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Cancer molecular pattern efficient discovery is e8akin the molecular diagnostics. The charactiessof the gene/protein expression
data are challenging traditional unsupervised @laation algorithms. In this work, we describewbspace consensus kernel clustering
algorithm based on the projected gradient nonnegiatiatrix factorization (PG-NMF). The algorithmasonsensus kernel hierarchical
clustering (CKHC) method in the subspace generatedhe PG-NMF. It integrates convergence-soundmpests-based learning,
subspace and kernel space clustering in the mrapand proteomics data classification. We firsegnated subspace methods and
kernel methods by following our framework of thein space, subspace and kernel space clusteringleienstrate more effective
classification results from our algorithm by comipan with those of the classic NMF, sparse-NMF sifasations and supervised
classifications (KNN and SVM) for the four benchinarancer datasets. Our algorithm can generate dyfarh classification
algorithms in machine learning by selecting diffgreansforms to generate subspaces and differemtek clustering algorithms to
cluster data.

1. INTRODUCTION (HC), self-organizing maps (SOM), principal
With the development of genomics and proteomics,componem analysis (PCA); and their variants, such as

Molecular diagnostics has appeared as a new tool té)article swarm optimizat.ior? support vector machings
diagnose cancers. It picks a patient's tissues or bIooo(pSO'SV'VI)'47kernel principal - component  analysis
samples and uses DNA microarray or mass spectrometr{f¢PCA) €tc. ™" We are particularly interested in the
(MS) based proteomics techniques to generate their gen@nsupervised molecular pattern discovery algorithms,
expressions or protein expressions. The gene/proteiﬂPecause they do not need or have prior knowledge about
expressions reflect gene/protein activity patterns indata. They also have potentials to explore the latent
different types of cancerous or precancerous cells. The?tructure of data. However, the traditional clustering
are molecular patterns or molecular signatures ofélgorithms: HC and SOM were already proved unstable
cancers. Different cancers will have different molecular for gene and protein expression data although they are
patterns and the molecular patterns of a normal cdll wil widely used in the cancer molecular pattern discovery
be different from those of a cancer cell. Clinicians community. +%*°
identify the potential biomarkers by analyzing the  Actually, the characteristics of gene and protein
gene/protein patterns. However, robustly classifying expression data are challenging the traditional
cancer molecular patterns is still a challenge forunsupervised classification algorithms. These high
clinicians and bioiformaticans. dimensional data can be represented by>xammatrix
Many classification methods from statistical and after preprocessing. The row data in the matrix are the
machine learning are proposed for cancer molecula€xpression levels of a gene across different experiments
pattern classification. These methods can be generall@r intensity values of a measured data point in different
classified as supervised classification methods, such a§amples (observations) corresponding to an m/z ratio.
k-nearest neighborhood (kNN), linear discriminant The column data are the gene expression levels of a
anayalsis (LDA), neural networks (NN), support vector 9¢nome under an experiment or intensity values of all
machines  (SVMJ®  unsupervised  classification measured data points in a sample corresponding to m/z

(clustering) methods, such as hierarchical clustering"@tios. Usually,n>>m; that is, the number of variables
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in a dataset is much greater than the number ofH as a feature matrix. The columns W (a set of
observations/experiments. For the gene expression datdjases) set up a new coordinate system and all elements
the column number in the matrix is <100 and the rowof H are the coordinates oX in this new coordinate
number > 5000 usually; for the proteomics data, thesystem. The feature mattikis the prototype dataset of
matrix column number is < 200 and the matrix row X after the feature selection, where each column is the
number is in the order of ~10° generally. These data prototype of an observation. After NMF, each column
are not noise free data because their raw data have noigebservation) of X can be represented as a linear

and preprocessing algorithms can’t remove themcombination ofr basesw,, i =12,---r approximately,
completely. Although there are a large number of .
variables in these data, orl1ly. a small set of variables X, :Zhjwi = hyW, + W, +--h W, 1)
account for most of data variations. =

That is, each observation is expressed as the product of
the basis matrix and its corresponding prototype after
It is obvious that dimension reduction / feature selectionfeature selection.

should be conducted to reduce data to a much lower  The objective functionEW,H)=|X -WH| can be
dimension before classification. Several well-known expressed as Euclidean distance or Kullback-Leibler (K-
global feature selection methods, such as principall) divergence betweerX and WH . For example, the
component  analysis (PCA), singular  value Euclidean distance objective function is defined as
decomposition (SVD), and independent componentfollows.

analysis (ICA) have been applied in the cancer -

molecular pattern cIa.lsS|f|cat|on%:lo'”'12 However, the Ix _WH"i :ZZ(X” - (WH), )? @
holistic feature selection mechanism from these methods =L j=1

prevents from the alternative local feature selection. For Co .
example, PCA can only capture the global Lee and Seung gave a multlpl|c_at|ve update algorr.thm

L o for NMF by conducting a dynamic step based gradient
characteristics of data and each principal componenty . ant learning with respect t@/ andH .* The
(PC) contains information from all input variables. This jieration schemes for the Euclidean distance objective
leads to the hard time to interpret PCs intuitively. Data fynction are as follows (The iteration schemes for the K-
representation in PCA is not “purely additive”. Each PC L divergence are similar). In the iteration, W and H are
has both positive and negative entries, which are likelyinitialized randomly.
to cancel each other partly in the feature selection.

1.1. Nonnegative matrix factorization

ty (k)
On the other hand, there is a local feature selection w kD =y (XH—t)"(k) (3)
algorithm: nonnegative matrix factorization (NMF) with (WHH?),
parts-based learning mechani§.In contrast to the (WD) X)
global feature selection algorithms, NMF can capture H u<jk+1) = Huj(k) u (4)

)y oy (D g ()
variables contributing to local characteristics of data (WEYWETH ),

with obvious interpretations. It makes the global The multiplicative update algorithm works well

characteristics as the simple “addition/combinations” of . . .
experimentally. However, there is no guarantee that it

the Io_cal characterl.s.ch._ In fact, data representauor_l mcan converge to local minimum points of the objective
NMF is purely additive is because of the nonnegative

o function, because the limit of the non-increasing
constraints in the NMF.

, , . o sequencew™, HM} generated from the multiplicative
G.lven an nonnegative matrix bR and a ran_k update algorithm may not be a stationary pdihtthat

r<min(n, m) " NMF s ap nonlinear p.rogrammllng is, it lacks “convergence-soundness”.
problem to_find :[\X/rvno optlmgl .nonnegatlve matr.|ces Brunetet al. used NMF to classify cancer molecular
WOR a}nd HOR™ that minimize the re.constructlon. patterns by conducting NMF based clustering for gene
error, which can.be measured by a distance rnetr'ctaxpression dat®. Their NMF clustering consists of
betwgen the matrice¢and WH - E(W'H)_:"X _WH" three steps. First, decompose gene expressionXdata
that is, X ~WH . We namew as a basis matrix and
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under a rankr by the multiplicative update algorithm, NMF) has sound convergence and converges faster tha
i.e. each observation is represented as the lineathe basic NMF? In addition, we present the ideas of
combination of bases by Eqg. (1), wheng is the i-th input space, subspace and kernel space clustezfogeb
element of théd,, which is the prototype of the j-th elaborating on our PG-NMF based classification meth
observatiorX; after feature selection. Second, clustering under the framework of subspace and kernel space
is conducted by the following query asked by each clustering.
sample: ‘which basis has the largest expressiosl iev The idea of our method is to transform a
my prototype? | will belong to the cluster assae@mt gene/protein expression data Xefl(l" into a subspace
with that basis’. For example, supptsés the largest SO 0O"by using the PG-NMF algorithm. Then, a
value inH;, then sampl&;will be assigned to the consensus kernel hierarchical clustering algorithm
clusteri because thé" basis has the largest expression (CKHC) is developed to cluster the projections of a
level in its prototypéd ; . The number of clusters is just dataseX in the subspac® to infer the latent structure
the decomposition rank Finally, the rank leading to of the data. We have showed that the PG-NMF based
the most meaningful clustering is decided by a Mont subspace kernel clustering (PG-NMF-CKHC) is
Carlo based model selection mechanism by finding asuperior to the basic NMF, sparse-NMF clusterind an
rank with the maximum cophenetic correlation supervised clustering (KNN and SVM) in the cancer
coefficient in the hierarchical clustering. The bepetic molecular pattern discovery for four benchmark eanc
correlation coefficient is a measure to evaluate th datasets.
stability of hierarchical clustering. It is the celation This paper is organized as follows. Section 2
between the pairwise distance and linkage distamce presents the concepts of input space, subspace and
the hierarchical clustering. A large cophenetic kernel space clustering before introducing our PGFN
correlation coefficient value will indicate the hig based consensus kernel hierarchical clusteringhén t
stability of a hierarchical clustering. section 3. Section 4 shows the experimental resilts
Brunetet al proved this method was superior to HC our algorithm. Finally, we discuss the possibleogtgm
and SOM methods for three benchmark cancergeneralizations and draw conclusions.
datasets® Inspired by this work, Gao and Church
developed a sparse nonnegative matrix factorization 2. INPUT SPACE, SUBSPACE AND
cluster the cancer samples by adding sparsenet®icon KERNEL CLUSTERING
in the basic NMF formulation (sparse-NM) They For a gven data setX =(x,%....x,)" 00™,
demo_nstrated the _sparse-NMF bgsed clustering Wa%lustering is to find an implicit classification rfction
superior to the basic NMF clustering method for the fox
same datasets.
However, Brunetet al ‘s NMF based clustering

- [ that maps each data samptg, to its target
function valuey; (label) in a sel” according to some
dissimilarity metric (j =12---|I" |). Data samples with a

method has following weak points. 1. The multipirca same target function value (label) after classiiira
update algorithm in the NMF lacks the CONVergence, i .laim to share a same cluster

sloundr)ess.. The mo‘?'e' sglecnon mechan_lsm in the NMF We classify clustering as the input space, subspace
cus;enng_ IS exanglve, e]ff?“%se it frequrllresh.tom and kernel space clustering according to where the
cophenetic correlation coefficients for the hieraca implicit classification functiorf is computed. In the

clustering conducted at all possible ranks to dedw input space clustering, the implicit classification

final optimal decomposition rank. function f is computed in the input spadé™ of the
dataset. Hierarchical clustering (HC), K-means
clustering and expectation maximization (EM)
In this study, we describe a subspace consensuoglker clustering all belong to the input space clusterilrgthe
clustering technique based on the projected gradienkernel space clustering, the classification funcfias
nonnegative matrix factorization (PG-NMF), whichsva computed in a kernel spa&@ of the input space, which
developed by Lift? to conduct cancer molecular pattern is a high dimensional Hilbert space generated by a
classification for microarray and proteomics datae feature map functior®: X - Q, dim(Q) >>dim(X).
projected gradient nonnegative matrix factoriza{ieG- That is, the clustering is conducted for the high

1.2. Contributions
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dimensional dat&(X). On the other hand, in the as principal component analysis (PCA), independent
subspace clustering, the classification functigs component analysis (ICA), self-organizing map (SOM)
computed in a subspaBef the input space, generated and nonnegative matrix factorization (NMF). The
by a linear or nonlinear transfogmdim(S) < dim(X). spectral analysis methods like fast Fourier tramsfo
Generally, almost all input-space clustering meshosh ~ wavelet transform can also implementThat is, any

be used in the subspace clustering to clustergeife  input space clustering algorithms can be employed t
data in the subspace. However, not all input spacecluster the feature da¥ . For example, clustering the
clustering algorithms can have corresponding kerneldata principal components (PCA clustering) by HC or
space clustering algorithms. In the following wovke other input space clustering methods is a typical
use the HC as an example to demonstrate the inpusubspace clustering, where the subspace genergted b

space, subspace and kernel space clustering. the PCA transform is an orthogonal sp&teSimilarly
are the hierarchical clustering of the independent
2.1. Subspace clustering components of data (ICA clusteringnd the FFT

A subspac&is generated from a linear or nonlinear coefficients of data (FFT clusterind}.

transform @: X 0O™ — X" O0O0"™and clustering is
conducted through the transformed d4ta For
example, SOM and PCA based clustering are typical
subspace clustering approaches. Most likely, the
subspace has the lower dimensionality than theénadig Kernel space clustering conducts clustering in the
dataset, i.edim(S) <dim(X). Each transforrg applied  kernel/feature spac@of a data seXOO™". The
to X can be represented B§ = X", where T is the motivation to conduct kernel space clustering isaose
matrix representation of transfogm Writing it as a  classification/learning in a high dimensional spaea

2.2. Kernel space clustering:  conduct
clustering in a high dimension
space with kernel tricks

matrix decomposition form of , we haveX =WX", have desirable results. We use the kernel tricks/tod
where the matrixW is the inverse or pseudo-inverse of the huge computing complexity from clustering i th
the matrix T. We still calW as a basis matrix and” feature spac@ . To apply the kernel tricks in clustering,
as a feature matrix. we need to formulate an input space clusteringrifgo

The columns of the basis matrix span the into inner product forms at first. Then a kerneidtion
subspaceS = span(W,,\W,,...W.). Dependent on the k(x,y)=(®(x)* ®(y)) is employed to evaluate all the
properties of the transforgn, the basis matrix may not inner products. The kernel function has to satibfy
be unique and the corresponding matrix decompositio mercer theorerf® Through the kernel tricks,
may not be unique also. Geometrically, each columnclassification/clustering can be conducted in ahhig
of X"is the coordinates of each observation/column ofdimensional space by only paying input space level
X in the subspaces, which can be viewed as a new computing complexity, and the feature map is
coordinate system. unnecessary to be explicit. Although several input

Self-organizing map clustering can be viewed as aspace clustering methods have their corresponding
simple subspace clustering, where the target fomcti kernel extensions, we give the kernelization of the
value of each sample is determinated by the locaifo  hierarchical clustering (HC) in this work. Qiet al
its corresponding reference vector of the best himgjc  mentioned the applications of the kernel hierawhic
unit (BMU) on the SOM plane. In the nonlinear clustering in the gene expression dataHowever, they
transform conducted by a self-organizing map (SOM),only gave an approximation based kernel extension
the feature matrix X" is called the prototype data rather than a rigorous kernel extension of thesatas
including all reference vectors on the SOM plafide hierarchical clustering.

subspace basegW,,\W,,...W,) can be obtained by Kernelization of the general hierarchical clustgrin
solving r least square problems, wheres the number  algorithm consists of two steps: kernelize pairwise
of neurons on the SOM plane. distance and linkage computing. In the kernelizatid

Actually, the transformgcan be implemented by the pairwise distances, we focus on the Euclideah a
any linear or nonlinear feature selection methedsh correlation distances because they are mostly used
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dissimilarity metrics in HC. The Euclidean distance Where x{") is the i™ sample in the clusteC, ; The

between samples and x; in the kernel space can be |C, ||C| are the number of samples in the clusters

which can be kernalized as: C,andC,; ki =k(x”,x{"),k{® =k(x®,x{¥)and

2 k's’ k(x” x‘s))

d(®(x), ®(x)) = (K; —2K;; +Kj) 5)

2.3. What's the ideal unsupervised
classification algorithm for the
high dimensional gene/protein
expression data?

whereK; = K(x,%) = (®(x)* D(x,)).

In the kernelization of the correlation distance
between samples and x;, we assume the mapped
vectors ®(x), ®(x;) are zero mean data in the kernel

spaceQ, then the correlation distance betwe®(x;) We believe that an ideal unsupervised classificatio
and ®(x;) can be formulated as the following inner clustering algorithm for the high dimensional geel
product form in Eq. (6), where; =c(P(x;), (X)) . protein data should satisfy following criteria. 3ome
(@(x)* O(x.)) feature selection methods ought to be applied doce
c. =1- ! (6) data dimensions such that data are “clean and adinpa
! (D(x)* D)) 2(P(x) * D(x;))"? i
j i 2. The feature selection method employed shoula hav

the part-base learning property to maintain thea dat
locality well; that is, the feature selection methcan
conduct local feature selection. 3. Kernel tricke a
desirable to be applied in the clustering of thea ddter
feature selection to achieve better classificatiesults

in a kernel space.

According to the criteria, we give our subspace
Then the corresponding correlation distance can begonsensus kernel classification algorithm basedhen
formulated as the similar form as in the Eq. (6). projected gradient NMF (PG-NMF). The basic idetois
LetK; = (P(x)* d(x;)), then we have the following apply a convergent soundness local feature algorith

However, we shall drop this assumption in the Kerne
space for more general practice. We use the exjmcta
of all feature data to center each feature data,

B(x) = B(x) == > B(x) ™

result: PG-NMF to the gene/protein expression datXset

1 & 1 & 1 &o which is equivalent to project the datasét into the

K = K; - mZK EZ K +FZZ K, (8 subspac& generated by the PG-NMK: ~WH , where
n=l 1= 1= n=1 W is the basis matrix generating the subspace. Then

Since the kernel matrix is a semi-positive definite kernel hierarchical clustering is applied to coludata
matrix, summarizing previous results, we have thethe feature matriki , which are the prototype data of

correlation distance in the kernel space betwegr) the original data. Since the basis matrix and featu
and ®(x.) can be computed as matrix are not unique in the NMF. We develop the
! o ‘ consensus kernel hierarchical clustering algorithm
(K;iKy) ™ —K; CKHC) to get the final classification.
c00).D0)) =t (9 (CKHO o getie inal classificar
i}

3. PG-NMF SUBSPACE KERNEL

The extension of the single, complete and average = HIERARCHICAL CLASSIFICATION
linkage in the kernel space is trivial but not fie

centroid linkage. The centroid linkage between two
clusters is defined as the Euclidean distance lestee
centroid of two clusters. We give the centroid figk

d,, between the clusterS, and C, in the Eqg. (10).

PG-NMF based subspace kernel classification is to
conduct consensus kernel hierarchical clustering
(CKHC) to each feature matrixin a subspace
generated by the PG-NMF. The CKHC is an algorithm
to run the kernel hierarchical clustering in a Mont
Carlo simulation approach and compute the final
- likm g%k“ 9 4 1 Z‘k(x_(_s)))uz (10) classification by building a consensus tree. Itsists of
& '2.,1 = = oo et two general steps. 1. Build a consensus tree fer th
expression datasgt at each rank by conducting CKHC
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to feature matriced from the PG-NMF. 2. Then the
best consensus tree, which is the final classifinatis

selected by our novel model selection method. The
following algorithm describes the consensus kernel

hierarchical clustering (CKHC) at rank r

Algorithm 1 Consensus kernel hierarchical clustering at rank r
Input: nonnegative matrix X (nxm), rank r,

PG-NMF running times N>=100,

Kernel function K(X, y) , linkage metric |
Output: the consensus tree T at rank r

/I Run PG-NMF X~WH to do feature selection at rank r N times
1. Forrun=1:N
2 Initialize W and H randomly
3. Compute X~WH, WOR™ H OR™™ by PG-NMF
4 Compute the kernel pairwise distances
between columns of feature matrix H
in the kernel space by Eq. (5)/(9)
5. Record the kernel pairwise distances in
an m(m-1)/2 x1 vector: d
6. Concatenate all such kernel distance vectors for N
feature matrices in a matrix D: D=[D, d];
7. End
Compute a consensus kernel distance vector dggnsensus
by weighting the ratios of the sum of each column in
D over the sum of the elements of matrix D

N
D(,j .
dconsensuszzm(m_l)+x D(,j)

oy ;Da.n

9.  Build the consensus tree T from the consensus
kernel distance vector under the linkage metric |
10. Return T

We still need to answer the following question:

sum of the firstr*singular values over the sum of all
singular values (Eq.11).

P. :rza—j/ia—i' (11)
i1 i1

That is, PG-NMF is only conducted in the optimaika
search interval[2,r'] and we only search the best
consensus tree from the r* consensus trees.

The most robust consensus tree will be fvdrith
rank in the intervgl2,r "] ? It is reasonable that the most
robust consensus tree should be from a rank, where
bases of its subspace generated by the PG-NMF each
time represent all levels of patterns inherent he t
dataset. From the point of view of data variahjlitys a
rank where the ratio between the largest data lititja
and the smallest data variability of the bases data
reaches its maximum value.

We propose a measure robust indeg find the
most robust consensus tree according to the previou
considerations. The robust indéis the condition
number of the covariance matrix of the averagesbasi
matrix E(W) from the N times running of the PG-NMF.
The average basis matrix is defined as:

EW) :%iwm (12)

The condition number of the covariance matrix af th
average basis matrbE(W) is the ratio between the
maximum eigenvalue and the minimum eigenvalue of
EW): 0=A,4/Ann- The A, is the variance of the
1st principal component of the average basis mattre
largest data variability of the basis data. Thg, is the
variance of the last principal component of therage
basis matrix: the smallest variability of the lsadata.
The robust index can be huge but it is impossible t
reach infinite becausel,, is the smallest positive

‘What is the model selection method to find the mos eigenvalue of the covariance matrix Bfw) . The final

robust consensus tree (classification)?” To avdid t

classification is just the consensus tree with I#ngest

exhaustive search on all possible ranks, we give aobust index number. The PG-NMF based consensus

singular-value based rank selection method to &ind
optimal rank search intervel2,r’]. The idea can be
described as follows.

Given a thresholds (¢ 0 [090)) ), we compute the
importance ratio of firslr*singular values such that the
important ration >= the threshold. The importanceorati

kernel hierarchical clustering algorithm (PG-NMF-
CKHC) can be described as follows.

Algorithm 2 PG-NMF based Consensus kernel hierarchical

clustering

Input: a N XM nonnegative data matrix X, Importance ratio
threshold & = 090

of first r*singular values is defined as the ratio of the output: the final consensus tree T
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better than those of Euclidean distance (FigureT8g

1. Decide the rank search interval [2,r*] by the NMF clustering has two misclassified samples
important ratio threshold & ALL_ 21302 _B-cell and ALL_14749 B-cell. Sparse-NMF
For r=2: r* clustering has one misclassified samplemL_12.
Conduct consensus kernel hierarchical clustering However, the running time of NMF and sparse-NMF
atrank r to get a consensus tree T, atrank r clustering are twice more than that of our algonith
4. Compute the robust index J of the consensus
tree T,
5. End

6. T « T, with the maximum robust index

4. EXPERIMENTS

We apply the PG-NMF-CKHC algorithm to discover the
cancer molecular patterns for several bench-mankera
datasnt]ets. We use a measure called classificatien ra
C,=X>d()/m to evaluate the accuracy of the
unsupeérvised classification for a dataset witsamples,
where J(i) =1 if the sampléis assigned in a correct
cluster; otherwisé(i) =0. We use three kernel functions
in our algorithms: linear, polynomial and Gaussian
kernel. The dissimilarity measures in the kernel
hierarchical clustering are chosen as Euclidean and
correlation distances. We choose the average lenkag
metric in the kernel hierarchical clustering. Th&-P
NMF algorithm is run N=100 times in each optimaika
search interval with tolerance 10e-9.

The first dataset iseukemia dataset,abenchmark
dataset consisting of 38 samples in the canceargse
It can be classified as 27 acute lymphoblastic denik
(ALL) and 11 acute myelogenous leukemia (AML)
marrow samples. The ALL samples can be further
divided into 19 ‘B’ and 8 ‘T’ subtypes. HC and SOM 1
were proved to be unstable for this data¥ethe
optimal search interval for this dataset is [2,6¢er the
importance ratio threshold 0.90. The robust index i
PG-NMF-CKHC reaches its largest number at rankr5 fo
a Gaussian kernel under the correlation distanicgi(@&
2). Figure 1 is the visualization of the final census
tree. Itis clear that there are three clusteMLAALL-
B, and ALL-T in the final consensus tree.

There is just only one misclassification i.e. o7
ALL_14749 B-cell was assigned to AML. We have found
the combinations of the Gaussian kernel functiod an rig 3 The classification rates under linear, polynomied aGaussian
correlation/Euclidean distance under the averag@@ie  emel for Euclidean and correlation distances.
metric both can reach the best performance in the
classification. Under the linear kernel, we can teg
classification results under the correlation distamre

Fig. 1. The visualization of the consensus tree at ranfor5a
Gaussian kernel under the correlation distance asilage linkage
metric.

Fig. 2. The largest robust index reached at rank 5 ferGaussian
kernel with correlation distance.

Classification rates

— & e
—+—corr’

— % -‘gaussian+eu’
—{O— 'gaussian+corr'
—= ‘polynomial+eu’
—%— "polynomial+corr

2 3 4 5 6
Rank

The second dataset Medulloblastoma dataset,
the gene expression data from childhood brain tamor
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known as medulloblastomas. The pathogenesis aboubetter clustering structure since there are 8
these tumors is still not well understood yet by desmophlastic samples clustered. On the other hand,
investigators. However, there are two generall\epted sparse-NMF has 7 misclassified at its best rank &.
histological sub-classes: classic and desmopldtiese  seems sparseness constraints do not contributheto t
sampled are divided as 25 classic and 9 desmaplastiimproving classification rates for this datasenc®i the
medulloblastomas. General HC and SOM failed to pathogenesis of medulloblastoma is still not well-
reveal the classifications of these sample3he robust  understood, we did not compute the classificataes
index reaches its maximum in the optimal rank dearc for this dataset.

interval [2,10] at rank 7 for a polynomial kerneider The third dataset is aovarian cancer dataset a

the correlation distance. Figure 4 is the visuéliraof MS proteomics dataset consisting of 20 cancer dhd 2
the final classification. There are 8 desmoplastic normal samples, which presents as a 15142x40 yp®siti
samples clustered and total 2 samples are midgdalssi  matrix. This data set is a subseidarian Dataset 8-7-
sample 25 and sample 33. 02 that was generated using the WCX2 protein array,
which includes 91 controls and 162 ovarian candeus.
this dataset, we try supervised classificationt.fi&e
randomly pick other 40 samples (20 cancer and 20
normal) from the original dataset as a training g&n

we use kNN under Euclidean and correlation distaoce
classify the MS data. We have found the best
classification rate from kNN is 92%. But it canfassify
sample 3, 12, 36 correctly. Our algorithm reaches t
best classification at rank 7 in the optimal raelarsh
interval [2,10]. There is only one misclassifiedngde
:sample 36 (Figure 6).

final tree of the

of

Fig. 4. Visualization the
medulloblastomas dataset at the rank 7 under theqial kernel
under the average linkage metric and correlatistadce.
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Fig. 5.The largest robust index reached at rank 7 foptignomial Fig. 6. The final consensus tree at rank 7 under Gau&siare! with

kernel with correlation distance. correlation distance.

The NMF has 2 samples misclassified at its best Figure 7 shows the performance of linear, Gaussian

decomposition rank ¥ However, it only gets 7

desmophlastic

algorithm also have 2 misclassified samples, weehav distance has the best performance under the average

samples

clustered.

Although

and polynomial

kernel

in the classification.

The

ourcombination of the polynomial kernel and correlatio
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linkage metric. Classification rates generally éaese  classifications. In kNN and SVM, We run classifioat
after the rank 7 and the correlation distance gdiyer 10 times under holdout cross-validation with 50%dho
performs better than the Euclidean distance in theout percentage for each case. We take the average
classification. classification rates as the final classificatiotesaIn the
SVM classification, we also use linear, polynonaald
Guassian kernel. We select the best final classifin
rate from three kernels as the final classificatiate of
SVM. In the leukemia data, we use SVM/KNN to
classify ALL and AML types instead of all three gp
Although the pathogenesis of medulloblatoma is not
well established, we still compute the classifizatiates
of this dataset based on the general assumptian tha
samples are divided as 25 classic and 9 desmaplasti
medulloblastomas, for the convenience of compasison
‘ ‘ ‘ ‘ ‘ Table 1 shows the classification rates for the four
’ ’ ’ ) ’ ’ benchmark datasets from kNN, PG-NMF-CKHC, NMF,
sparse-NMF and SVM classifications.
We have found that our algorithm is superior to the
Fig. 7. The classification rates of the PG-NMF-CKHC for this NMF, sparse-NMF and supervised SVM classification
dataset: polynomial kernel + correlation distaneaches the best algorithms for these datasets; The NMF classificati
classification rate. has better performance than SVM and kNN for three
gene expression datasets. Sparse-NMF has averagely
We also apply NMF and sparse-NMF classification better performance than kNN for three gene expmassi
for the proteomics data, although they were dewslop datasets. However, the NMF and sparse-NMF can't
under the context of gene expression data. Theré8ar compete with kNN and SVM for the proteomics data.
samples misclassified from NMF clustering and 12  According to our classification results, it seetinat
samples misclassified from the Sparse NMF cluggerin sparseness constraint on the NMF may not always
for our ovarian cancer dataset. Both algorithmsceie contribute to the improvement in the classificasidar
there are 2 clusters from their cophenetic coeffits. some datasets. Besides the ovarian dataset, for the
Since a proteomics dataset generally has much tighemedulloblatoma dataset, the classic NMF clustering
dimensionalities than a gene expression datasetr NM seems to perform better in classifying desmoplastic
and sparse NMF clustering have large time complexit medulloblastomas than the sparse-NMF clustering at
for a proteomics dataset. For this dataset, NMFrank 5, where both algorithms reaches the moststobu
clustering takes >78 hours and sparse-NMF clugerin reproducibility partitions. We also noticed the NMAd
takes >153 hours running under two PCs with 3.0 GHZsparse-NMF clustering can not compete with SVM
CPU and 504 RAM running under WIN-XP OS. It classification for the ovarian dataset. It is ietting to
seems that NMF based clustering/classification see that sparseness constraint may not lead toether
mechanism can’t work well in the context of the classification results for the colon cancer data$ée

proteomics data. classic NMF clustering reaches its largest cophenet
correlation coefficient at rank 2 (2 clusters) aitsl

4.1. Comparing classification results corresponding classification rate is 0.9355. Howeve
from kNN, sparse-NMF and the sparse NMF clustering reaches its largest cugitte
support vector machines (SVM) correlation coefficient at rank 4 (4 clusters) aitsl

We compare PG-NMF-CKHC for the four datasets (the corresponding classification rate is 0.7581. fassible

leukemia, medulloblatoma, ovarian cancer datasgtaan gue _to the fact that ;he expreSS|hon patterns osetho
colon cancer dataset, which consists of 22 contants ominant co-expressed genes such as, oncogenes, tum

40 cancer data samples) with the classic NME Suppressor genes are not extracted out in the espars
clustering, sparse-NMF clustering, and SVM and kNN representation. This may also indicate that spassen
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control may not always lead to a better classiicat 5. CONCLUSIONS

results for some dataset. Figure 8 and 9 give theAs a part-based learning machine learning algotithm

visualization of the NMF and sparse-NMF clustering . S e
NMF has found its application successfully in image
from the rank 2-5 for the colon cancer dataset. . .
- _analysis, document clustering and cancer molecular
Probability of two samples clustered together is . .
o . . pattern discovery. In this study, we present an NMF
indicated by color. Generally, blue indicates a atim . S
- . based subspace kernel clustering algorithm: PG-NMF-
value near 0 and a red color indicates a numetigesa .
. o CKHC based on the input space, subspace and kernel
near 1. The deep blue standing for O indicates ksmp .
. . . space clustering framework. We have shown that PG-
are never assigned in one cluster and dark redlistan .
for 1 indicates samples are assigned in one cluster NMF-CKHC improves the cancer molecular pattern
P 9 discovery for the well-studied four datasets. h @ark
well for both gene expression data and protein
expression data according to out current results.

Our algorithm can be generalized to a family of
subspace kernel classification/clustering algorithim
machine learning by selecting different transfortos
generate subspaces and different kernel clustering
algorithms to cluster data. For example, conduchédde
k-means clustering in a subspace generated by the
independent component analysis (ICA) applied tagh h
dimensional dataset, or conduct the kernel Fisher
discriminant analysis (KFDA¥in a subspace generated
by principal component analysis (PCA).

Despite its promising features, it is also worthy
point out that PG-NMF based consensus kernel
hierarchical clustering has the limitation of gezat
algorithmic complexity, especially compared witte th
traditional hierarchical clustering (HC). Howevér is
clear that our algorithm is easy to fit in a pasll
computing structure due to its Monte Carlo simolati
mechanism. Thus, we plan to implement the parallel
version of the subspace based kernel classification
algorithm for the cancer molecular pattern clasatfon
in the following work.

Fig. 8.The visualization of the NMF clustering from rani6Zor the
colon dataset

Fig. 9. The visualization of the sparse-NMF clustering fraamk 2-
5 for the colon dataset

Table 1. Compare PG-NMF-CKHC classification results with
those of the NMF, sparse-NMF, SVM and KNN classtiicns

Cancer Data Information Algorithm Classification Rates
Cancer Name Data Size #type kNN PGNMF-CKHC NMF Sparse-NMF SVM
Leukamia 5000x38 3 0.8860 0.9737 0.9470 0.9737 0.9132
Medulloblastoma 5893x34 2 0.7611 0.9412 0.9412 0.8235 0.8300
Ovarian 15142x40 2 0.8990 0.9750 0.8000 0.7000 0.9474

Colon 2000x62 2 0.7667 0.9355 0.9032 0.7581 0.8542
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