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There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by
the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al.11,
where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network
structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the
weights associated with the prior knowledge relative to the data. To complement the work of Imoto et al.11, we have
derived and tested an MCMC scheme for sampling networks and hyperparameters simultaneously from the posterior
distribution. We have assessed the viability of this approach by reconstructing the RAF pathway from cytometry

protein concentrations and prior knowledge from KEGG.

1. INTRODUCTION

Bayesian networks have received increasing attention

from the computational biology community as mod-

els of gene regulatory networks, following up on pi-

oneering work by Friedman et al.4 and Hartemink

et al.6. Several tutorials on Bayesian networks have

been published8, 10, 16. We therefore only qualita-

tively recapitulate some aspects that are of relevance

for the present study, and refer the reader to the

above tutorials for a thorough and more rigorous in-

troduction.

The structure of a Bayesian network is de-

fined by a directed acyclic graph (DAG) indicating

how different variables of interest, represented by

nodes,“interact”. The word “interact” has a causal

connotation, which is ultimately of interest to the bi-

ologist, but has to be taken with caution in this con-

text, as explained shortly. The edges of a Bayesian

network are associated with conditional probabili-

ties, defined by a functional family and their param-

eters. The interacting entities are associated with

random variables, which represent some measured

entities of interest, like relative gene expression lev-

els or protein concentrations. We denote the set of

all the measurements of all the random variables as

the data, represented by the letter D. As a conse-

quence of the acyclicity of the network structure, the

joint probability of all the random variables can be

factorized into a product of lower-complexity con-

ditional probabilities according to conditional inde-

pendence relations defined by the graph structure G.

Under certain regularity conditions, the parameters

associated with these conditional probabilities can be

integrated out analytically. This allows us to com-

pute the marginal likelihood or evidence P (D|G),

which captures how well the network structure G ex-

plains the data D. In the present study we computed

P (D|G) under the assumption of a linear Gaussian

distribution. The resulting score was derived by

Geiger and Heckerman5 and is referred to as the BGe

score.

We are interested in learning a network of causal

relations between interacting nodes. While such

a causal network forms a valid Bayesian network,

the inverse relation does not hold: when we have

learned a Bayesian network from the data, the result-

ing graph does not necessarily represent the correct

causal graph. One reason for this discrepancy is the

existence of unobserved nodes. When we find a prob-

abilistic dependence between two nodes, we cannot

necessarily conclude that there exists a causal inter-

action between them, as this dependence could have

been brought about by a common yet unobserved

regulator. However, even under the assumption of

complete observation the inference of causal inter-

action networks is impeded by symmetries within

so-called equivalence classes, which consist of net-

works that yield the same evidence scores P (D|G).
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A simple example are two conditionally dependent

nodes, say A and B, where the two networks related

to the two possible directions of the edge, A → B

and A← B, are equivalent.

There are two ways to break the symmetries

of the equivalence classes. One approach is to use

active interventions, like gene knockouts and over-

expressions. When knocking out gene A affects gene

B, while knocking out gene B does not affect gene A,

then A→ B will tend to have a higher evidence than

A← B. For more details, see Refs. 23, 24. An alter-

native way to break the symmetries, investigated in

this paper, is to use prior information. When genes

A and B are conditionally dependent, and we have

prior knowledge that A is a transcription factor that

regulates genes in the functional category that B be-

longs to, then we will presumably favour A→ B over

A← B. To formalize this notion, we score networks

by the posterior probability

P (G|D) ∝ P (D|G)P (G) (1)

where P (D|G) is the evidence, and P (G) is the prior

distribution over network structures; the latter dis-

tribution captures the biological knowledge that we

have prior to measuring the data D. While differ-

ent graphs might have identical scores in light of

the data, P (D|G), symmetries can be broken by the

inclusion of prior knowledge, P (G), and these two

sources of information are systematically integrated

into the posterior distribution P (G|D). Our ulti-

mate objective, hence, is to find the network struc-

ture G that maximizes P (G|D). Unfortunately, the

number of structures increases super-exponentially

with the number of nodes. Also, in systems bi-

ology, where we aim to learn complex interaction

patterns involving many components, the amount

of information from the data and the prior is usu-

ally not sufficient to render the distribution P (G|D)

sharply peaked at a single graph. Instead, the dis-

tribution is usually diffusely spread over a large set

of networks. Summarizing this distribution by a sin-

gle network would not be appropriate. Instead, we

aim to sample network structures from the posterior

distribution P (G|D) so as to obtain a typical col-

lection of high-scoring networks and, thereby, cap-

ture intrinsic inference uncertainty. Direct sampling

from this distribution is usually intractable, though.

Hence, we resort to a Markov chain Monte Carlo

(MCMC) scheme17, which under fairly general regu-

larity conditions is theoretically guaranteed to con-

verge to the posterior distribution of equation (1)7.

Given a network structure Gold, a new network struc-

ture Gnew is proposed from the proposal distribution

Q(Gnew|Gold), which is then accepted according to

the standard Metropolis-Hastings scheme7 with the

following acceptance probability:

A = min

{
P (D|Gnew)P (Gnew)

P (D|Gold)P (Gold)

×
Q(Gold|Gnew)

Q(Gnew|Gold)
, 1

} (2)

The functional form of the proposal distribution

Q(Gnew|Gold) depends on the chosen type of pro-

posal moves. In the present paper, we consider three

edge-based proposal operations: creating, deleting,

or inverting an edge. The computation of the Hast-

ings factor Q(Gold|Gnew)/Q(Gnew|Gold) is, for in-

stance, discussed in Ref. 10.

2. METHODOLOGY

2.1. Biological prior knowledge

To integrate biological prior knowledge into the infer-

ence of gene regulatory networks, we define a func-

tion that measures the agreement between a given

network G and our biological prior knowledge. Fol-

lowing an approach first proposed by Imoto et al.11

and subsequently applied in Refs. 12, 18, 21, 22, we

call this measure the energy E, borrowing the name

from statistical physics. We split E into two compo-

nents. One of the components, E0, is associated with

the absence of edges. The other component, E1, is

associated with the presence of edges. A network G

is represented by a binary adjacency matrix, where

each entry Gij can be either 0 or 1. A zero entry,

Gij = 0, indicates the absence of an edge between

nodei and nodej . Conversely if Gij = 1 there is a

directed edge from nodei to nodej . We define the

biological prior knowledge matrix B to be a matrix

in which the entries Bij ∈ [0, 1] represent our knowl-

edge about interactions between nodes as follows: If

entry Bij = 0.5, we do not have any prior knowledge

about the presence or absence of the directed edge

between nodei and nodej . If 0 ≤ Bij < 0.5 we have

prior evidence that the directed edge between nodei

and nodej is absent. The evidence is stronger as Bij

is closer to 0. If 0.5 < Bij ≤ 1 we have prior evidence
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that the directed edge pointing from nodei to nodej

is present. The evidence is stronger as Bij is closer to

1. Having defined how to represent a network G and

the biological prior knowledge B, we now define the

energies associated with the presence and absence of

edges as follows:

E0(G) =
n∑

i,j=1

Bi,j <0.5

|Bi,j −Gi,j | (3)

E1(G) =

n∑
i,j=1

Bi,j >0.5

|Bi,j −Gi,j | (4)

where n is the total number of nodes.

To integrate the prior knowledge expressed by

Equations (3) and (4) into the inference procedure,

we follow Imoto et al.11 and define the prior distri-

bution over network structures G to take the form of

a Gibbs distribution:

P (G|β0, β1) =
e−{β0E0(G)+β1E1(G)}

Z(β0, β1)
(5)

where the partition function is defined as:

Z(β0, β1) =
∑
G∈G

e−{β0E0(G)+β1E1(G)} (6)

Unfortunately, the number of graphs increases super-

exponentially with the number of nodes, rendering

the computation of Z not viable for large networks.

To proceed, we define:

E0(G) =
∑

n

E0 (n, πn [G]) (7)

E1(G) =
∑

n

E1 (n, πn [G]) (8)

where πn [G] is the set of parents of node n in the

graph G and we have defined:

E0 (n, πn) =
∑
i∈πn

Bin<0.5

(1−Bin) +
∑
i/∈πn

Bin<0.5

Bin
(9)

E1 (n, πn) =
∑
i∈πn

Bin>0.5

(1−Bin) +
∑
i/∈πn

Bin>0.5

Bin
(10)

Akin to the ideal gas approximation in statistical

physics, we now approximate the partition function

of the whole network by a product of single-node

partition functions:

Z ≈
∏
n

∑
πn

e−{β0E0(n,πn)+β1E1(n,πn)} (11)

Here, the summation in the last equation extends

over all parent configurations πn of node n, which

in the case of a fan-in restriction is subject to con-

straints on their cardinality. Note that the essence of

equation (11) is a dramatic reduction in the compu-

tational complexity. Rather than summing over the

whole space of network structures, whose cardinal-

ity increases super-exponentially with the number of

nodes N , we only need to sum over all parent configu-

rations of each node; the complexity of this operation

is polynomial in N . However, we have ignored inter-

actions between the nodes; modifications of a parent

configuration πn may lead to a directed cyclic struc-

ture, which is invalid and should be excluded from

the summation in equation 11. The detection of di-

rected cycles is a global operation. This destroys

the modularity inherent in equation 11, and leads to

a considerable explosion of the computational com-

plexity. Note, however, that equation 11 still pro-

vides an upper bound on the true partition function.

When densely connected graphs are ruled out by a

fan-in restriction, as commonly done, the number of

cyclic terms that need to be excluded from equa-

tion 11 can be assumed to be relatively small. We

can then expect the bound to be rather tight, and

use it to approximate the true partition function.

In all our simulations we assumed a fan-in restric-

tion of three, as has widely been applied by different

authors3, 4, 9.

2.2. MCMC sampling scheme

Having defined the prior probability distribution over

network structures, our next objective is to extend

the MCMC scheme of equation 2 to sample both the

network structure and the hyperparameters from the

posterior distribution.

Starting from a definition of the prior distribu-

tions on the hyperparameters β0 and β1, P (β0) and

P (β1), our aim is to sample the network structure

G and the hyperparameters β0 and β1 from the pos-

terior distribution P (G, β0, β1|D). To this end, we

propose a new network structure Gnew from the pro-

posal distribution Q(Gnew|Gold) and, additionally,

new hyperparameters from the proposal distribu-

tions R(β0new
|β0old

) and R(β1new
|β1old

). We then ac-

cept this move according to the standard Metropolis-

Hastings update rule7 with the following acceptance
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probability:

A = min

{
P (D, Gnew, β0new

, β1new
)

P (D, Gold, β0old
, β1old

)

×
Q(Gold|Gnew)R(β0old

|β0new
)

Q(Gnew|Gold)R(β0new
|β0old

)

×
R(β1old

|β1new
)

R(β1new
|β1old

)
, 1

}

= min

{
P (D|Gnew)P (Gnew|β0new

, β1new
)

P (D|Gold)P (Gold|β0old
, β1old

)

×
P (β0new

)P (β1new
)Q(Gold|Gnew)

P (β0old
)P (β1old

)Q(Gnew|Gold)

×
R(β0old

|β0new
)R(β1old

|β1new
)

R(β0new
|β0old

)R(β1new
|β1old

)
, 1

}

(12)

To increase the acceptance probability and,

hence, mixing and convergence of the Markov chain,

it is advisable to break the move up into three sub-

moves:

• Sample a new network structure Gnew from

the proposal distribution Q(Gnew|Gold) for

fixed hyperparameters β0 and β1.

• Sample a new hyperparameter β0new
from

the proposal distribution R(β0new
|β0old

) for

fixed hyperparameter β1 and fixed network

structure G.

• Sample a new hyperparameter β1new
from

the proposal distribution R(β1new
|β1old

) for

fixed hyperparameter β0 and fixed network

structure G.

Assuming uniform prior distributions P (β0) and

P (β1) as well as symmetric proposal distributions

R(β0new
|β0old

) and R(β1new
|β1old

), the corresponding

acceptance probabilities are given by the following

expressions:

A(Gnew|Gold) = min

{
P (D|Gnew)

P (D|Gold)

×
P (Gnew|β0, β1)

P (Gold|β0, β1)

×
Q(Gold|Gnew)

Q(Gnew|Gold)
, 1

}
(13)

A(β1new|β1old) = min

{
P (G|β1new, β2)

P (G|β1old, β2)
, 1

}
(14)

A(β2new|β2old) = min

{
P (G|β1, β2new)

P (G|β1, β2old)
, 1

}
(15)

The two submoves are iterated until some con-

vergence criterion is satisfied, discarding an initial

burn-in phase before sampling configurations. In our

simulations, we chose the prior distribution of each

hyperparameter P (βi), i ∈ {0, 1}, to be the uni-

form distribution over the interval [0, MAX], with

MAX = 30. The proposal distribution of the hy-

perparameters R(βinew
|βiold) was chosen to be a uni-

form distribution over a moving interval of length

L = 6 � MAX, centred on the current value of the

respective hyperparameter and subject to the con-

straint βinew
∈ [0, MAX]. Note that L only affects

the convergence and mixing of the Markov chain –

that is, the computational efficiency – and could, in

principle, be adjusted during the burn-in phase. To

test for convergence of the MCMC simulations, var-

ious methods have been developed1. In our work,

we applied the scheme used in Ref. 23: each MCMC

run was repeated from independent initializations,

and consistency in the marginal posterior probabili-

ties of the edges was taken as indication of sufficient

convergence, leading to a typical trajectory length of

5×105 steps, of which the first half was discarded as

the burn-in phase.

3. DATA

3.1. Cytometry data

Sachs et al.19 have applied intracellular multicolour

flow cytometry experiments to quantitatively mea-

sure protein concentrations related to the RAF path-

way. RAF is a critical signalling protein involved

in regulating cellular proliferation in human im-

mune system cells. The deregulation of the RAF

pathway can lead to carcinogenesis, and this path-

way has therefore been extensively studied in the

literature2, 19; see Figure 1 for a representation of

the currently accepted gold standard network. In our

experiments we used 5 data sets with 100 measure-

ments each, obtained by randomly sampling subsets

from the original observational (i.e. unintervened)

data of Sachs et al.19. This subsampling was moti-

vated by the fact that we wanted to investigate the

learning performance on sample sizes typical of cur-

rent microarray experiments, which do not provide

the abundance of experimental conditions that one

gets from cytometry experiments. Details about how

we standardized the data can be found in Ref. 23.

88



Fig. 1. RAF signalling pathway. The graph shows the currently accepted RAF signalling network, taken from Ref. 19. Nodes
represent proteins, edges represent interactions, and arrows indicate the direction of signal transduction.

3.2. Synthetic data

A realistic simulation of data typical of signals mea-

sured in molecular biology is based on treating the

interactions in the network as enzyme-substrate re-

actions in organic chemistry. From chemical kinetics

it is known that the concentrations of the molecules

involved in these reactions can be described by a

system of ordinary differential equations (ODEs)25.

Assuming equilibrium and adopting a steady-state

approximation, it is possible to derive a set of

closed-form equations that describe the product con-

centrations as nonlinear (sigmoidal) functions of

combinations of substrates. However, instead of solv-

ing the steady-state approximation to ODEs explic-

itly we approximate the solution with a qualitatively

equivalent combination of multiplications and sums

of sigmoidal transfer functions. The resulting sigma-

pi formalism has been implemented in the software

package Netbuilder26, 27, which we have used for sim-

ulating the data from the RAF signalling pathway,

displayed in Figure 1. We used the same amount of

data as for the flow cytometry experiments and cre-

ated 5 simulated data sets with 100 measurements

each. To model the stochastic influences, all nodes

were subjected to additive Gaussian noise with zero

mean and standard deviation equal to 0.1. More de-

tails about the generation of these data can be found

in Ref. 23.

3.3. Biological prior knowledge

We extracted biological prior knowledge from the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways database13–15. KEGG pathways represent

the current knowledge of the molecular interaction

and reaction networks related to metabolism, other

cellular processes, and human diseases. As KEGG

contains different pathways for different diseases,

molecular interactions and types of metabolism, it

is possible to find the same pair of genesa in more

than one pathway. We therefore extracted all path-

ways from KEGG that contained at least one pair of

the 11 proteins/phospholipids included in the RAF

pathway. We found 20 pathways that satisfied this

condition. From these pathways, we computed the

prior knowledge matrix, introduced in Section 2.1,

as follows. Define by Mij the total number of times

a pair of genes i and j appears in a pathway, and

by mij the number of times the genes are connected

by a (directed) edge in the KEGG pathway. The el-

ements Bij of the prior knowledge matrix are then

defined by

Bij =
mij

Mij

(16)

If a pair of genes is not found in any of the KEGG

pathways, we set the respective prior association to

Bij = 0.5, implying that we have no information

about this relationship.

aWe use the term “gene” generically for all interacting nodes in the network. This may include proteins encoded by the respective
genes.
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4. SIMULATIONS

4.1. Motivation

As described in Section 3.1, the RAF pathway has

been extensively studied in the literature. We there-

fore have a sufficiently reliable gold standard network

for evaluating the results of our inference procedure,

as depicted in Figure 1. Additionally, recent work by

Sachs et al.19 provides us with an abundance of pro-

tein concentration data from cytometry experiments,

and the authors have also demonstrated the viabil-

ity of learning the regulatory network from these

data with Bayesian networks. However, the abun-

dance of cytometry data substantially exceeds that

of currently available gene expression data from mi-

croarrays. We therefore pursued the approach taken

in Ref. 23 and downsampled the data to a sample

size representative of current microarray experiments

(100 exemplars).

Although the RAF pathway has been extensively

studied, we have to appreciate that the published

gold standard network only reflects the current state

of our knowledge and does not necessarily represent

the true biological network. As we will discuss in

the final two sections, there are, in fact, indications

that the currently accepted gold standard network is

incomplete and possibly partially wrong. In order to

evaluate the performance of the proposed Bayesian

inference scheme on data for which we know the true

network, we tested it independently on data gener-

ated from the gold standard network with the Net-

builder simulator, as described in Section 3.2. Hence,

we repeated all evaluations twice: on real cytome-

try protein concentrations, and on data synthetically

generated from the published gold standard network.

As described in Section 3.1, the objective of

our study is to assess the viability of the proposed

Bayesian inference scheme and to estimate by how

much the network reconstruction results improve as a

consequence of combining the data with prior knowl-

edge from the KEGG pathway database. To this

end, we have compared the results obtained with the

methodology described in Section 2 with our earlier

results from Werhli et al.23, where we had evalu-

ated the performance of Bayesian networks (BNs)

and Graphical Gaussian models (GGMs, applied as

described in Ref 20) without the inclusion of prior

knowledge.

4.2. Reconstructing the regulatory network

While the true network is a directed graph, our re-

construction methods may lead to undirected, di-

rected, or partially directed graphsb. To assess the

performance of these methods, we applied two dif-

ferent criteria. The first approach, referred to as the

undirected graph evaluation (UGE), discards the in-

formation about the edge directions altogether. To

this end, the original and learned networks are re-

placed by their skeletons, where the skeleton is de-

fined as the network in which two nodes are con-

nected by an undirected edge whenever they are con-

nected by any type of edge. The second approach,

referred to as the directed graph evaluation (DGE),

compares the predicted network with the original di-

rected graph. A predicted undirected edge is inter-

preted as the superposition of two directed edges,

pointing in opposite directions. The application of

any of the machine learning methods considered in

our study leads to a matrix of scores associated with

the edges in a network. For BNs sampled from

the posterior distribution with MCMC, these scores

are the marginal posterior probabilities of the edges.

For GGMs, these are partial correlation coefficients.

Both scores define a ranking of the edges. This rank-

ing defines a receiver operator characteristics (ROC)

curve, where the relative number of true positive

(TP) edges is plotted against the relative number

of false positive (FP) edges. The results are shown

in Figure 2.

5. RESULTS AND DISCUSSION

Figure 2 shows the ROC curves for four different net-

work reconstruction methods: using the prior knowl-

edge from KEGG only, according to (16); learning

Bayesian networks and graphical Gaussian models

from the protein concentration data alone; and the

proposed Bayesian inference scheme for integrating

prior knowledge and data. The figure also distin-

guishes between learning the skeleton of the graph

only (UGE: undirected graph evaluation) and con-

sidering the direction of the edges also (DGE: di-

bGGMs are undirected graphs. While BNs are, in principle, directed graphs, partially directed graphs may result as a consequence
of equivalence classes, which were briefly discussed in Section 1.
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Fig. 2. Reconstruction of the RAF signalling pathway. The figure evaluates the accuracy of inferring the RAF signalling
network from cytometry data (bottom row) and from simulated Netbuilder data (top row), each combined with prior information
from KEGG. This evaluation was carried out twice: with and without taking the edge direction into account (UGE: undirected

graph evaluation, left column; DGE: directed graph evaluation, right column). Four machine learning methods were compared:
Bayesian Networks without prior knowledge (BNs), Graphical Gaussian Models without prior knowledge (GGMs), Bayesian Net-
works with prior knowledge from KEGG (BN-Prior), and prior knowledge from KEGG only (PriorOnly). In the latter case, the
elements of the prior knowledge matrix (introduced in Section 2.1) were computed from equation (16). The ROC curves presented
are the mean ROC curves obtained by averaging the results over five different data sets.

rected graph evaluation). Recall that larger areas

under the ROC curves indicate a better prediction

performance overall, although the slope on the left

is also of interest, as we are usually interested in

keeping the number of false positives bounded at

low values. The figure suggests that the system-

atic integration of prior knowledge with the pro-

posed Bayesian inference scheme leads, overall, to

a considerable improvement in the prediction per-

formance over the three alternative schemes that are

based on either the data or the prior knowledge from

KEGG alone. There are various interesting trends

91



β
1
−Edges

β 0−
no

nE
dg

es
AUC−DGE

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

β
1
−Edges

β 0−
no

nE
dg

es

AUC−UGE

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

β
1
−Edges

β 0−
no

nE
dg

es

AUC−DGE

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

β
1
−Edges

β 0−
no

nE
dg

es

AUC−UGE

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Fig. 3. Learning the hyperparameters associated with the prior knowledge from KEGG on simulated Netbuilder

data and real flow cytometry data. The grey shading of the contour plots represents the mean area under the ROC curve
(AUC value) – averaged over five different data sets – as a function of the fixed values of the hyperparameters β0 and β1. The
black dots show the values of these hyperparameters that were sampled in the MCMC simulations. The top row shows the
results obtained on the simulated data. The bottom row shows the results obtained on the real flow cytometry protein concen-
trations. The left column shows the results for the directed graph evaluation (DGE), while the column on the right shows the
results obtained when ignoring edge directions and only taking the skeleton of the network into account (UGE: undirected graph
evaluation).

to be noted, though. For learning the skeleton of

the graph (UGE), the improvement obtained on the

real cytoflow data is more substantial than on the

synthetic data; see the left panel of Figure 2. This

is a consequence of the fact that on the synthetic

data, Bayesian networks show already a strong per-

formance on learning the skeleton of the network,

leaving not much room for further improvement. On

the cytoflow data, on the other hand, the perfor-

mance is much poorer. Consequently, the integra-

tion of prior knowledge leads to a more substantial

improvement. When taking the edge directions into

consideration (DGE), the proposed Bayesian integra-

tion scheme outperforms all other methods on the
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synthetic data; see Figure 2, top right. This result

is consistent with what has been discussed in the In-

troduction section: when learning Bayesian networks

from non-dynamical non-interventional data (as con-

sidered here) without prior knowledge, there is inher-

ent uncertainty about the direction of edges owing

to intrinsic symmetries within network equivalence

classes; see Section 1. These symmetries are broken

by the inclusion of prior knowledge; hence the im-

provement in the prediction performance. This im-

provement is also observed on the real cytoflow data

(Figure 2, bottom right), but to a lesser extent. Al-

though the area under the ROC curve related to the

Bayesian integration scheme exceeds that of all other

ROC curves, the prediction based on prior knowledge

alone shows a steeper slope in the very left region of

the false-positive axis. This implies that for very high

values of the threshold on the edge scores, a network

learned from prior knowledge alone is more accurate

than a network learned with any of the three meth-

ods that make use of the data. While the resulting

network itself would not be particularly interesting –

it would only contain a very small number (3 or 4) of

the highest scoring edges – this observation is inter-

esting nevertheless, and can be explained as follows.

The discrepancy between the UGE and DGE scores

indicates that the Bayesian network learns the skele-

ton of the graph more accurately than the direction

of the interactions, with some of the edge directions

systematically inverted. A possible explanation are

errors in the gold standard network. The recent lit-

erature describes evidence for a negative feedback

loop between RAF and ERK via MEK. Active RAF

phosphorylates and activates MEK, which, in turn,

activates ERK. This corresponds to the directed reg-

ulatory path shown in Figure 1. However, through a

negative feedback mechanism involving ERK, RAF

is phosphorylated on inhibitory sites, generating an

inactive, desensitized RAF. Details can be found in

Ref. 2. This feedback loop is not included in the gold-

standard network reported by Sachs et al.19, shown

in Figure 1. Such as yet unaccounted feedback loops

could explain systematic deviations between the pre-

dicted and the gold standard network, not only be-

cause the structure of a Bayesian network is con-

strained to be acyclic, but also because we ultimately

don’t have a reliable gold standard to assess the qual-

ity of the predictions. This example points to a fun-

damental problem inherent in any evaluation based

solely on real biological data, and illustrates clearly

the advantage of our combined evaluation based on

both laboratory and simulated data.

It is obviously of interest to test how well the

inference of the hyperparameters β0 and β1 works,

especially as this inference depends on the parti-

tion function Z of equation (6), which can only be

computed approximately; see (11). To this end, we

repeated the MCMC simulations for a large set of

fixed values of β0 and β1, selected from the grid

[0, 20]× [0, 20]. For each pair of fixed values (β0, β1),

we sampled BNs from the posterior distribution with

MCMC, and evaluated the network reconstruction

accuracy using the evaluation criteria described in

Section 4.2. We compared these results with the

proposed Bayesian inference scheme, where both hy-

perparameters and networks are simultaneously sam-

pled from the posterior distribution with the MCMC

scheme discussed in Section 2.2. The results are

shown in Figure 3. The grey shading of the con-

tour plots indicates the network reconstruction ac-

curacy in terms of the directed (DGE: left panels)

and undirected (UGE: right panels) graph evalua-

tion, obtained from the synthetic (top panels) and

real cytometry data (bottom panels). The black dots

show the hyperparameter values sampled with the

MCMC simulations. While the distribution of β0,

the hyperparameter associated with the non-edges,

is fairly peaked, the distribution of β1, the hyperpa-

rameter associated with the edges, is rather diffuse.

This diffusion is particularly noticeable on the syn-

thetic data. However, even on the real cytometry

data, the distribution of β1 has a long tail, with val-

ues being sampled across the whole permissible spec-

trum. An inspection of the prior knowledge matrix

B extracted from KEGG according to (16) reveals

that the prior knowledge associated with the energy

function E1 – equation (4) – accounts for only 25%

of the true edges in the gold standard network of

Figure 1, while the prior knowledge associated with

the energy function E0 – equation (3) – accounts

for 92% of the non-edges. Consequently, it appears

that E0 captures more relevant information for net-

work reconstruction than E1, which is reflected by

the tighter distribution of the respective hyperpa-

rameter. The location of the sampled values of the

hyperparameters β0 and β1 falls into the region of

high network reconstruction scores. This suggests

that the proposed Bayesian sampling scheme suc-
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ceeds in finding hyperparameter values that lead to

good network reconstructions. A certain deviation

from the optimal reconstruction would be expected

owing to the approximation made for computing the

partition function; see (11). However, his deviation

is small for both scores (UGE and DGE) on the syn-

thetic data, and for the UGE score on the cytometry

data. A noticeable deviation occurs for the DGE

score on the cytometry data, though; see Figure 3,

bottom left panel. This deviation indicates a sys-

tematic mismatch between the DGE score and the

posterior probability of the hyperparameters, which

suggests that the cytometry data do not support all

the edge directions in the gold standard network of

Figure 1. Two possible explanations are either wrong

edge directions in the gold standard network, or the

existence of as yet unaccounted feedback loops, in

confirmation of what has been discussed above.

6. CONCLUSION

Our paper complements the work of Imoto et al.11 on

improving the reconstruction of regulatory networks

from postgenomic data by the systematic integra-

tion of prior knowledge. The idea is to express the

prior knowledge in terms of energy functions, from

which a prior distribution over network structures is

obtained in the form of a Gibbs distribution. The

hyperparameters of this distribution represent the

weights associated with the various sources of prior

knowledge relative to the data. We have developed

a Bayesian approach to inferring these hyperparam-

eters, based on MCMC. We have tested the viability

of this approach by trying to reconstruct the RAF

pathway from flow cytometry protein concentrations

and prior knowledge from KEGG. As an independent

source of validation, we repeated the evaluation on

synthetic data generated from the gold standard net-

work. Our findings suggest that the Bayesian inte-

gration scheme systematically improves the network

reconstruction over approaches that either use only

the protein concentrations or the prior knowledge

from KEGG alone. Also, the hyperparameters are

sampled in regions close to those that yield the best

possible network reconstruction, suggesting that the

ideal gas approximation made for computing the par-

tition function does not adversely affect the perfor-

mance of the scheme. Learning the undirected skele-

ton graph from the cytometry data led to results that

were systematically better than those obtained when

learning the directed graph from these data, though.

This difference between the directed and undirected

graph reconstruction did not occur on the synthetic

data, which suggests that either certain edge direc-

tions in the gold standard network are wrong, or that

certain feedback loops are missing, in corroboration

of the findings reported by Doughtery et al.2.
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