be bridged to one and only one different
cysteine. Thus, we have |V] = 2B, |E| = B and degree(v)
=1 forany v € V' (perfect matching), where B denotes
the number of disulfide bonds in a chain.

The problem of identifying the correct connectivity
pattern for a given disulfide bonded chain is simply
formulated as finding the best possible candidate as
given by a suitable scoring function. If we consider only
those cysteines that are known to be involved in a
disulfide bond, it is evident that this problem is
equivalent to the problem of computing the maximum-
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weight perfect matching. In a perfect matching, every
vertex of the graph is incident to exactly one of the
edges of the matching. In this formulation, we attribute
a weight w, greater or equal to zero for the edge e of G
that was initially identified by the MS spectrum match to
each pair of cysteines.

The disulfide bond mass space BMS = {bms;} of a
protein is the set of every possible pair of cysteine-
containing peptides. A mass list ML = {ml;} is the set of
numbers that represent the masses of the precursor ions
obtained from a LC/ESI-MS/MS experiment. A bond
match bm; between D and MI occurs between bms; and
ml; when |bms; — ml;| < bm,, where msm, is defined as the
bond mass tolerance, the £ amount of experimental
uncertainty that m/; is allowed to have to determine the
match. A bond spectrum match is the set of matches
BSM = {bsm,} between ML and BMS.

In a LC/ESI-MS/MS experiment, each precursor
ion undergoes collision-induced disassociation, resulting
in fragment ions that constitute a MS/MS spectrum. If
the precursor ion is a disulfide bonded pair of peptides,
the fragmentation process typically keeps this bond
Let FML = {fml} denote the set of MS/MS
values corresponding to the masses of the peptide
fragments.
peptide with mass m(F) = ) «i<s m(a;), where r and s
denote the locations of starting and ending amino acids
of the peptide fragment. A disulfide bonded fragment
F;,1s a pair of peptide fragments F; and F,, with mass
m(F,,) = m(F,) + m(F,) — 2m(H). For there to be a
disulfide bond between F, and F,, each fragment must
contain at least one cysteine. The disulfide bonded
fragment mass space FMS = [fins;} for two cysteine-
containing peptides P; and P;is the set of every disulfide

intact.

A peptide fragment F is a substring of a

bonded fragment mass that can be obtained from these
two peptides. A fragment match fin; between FML and
FMS occurs between fml; and fins; when |fins;; - fml)| <
fm,, where fm, is defined as the MS/MS mass tolerance,
the £ amount of experimental uncertainty that tms; is
allowed to have to determine the match. A MS/MS
spectrum match TSM is the set of matches TSM = {fsm,}
between FMS and FML. The match ratio r is then
defined as the number of matches divided by the size of
the tandem mass spectrum, i.e. r = |TSM|/|FMS|.

Since each match ratio is a measure of how well
the LC/ESI-MS/MS experimental data supports the
hypothesis of a disulfide bond between two of the
cysteines in the protein being analyzed, we denote r;; as
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the match ratio for a bond between cysteines C; and C..
As a result, each r is assigned as the weight w, of the
graph G which models the overall connectivity pattern.
Thus, the disulfide linkage pattern identification
problem is to find a perfect matching in G of maximum
weight.

2.2. Algorithmic Framework

Determining the disulfide linkage patterns involves

solving the following four sub-problems:

1. Find the bond spectrum match BSM between the
mass list ML and the disulfide bond mass space
BMS.

2. Determine the MS/MS spectrum match TSM
between the disulfide bonded fragment mass space
FMS and the MS/MS mass list FML.

3. Find a perfect matching of maximum weight for a
fully connected graph with |C| vertices, with edges
of weight r;;.

4. Utilize experimental data the contains noise,
isotopic variation, neutral loss, and charge state
uncertainty to achieve the matchings in sub-
problems 1 and 2.

In the following subsections, we present our
approach to each of these sub-problems.

2.2.1. Finding the MS spectrum match

Let k& denote the number of sites where an arbitrary
protein A can be cleaved with a certain protease. The
construction of the mass space then requires O(k%) time.
This is because the & proteolytic amino acids divide the
protein A into k+1 subsequences, leading to A(k+1)/2
unique pairs of subsequences that can be formed. For
the case of disulfide bonds, we are concerned with
forming unique pairs of subsequences from C as
opposed to 4. Because C < A for almost all proteins
and proteases, the disulfide bond mass space BMS is
likely to be smaller than the mass space obtained from
every peptide in 4.

The quadratic time complexity can be further
reduced if the data structure used to construct and search
D did not require computing the mass of every member
of D. The intuition lies in computing the masses of the
possible disulfide bonded peptides that are expected to
be close in value in the mass spectrum S. This can be

done by use of the expected amino acid mass, as defined
below:

DEFINITION 1.
The weighted mean of A, i.e, m, = Y wim(a;), where
{w;}denotes the relative abundance of each amino
acid. Using published values for masses and relative
abundances,'’ we obtain m, = 111.17 Da.

Expected Amino Acid Mass m,.

Using this definition, we can predict that the mass
of a peptide m(p) = ||p|| m. + 18, where ||p|| represents
the number of amino acids contained in the peptide.
The additional 18 Da was explained in Section 2.
Statistically, this is justified to a first approximation
because the weighted standard deviation, again using
published datalg, 1s 28.86 Da. Thus, the number of
amino acids in the bonded pair of peptides, denoted
lld;ll, can be used to construct BMS in such a way that it
is approximately mass sorted. This is the motivation for
exploring the use of a hash table to construct and search
BMS.

The hash table is a well known data structure for
efficient searching of a data space.”’ If the hash function
employed satisfies the assumption of simple uniform
hashing, then the expected time to search for an element
is O(1). Simple uniform hashing means that, given a
hash table T, with |7] buckets, any data element d; is
equally likely to hash into any bucket, independently of
where any other element has hashed to. Using the
Expected Amino Acid Mass to predict the mass of a
peptide, we implement the simple hashing function h(d;)
= ||d;|l as a first approximation. This results in our
algorithm (which we call MSHashID) for this sub-
problem, to have an overall complexity of O(|CI* +
|BMS]|), where |BMS] is the size of the mass spectrum.

Table 1 presents a toy example illustrating the
construction of the hash table. In this example, the three
pairs of peptides will be hashed to buckets 10, 12, and
14 respectively.

Let the MS spectrum for peptides of the protein
being considered in this example contain a mass peak
having the value of m(p) = 1332 Da. Following our
approach, this results in an estimated number of amino
acids to be 12 (|lp|l = 12). Subsequently, the
corresponding bucket in the hash table is accessed.



Table 1. Example showing how hash table is constructed.

1.Given protein 2. Identify 3. Form all 4. determine

sequence and cysteine- possible pairs number of

protease containing of peptides amino acids
peptides in each pair

EC’GRNVNC® | EC’GR EC’GR 10

TKAIQC™LDE NVNC*TK

H, trypsin NVNC*TK | EC’GR 12

(cleaves after K AIQC™LDEH

and R) AIQC™LDEH | NVNC*TK 14

AIQCLDEH

In our example, this bucket contains the peptide
NVNCTK. The mass of this peptide is then computed,
and compared with m(p) to determine if there is a match.
Because there is a possibility that another bucket may
contain a peptide pair with a matching mass,
neighboring buckets (i.e, buckets 11 and 13) are also
accessed.

2.2.2. Finding the MS/MS spectrum match

Based on experimental observation, when peptides
undergo collision-induced dissociation (CID), the
fragments produced are mostly either a b-ions (contains
the N terminus) or y-ions (contains the C terminus).’
We have also observed that the disulfide bond remains
intact during CID. Let pl denote a peptide with its
possible y-ions yl and b-ions bl, and similarly y2 and
b2 for peptide p2. If pl and p2 are in a disulfide bond,
four types of fragments may occur: yl+y2, yl+b2,
bl+yl, and bl+b2. The most convenient way to
compute and display the disulfide bonded pair mass
space is to generate four tables in which each row
represents the mass of an ion of the first peptide and
each column represents the mass of an ion of the second
peptide. Then, each entry in this MS/MS mass table
(subsequently referred to as mass table) is the sum of its
row and column, minus 2m(H) Da. Next, let peptides pl
and p2 consist of m and n amino acid residues,
respectively. The first step is to compute the lowest and
highest masses m,,;, and m,,, in the mass table. The
former is the first row and first column of the mass table,
and the latter is its last row and last column. Also,
because the dynamic range of amino acid residue masses
is relatively small (about 3.3:1 in the extreme case of
tryptophan:glycine), the increase in mass is
approximately linear as the values are read “diagonally”
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from the lowest to the highest value. Thus, given an
MS/MS fragment ion mass, it is possible to make an
initial estimate of the location of the diagonal band of
theoretical table masses that are most likely to match
this fragment ion mass.

Let s be an MS/MS fragment ion mass peak value.
If either s < m,,;, or s > m,,,,, the algorithm returns no
value. Otherwise, in the second step, we compute the
average amino acid residue mass m = (m(pl) +
m(p2))/(n + m). This is the approximate mass difference
between an element and the (up to) four elements that
are a “step” away from it. A step is defined to be the
movement of an index that points from an element to a
neighboring element, either vertically or horizontally, in
a mass table. Thus, the estimate of the number of steps
used to index into the table to locate the band for a
particular mass peak is nges = s / M . While any
continuous path of steps from m,,;, to m,,, can be used
to locate the band, it is simplest to step along the
perimeter of the mass table. In this algorithm, we start
by stepping “down” along the first column, and then
“across” along the last row.

We note that the initial estimate may not index into
the actual location of the band. Therefore, we need a
strategy to reach the actual location starting from the
initial estimate. For relatively short peptides of under
one hundred amino acid residues (much longer than
usually encountered in tryptic digests), one can simply
generate neighboring mass table elements along the path
used to index into the table until the band is reached.
The location of the band is identified as the index of the
element that has the mass closest to s.

Once the location of the band is identified, the
remaining elements of the band are generated and
compared to s. The second element will be found either
directly above, or above and to the right (row=row-1,
column=column+k, where k depends on the relative
sizes of the peptides) of the first element.

As an example, let the two amino acid sequences be
pl = NVNCTK, and p2 = AIQCLDEH. Table 2 shows
all of the possible y- and b-ions that contain a cysteine,
as well as the mass of each ion. Note that for y ions, an
additional 18 Da are added to the sum of the residue
The resulting mass table for the bl + y2
combination is shown in Table 3.

The algorithm described by this approach, IndexID,
has a worst case time complexity of O(n + m) to locate
the band. However, because this approach usually

masscs.
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indexes into the mass table just a few elements away
from the band, the time complexity can be estimated by
a constant. Because the band is in general a diagonal
along the mass table, generating the band elements has a
complexity of O(A/nm ). Since IndexID is invoked
for each instance of a FSM spectrum match, the time
complexity of the solution to subproblem 2 for a protein
is O([FML| (A/nm )), where |[FML| is the size of the
tandem mass spectrum.

Table 2. Example fragment mass space

Peptide Ton Sequence Mass (Da)
type
1 y CTK 351
NCTK 446
VNCTK 564
NVNCTK 678
b NVNC 431
NVNCT 532
NVNCTK 660
2 y CLDEH 501
QCLDEH 639
IQCLDEH 752
AIQCLDEH 813
b AIQC 316
AIQCL 429
AIQCLD 544
AIQCLDE 673
AIQCLDEH 810
Table 3. Example mass table.
bl+y2-2 501 639 752 813
CLDEH QCLDEH IQCLDEH AIQCLDEH
431
NVNC 930 1068 1181 1242
532
NVNCT 1031 1169 1282 1343
660
NVNCTK | 1159 1297 1410 1471

2.2.3. Finding a perfect matching of maximum
weight for a fully connected graph

Sub-problem 3, the maximum-weight perfect matching
problem, is a well understood problem in graph theory.
At present, the best performing algorithm that solves this
problem for a fully connected graph was designed by
Gabow.”' This algorithm has a worst-case bound of
o(CP).

2.2.4. Consideration of missed proteolytic
cleavages and intra-molecular bonded
cysteines

In the laboratory, a protease used to digest a protein may
sometimes miss a cleavage point. For example, a
protein with sequence NRDKTA should be digested by
trypsin into three peptides: NR, DK, and TA. However,
if one cleavage point is missed, two peptides are
created: either NRDK and TA, or NR and DKTA. We
model this behavior by including the parameter m1,,,,, the
maximum number of missed cleavages allowed.

It can be inferred by induction that a protein with k
cleavage sites and a my,,, = m will digest into (m + 1)k
unique peptides, assuming k >> m. Note that my,,
includes all smaller values of missed cleavage levels,
e.g., My, =2 includes m = 1 and m = 0 as well. If my,,
is small (e.g., three or smaller), missed cleavages can be
considered to be a constant multiplicative factor in our
time complexity analysis as described earlier.

Since the proteolytic digestion process produces
peptides that contain two or more cysteine residues,
there is the possibility that intra-molecular bonds may
occur, i.e. disulfide bonds exist within a single peptide.
These peptides must be included into the mass list ML,
with mass m(p) = > im(a;) — 2, if at most one disulfide
bond per peptide is considered. The impact on time
complexity is simply the larger disulfide bond mass
space D, which can be modeled as an additive factor,
f(|P|, |C|, mpax). The disulfide bonded fragment mass
space DF for an intra-molecular bonded peptide consists
of the union of the mass spaces of the possible b-ions
and y-ions that can result from its fragmentation. For
example, for the peptide ASICQQNCQY, the possible
b-ions are bl, b2, b3, b8, b9, and b10, and the possible
y-ions are yl, y2, y7, y8, y9, and yl10. Thus the
complexity of the solution to subproblem 2 is increased
by an additive factor, O(|ML| max[n, m]).

2.2.5. Peak finding in the presence of noise

Using Bioworks software from Thermo-Fisher, the raw
data obtained from a LC/ESI-MS/MS analysis of a
single protein is converted to a series of of DTA files.
The DTA format is very simple; the first line contains
the mass of the precursor ion and the peptide charge
state as a pair of space separated values. Subsequent
lines contain space separated pairs of fragment ion



mass-to-charge ratios (denoted m/z) and intensity
values. These lines are sorted in order of increasing
m/z. Typically hundreds of DTA files are produced per
analysis.

A typical DTA file contains on the order of 10* to
10° lines of fragment ion information. The intensity
vales can range from 1 to the order of 107. It is
expected that only a fraction (<100) of the measured
fragment ion readings are derived from the actual b- and
y-related fragments of the precursor ion. Most of the
other less intense ion readings reflect instrumental or
chemical noise. To account for these effects, our
proposed methodology takes the following steps:

1. We do not consider fragment ion lines with
intensity values less than a certain threshold t,
defined as a percentage of the maximum
intensity found in the DTA file.

2. If the number of remaining lines is still large
(>100), a limit [ is placed on the number of
peaks to be considered for matching.

Next, we consider the correlation between MS/MS
spectrum peaks and the mass/intensity lines in the
associated DTA file. In the graphical representation of a
MS/MS spectrum the peaks are very sharp. In the DTA
file the more intense mass peaks typically occupy
several neighboring lines, reflecting the slightly
differing masses of the isotopes of a fragmented ion. If
each line in a DTA file is considered to be a separate
mass peak, the data analysis would be biased towards
masses associated with more intense peaks.

To correct for this bias, we represent a set of
neighboring lines with similar intensity as a single peak.
We formalize the concept of “neighborhood” by
defining the maximum peak width p,, as the maximum
difference in mass-to-charge ratio that two consecutive
lines in the DTA file can have and yet be considered to a
single peak.
difference in intensity of two neighboring peaks less
than 50% of the larger intensity. We denote the set of
peaks that result as p;, where 0 < i < L.

Figure 1 illustrates an example of how threshold t,
limit I, and maximum peak width p, work together to
find the best mass peaks.
peaks shown here be labeled a through f, and let ¢ =
10%, I = 2 and p,, be the mass range as shown. Peak c
has the maximum intensity, so peak f is eliminated, since
its intensity is less than 10% of ¢’s. Because p,,> ¢ — a,
peaks a, b, and ¢ would have been replaced by a single

“Similar” is defined as the absolute

Let the masses of the six
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peak with mass of average mass of these three peaks.
However, because the intensity of peak b is less than
50% of peak a, this is not done. Instead, the peak
window moves to peaks c, d, and e. In this case, these
peaks are replaced by a single peak of mass = (¢ +d +
e)/3. Since the limit is two, this peak and peak a are
identified as the peaks to use for subsequent analysis.

Figure 1. Illustrative example of peak finding.

intensitv
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2.2.6. Addressing
neutral loss

isotopic  variation and

To account for the possibility of neutral loss, for each
element fml; of the MS/MS mass space FML computed
in the preceding section, we add three more elements:
m(finl; ) + m(H,0), m(finl; ) + m(NH3), and m(fin/; ) +
m(H,0) + m(NH;), where m(H,O) is the mass of a water
molecule and m(NH;) is the mass of an ammonia
molecule. This accounting increases the size of the
disulfide bonded fragment mass space FMS by a factor
of four.

In addition, we use the average masses for amino
acid residues to compute the mass of peptides and their
fragments with molecular weights greater than 1500 Da.
Our experiments using an ion trap indicate that this
results in more accurate correlations with observed
fragment ion peaks than by simply using monoisotopic
masses. As a consequence of this step, we empirically
observed a much closer correlation between the MS/MS
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mass space FML and the disulfide bonded fragment
mass space FMS values.

2.2.7. Interpretation of peaks given charge

state uncertainty

For some low resolution mass spectrometers, it has been
observed that the charge state of the precursor ion used
to generate the MS/MS spectra may be reported
incorrectly. An incorrect number for the charge state
will significantly impact the MS/MS mass space that is
searched for matches. To address such cases our system
is implemented such that the user can intervene and
correct the mass assignment.

Next, we examine how to process the values of
fragment ion m/z in the DTA file to obtain the MS/MS
mass space FML used to search for matches with the
disulfide bonded fragment mass space FMS. Let the
charge state value (reported or corrected) for a DTA file
be denoted as c. No fragment of the precursor ion can
have a charge larger than c¢. Then each element of
FMLis obtained by computing FMLJ(z) = zp—~(z—1)m(H),
where 1 <z < ¢ for each z, 1 <i </, and m(H) is the
mass of a single proton.
because FMS is computed for singly protonated ions.

The second term is needed

2.2.8. Overall complexity

The overall time complexity of our algorithmic

approach is computed as follows:

e  Finding the bond spectrum match BSM between the
mass list ML and the disulfide bond mass space
BMS is performed once per analysis, with a time
complexity of [ML|O(MSHashID) = O(ML|(|C]* +
IBMS)).

e Determining the MS/MS spectrum match TSM
between the disulfide bonded fragment mass space
FMS and the MS/MS mass list FML is performed
each time there is a bond spectrum match, or [BSM|
times, with time complexity of |BSM|O(IndexID) =
O(BSM||FML| (~/nm )).

e Finding a perfect matching of maximum weight for
a fully connected graph with |C| vertices has a time
complexity of O(|CP).

e The techniques developed to utilize experimental
data constitute a constant factor multiplying ML
and FML.

Thus, the overall complexity of our approach is

O(ML[(|C/* + |BMS)) + (BSM|IFML| (/nm ) + |C]).

Since n, m and C are typically small (< 100), the

performance of this algorithm is dominated by |ML|,
|FFML| and the 1/O cost to process the spectrum data.

3. EXPERIMENTAL RESULTS

3.1. Description of the Data and
Experimental Procedures

The proposed method was validated utilizing MS and
MS/MS data obtained by LC/ESI-MS/MS analysis for
three eukaryotic glycosyltransferases with varying
numbers of cysteines and disulfide bonds:

1. Mouse Core 2 f1,6-N-Acetylglucosaminyl-

tranferase I (C2GnT-I) %

2. ST8Sia IV Polysialytranserase (ST8Sia IV)?

3. Human Fucosyltransferase VII (FT VII) 3

The disulfide linkage pattern for each of these
proteins is known and reported in each cited reference.
The experimental data was obtained using a capillary
liquid chromatography system coupled with a Thermo-
Fisher LCQ ion trap mass spectrometer LC/ESI-MS/MS
system was used to obtain the MS and MS/MS data.
Further details of the experimental protocols used are
available.”*

We obtained the primary sequences from the Swiss-
Prot database,25 and DTA files were obtained from
LC/ESI-MS/MS analyses of each protein.
experiment, we set the bond mass tolerance bm, = 3.0
=2 Da, the threshold t
= 2% of the maximum intensity, and the limit [ = 50
peaks. We used MS/MS mass tolerance fm, = 1.0 Da,
except when intramolecular bonded cysteines were
identified, when a value of 1.5 Da was used. The
protease is set to what was used
We set maximum number of missed
cleavages allowed m,,,,= 1, except for one case where a
combination of trypsin and chymotrypsin was used,
where we set m,,,= 3.

For each

Da, the maximum peak width p,,

in the actual
experiment.

3.2. Summary of Results

The proposed method was applied to determine the
disulfide-bonding patterns of three proteins, with
varying numbers of cysteines and disulfide bonds. Our
results are presented in the form of a connectivity
matrix, as proposed in.”® Each matrix element below the
diagonal corresponds to a possible disulfide bond. In
this matrix we indicate the “known” linkage patterns by
a gray shaded matrix element. If our method computes a

match ratio of over 50% for a particular combination,



we record it in the table. In addition, we assign one of

the values TP, FP, FN, or TN to each matrix element per

the following conventions:

e  For match ratios of at least 50%, true positive (TP)
is assigned if the same matrix element is shaded
gray.

e A false positive (FP) is assigned if the matrix
element is not shaded.

e A false negative (FN) is assigned to a matrix
element if the matrix element is shaded but its
match ratio is less than 50%.

Table 4 summarizes our results for an analysis of
233 DTA files of C2GnT-I. For this dataset, the charge
state reported in two DTA files needed to be
reinterpreted in order to avoid false negative results. In
Table 5 we present the results from the analysis of 79
DTA files of ST8Sia IV, and table 6 contains the results
obtained from the analysis of 158 DTA files of FucT
VIIL

We evaluate the performance using the following
metrics:

e  Precision P = TP/(TP+FP)

e Recall R = TP/(TP+FN)

e Sensitivity S = TN/(TN+FP)

Table 7 summarizes our results for these metrics.
Although our precision result for C2GnT-I is low
compared to the precision results for ST8Sia IV and
FucT VII, it still compares favorably with the results
reported by the purely predictive methods.''™"
addition, we note that we can improve the precision
from P = 0.40 to P = 0.70 if we chose to ignore all
match ratios less than 85%.

In

Table 4. C2GnT-I 7validation testing results.

Cysteine 59 100 151 172 199 372 381 413
location
59
100 TN
151 TN TN
172 TN TN
199 .84 72 TN
FP FP
372 TN TN TN TN TN
381 TN .76 TN .86 TN
FP FP

413 TN TN 72 .88 TN TN
FP FP
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Table 5. ST8Sia IV validation testing results.

Cysteine 142 156 292 356
location

142

156 TN

Table 6. FucT VII validation testing results.

Cysteine 68 76 211 214 318 321
location

68

i .

211 TN TN

214 TN TN .

318 TN TN TN TN

321 TN TN TN TN

B

Table 7. Overall performance results.

Protein Precision Recall Specificity
C2GnT-1 0.40 1.0 0.75
ST8Sia IV 1.0 1.0 1.0

FT VII 1.0 1.0 1.0

Following the implementations of the purely
predictive methodology, we adapted WMATCH,
Rothberg’s implementation of Gabow’s algorithm'**' to
find the maximum weight matching. This analysis
component was only conducted for the C2GnT-I
intermediate results, as the linkage patterns for ST8Sia
IV and FucT VII are already evident. Our result was in
agreement with the published bonding pattern.*

3.2.1. Analysis of the effect of varying
threshold t on results

The values we used for many of the parameters
introduced in this paper, such as threshold t, limit [, and
maximum peak width p,, were based on heuristics
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developed by experimenters. In this section, we
examine the effect of varying the threshold t on our
results. We used the C156-C356 bond in ST8Sia IV for
data. Figure 2 consists of two graphs: (1) a plot of
match ratio vs. ¢, and (2) a plot of the fraction of total
peaks used vs. ¢. The intersection of these two graphs is
close to ¢ = 2, confirming that the heuristic value used in
our experiments optimizes performance and data

utilization.

Figure 2. Match ratio and peak utilization vs. threshold t.
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3.2.2. Comparison with MS2Assign program

As discussed in Section 1, the program MS2Assign can
be configured to process MS/MS data to identify
disulfide bonds in protein. However, we note that while
MS2Assign automates the identification of disulfide
bonds, it does not do so in a high throughput manner.
For example:

e The two peptides MS2Assign takes as input
must be obtained from another program, such
as Peptidemap.

e MS2Assign accepts the input of only one
MS/MS mass list (from one DTA file).

Also, because MS2Assign does not account for
experimental noice, isotopic variation, or the intensity of
the fragmented ion, the accuracy of its results may not
be as high as the accuracy of a program that takes these
factors into consideration. To investigate this, we
identified the DTA files that MS2DB used to obtain
match ratios for C13 to C59 (true positive identification)
and C199 to C413 (false positive identification) of
C2GnT-I. We then copied the fragment ion m/z portion
of the file to use for the Peak List in MS2Assign. Our
results are summarized in Tables 7 and 8.

Table 7. Comparison of true positive identification.

Program Number of Number of Match ratio
peaks utilized matches

MS2Assign 1774 1646 0.93

MS2DB 50 48 0.96

Table 8. Comparison of false positive identification.

Program Number of Number of Match ratio
peaks utilized matches

MS2Assign 2169 1791 0.78

MS2DB 50 44 0.72

These studies suggest that MS2DB may be slightly
better than MS2Assign at discriminating between a true
positive and a false positive result. More studies are
needed to support this conclusion.

4. CONCLUSIONS AND DISCUSSION

In this paper we have presented a comprehensive
algorithmic framework for the determination of disulfide
bonds by utilizing data from tandem mass spectrometry.
The proposed approach involves addressing four key
sub-problems. First, the match between a given mass
spectrum and the set of every possible pair of cysteine-
containing peptides of the given protein is obtained.
Next, the correspondence between the tandem mass
spectrum and the set of every disulfide bonded fragment
mass is determined. The actual disulfide connectivity
pattern is determined by solving the maximal weight
matching problem. The salient contribution of our
approach is the use of real-world data from mass
spectrometry in the above steps. Doing so, requires
addressing a series of algorithmic challenges that
include peak finding in noise spectra, addressing issues
of isotopic variation and neutral loss, peak interpretation
in the presence of charge state uncertainty, consideration
of both inter-peptide and intra-peptide bonds, and
consideration of missed proteolytic cleavages.

Until now, techniques for disulfide bond
identification have tended to remain on either sides of
the model-or-measure dichotomy. The proposed work
seeks to span this divide and identifies the core
algorithmic challenges at the intersection of purely
computational and purely experimental strategies.
Experimental results highlight the high precision and
recall that can be obtained with such a hybrid strategy.
Another advantage of this approach is its data-driven




and high-throughput nature. An implementation of our
approach is available for public use at:
http://tintin.sfsu.edu:33191/ms2db/.
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