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Protein complexes are fundamental for understanding principles of cellular organizations. Accurate and fast protein complex prediction from
the PPI networks of increasing sizes can serve as a guide for biological experiments to discover novel protein complexes. However, protein
complex prediction from PPI networks is a hard problem, especially in situations where the PPI network is noisy. We know from previous
work that proteins that do not interact, but share interaction partners (level-2 neighbors) often share biological functions. The strength of
functional association can be estimated using a topological weight, FS-Weight. Here we study the use of indirect interactions between level-2
neighbors (level-2 interactions) for protein complex prediction. All direct and indirect interactions are first weighted using topological weight
(FS-Weight). Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the
interaction network. Existing clustering algorithms can then be applied on this modified network. We also propose a novel algorithm that
searches for cliques in the modified network, and merge cliques to form clusters using a “partial clique merging” method. In this paper, we
show that 1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the
precision of clusters predicted by various existing clustering algorithms; 2) our complex finding algorithm performs very well on interaction
networks modified in this way. Since no any other information except the original PPI network is used, our approach would be very useful for
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USING INDIRECT PROTEIN-PROTEIN INTERACTIONS FOR PROTEIN COMPLEX PREDICTION

protein complex prediction, especially for prediction of novel protein complexes.

Keywords: protein-protein interaction, protein complex prediction, level-2 interaction, partial clique merging

1 INTRODUCTION

Identification of functional modules in protein interactions
network is a first step in understanding the organization
and dynamics of cell functions. Protein-protein interaction
networks (PPIs) are rapidly becoming larger and more
complete as research on proteomics and systems biology
proliferates [1]. As a result, more protein complexes are
been identified [2]. A protein complex is a group of two or
more associated proteins. Protein complex is a form of
quaternary structure. Similar to phosphorylation, complex
formation often serves to activate or inhibit one or more of
the associated proteins. Many protein complexes are
established, particularly in the model organism
Saccharomyces cerevisiae (Bakers’ yeast). With a wealth
of and constantly increasing size of PPI datasets, efficient
and accurate intelligent tools for identification of protein
complexes are of great importance. In this paper, we have
focused on predicting protein complexes from PPI data.
Currently, there are several approaches to the protein
complex prediction problem [3-8]. Spirin et. al. [3]
proposed using clique finding and super-paramagnetic
clustering with Monte Carlo optimization to find clusters
of proteins. They found a significant number of protein
complexes that overlap with experimentally derived ones.

While clique finding [3] imposes stringent search
criterion, and generally results in greater precision, recall
is limited because: 1) protein interaction networks are
incomplete; and 2) protein complexes may not necessary
be complete subgraphs. Another approach, such as
MCODE [5], are clustering based. MCODE makes use of
local graph density to find protein complex. PPI networks
are transformed to weighted graphs in which vertices are
proteins and edges represent protein interactions. The
algorithm operates in three stages: vertex weighting,
complex prediction and optimal post-processing. Each
stage involves several parameters that can be fine-tuned to
get better predictions. However, clustering approaches [5,
8] yield good recall but sacrifice precision. To make
clustering based approaches more viable, [4, 7] show that
it is possible to identify high precision subsets of clusters
from clustering results by post-processing based on
functional homogeneity, cluster size and interaction
density. While post processing significantly improves
precision, recall is drastically reduced. Moreover, the
approach makes use of functional information, which
limits its applicability in less studied genomes such as
Homo sapiens, Mus muculus and Arabidopsis thialiana.
Recently, a popular clustering algorithm, Markov
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clustering algorithm (MCL) [9], has also been shown to
perform well in an evaluation of algorithms for protein
clustering in PPI networks [6]. MCL partitions the graph
by discriminating strong and weak flow in the graph,
which is shown to be very robust against graph
alternations. Table 1 gives the main features of the
algorithms that we have used for comparison in this paper.

Table 1. Main features of protein complex prediction algorithms.

RNSC MCODE MCL
Type Local search Local neighbourhood Flow

cost based density search simulation
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

We know from [10] that many proteins that do not
interact, but share common interaction partners, share
functions and participate in similar pathways. The
interactions between these proteins are referred to as
“level-2 neighbors”. [10] also proposed a topological
weight, FS-Weight for estimating functional association
between direct and indirect interactions, which is shown
to work well. In this paper, we propose using these
indirect interactions with FS-Weight to modify the
existing PPl as a preprocessing step to complex
prediction. The original PPI network is expanded by
including indirect interactions (relationship between pairs
of proteins that do not interact but share common
interactors). A topological weight, FS-Weight (functional
similarity weight), is then computed for both direct and
indirect interactions. Interactions with weights below a
threshold are removed. We also propose a new algorithm
that incorporates FS-Weight for complex prediction. The
algorithm employs clique finding on a modified PPI
network, retaining the benefits of clique based approaches
while improving recall. The algorithm first searches for
cliques in the modified network, and iteratively merges
them by “partial clique merging” to form larger clusters.
For the rest of this paper, we refer to predicted protein
clusters as clusters, and known protein complexes as
complexes.

2 INTRODUCTION OF INDIRECT
NEIGHBORS

The PPI network is transformed into a graph G=(V, E).
Each vertex vyeV represents a protein, while each edge
{vi,vj} € E represents an interaction between the proteins v;
and v;. For the rest of this section, we consider PPI
networks in this graph-based representation. We refer to
level-1 interactions as the original interactions in the PPI
network, and level-2 interaction as an indirect interaction
between two proteins which do not interact, but share
common interaction interactors.

Members in a real complex may not have physical
interactions with all other members; hence conventional
methods (clique-based, density-based) may miss the
detection of many members. By introducing level-2
interactions, which represent strong functional relations
(from [10]), we will be able to capture members with less
physical involvement in the complex.

[10] showed that a topological weight, the FS-Weight,
can identify both level-1 and level-2 interactions that are
likely to share common functions within the local (level-1
and level-2) PPI interaction neighborhood. Since proteins
within a complex interact to perform a common function,
it makes sense to identify protein complexes using FS-
weight. Through topological weighting, we can identify
interactions reasonably with a good likelihood of
indicating functional relationship, and use these for
complex prediction. This will also reduce the impact of
noise and make predictions more robust.

Topological Weighting

All level-1 and level-2 interactions in the PPI network are
given a weight using the topological weight, FS-Weight,
defined as follows:

Sis (u,v) =
2 Y huha
we(N,NN,)
Dttt O nwl=n) 42 Y nst A,
WeN, we(N,NN,) we(N,NN,) ( 1 )
2 37 Gt
« we(N, NN,
Sorwt Y (mna )2 Y s AL
weN, we(N,NN,) we(N, NN,




N, refers to the set that contains protein p and its level-1
neighbors; r,, refers to the estimated reliability of the
interaction between u and w. In [10], r,, is estimated
based on annotated proteins in the training set during
cross validation. To avoid possible bias that may be
caused by using additional information (functional
annotation), we exclude reliability estimation of
interactions and set all r,, to 1. 4,, is a pseudo-count
included in the computation to penalize similarity weights
between protein pairs when proteins has very few level-1
neighbors, and is defined as:

A,, =max(0,n,, —(N, = N,|[+|N, "N ) )

avg

in which n,, is the average number of neighbors per
protein in the PPI network.

Using FS-Weight, we modify an existing protein-
protein interaction network in the following manner: 1)
Level-1 interactions in the network that have low FS-
Weights (weight below a certain threshold, FS-Weight,;,)
are removed from the PPI network. 2) Level-2 interactions
that have high FS-Weights (above or equal to FS-
Weight,,;,) are added into the PPI network. FS-Weight, i,
is a value that is determined empirically.

3 PCP ALGORITHM

After we have generated a modified PPI network, existing
protein complex prediction algorithms can be applied on it
for more reliable protein complex prediction. However,
we have also designed a algorithm,
ProteinComplexPrediction (PCP), for complex prediction
using “partial clique merging”. This method differs from
existing approaches in the following ways: 1) it uses the
FS-Weight information during the merging of cliques
(clusters); 2) merging based on cliques is a clear and rigid
method in graph theory and it is more viable based on
reliable PPI networks. PCP attempts to achieve the high
precision of clique-finding algorithms whilst providing
greater recall and computational tractability, without using
any external information. Results show that this method
performs well and is robust against noises.

novel

Maximal Clique Finding
We first find all maximal cliques within the modified PPI.
To do this, we implement the maximal clique finding
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algorithm described in [11]. This algorithm has been
shown to be very efficient on sparse graphs. All cliques of
at least size 2 is reported. To make sure that there is no
overlap among cliques, any overlap between cliques can
only be assign to one clique. There can be many ways to
do this. Since FS-Weight is an estimate for the likelihood
of sharing functions, a cluster with a larger average FS-
Weight would more likely represent a subset of a real
complex. We define the Average FS-Weight of a subgraph
S with edges E; is defined as:
> FS(u,v)

FSHVg(S):% N

s

Ideally, we want to find the best way to remove
overlaps so that the total average F'S,,, of all the final non-
overlapping cliques is maximized. However, since this is a
NP-hard problem, we turn to heuristics. All cliques are
first sorted by decreasing FS,, The clique with the
highest FS,,, is selected and compared with the rest of the
cliques. Whenever an overlap is found with another
clique, the overlapping nodes are assigned to one of the
two cliques such that the two cliques have a higher
average F'S,,,. An example is given in Fig 1 (b).

InterClusterDensity

A protein complex is likely to consist of proteins forming
a dense network of interactions, but may not necessarily
form a complete clique. Due to the stringent definition of
a clique, the resulting maximal cliques from the clique
finding step are relatively small and are likely to be partial
representations of real complexes. To reconcile these
smaller protein clusters into larger clusters that form fuller
representation of real complexes, we previously tried to
merge overlapping clusters based on the amount of
overlapping vertices between them. However, the
corresponding prediction results are not good, since each
merge considers only overlapping vertices between two
clusters, but overlooks the density of interactions between
them. Hence we define Inter-Cluster Density (ICD), which
is a measure of interconnectedness between two
subgraphs, as a criterion for merging clusters. The ICD
essentially computes the FS-Weight density of inter-
cluster interactions between the non-overlapping proteins
of two clusters. High ICD indicates that the two clusters
are highly connected. Using ICD to impose criteria for
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merging ensures that merged clusters retain a certain
degree of interconnectedness between its members. The
Inter-Cluster Density (ICD) between subgraphs S, and S,
is defined as:

2 Seslinj)li €

1co(s,.s,) = “)

v, -%).jeW,-v,)ij)eE
Va_m b

a

where V; is the set of vertices of subgraph S;. An example
of ICD computation is given in Fig 1 (a).

Partial Clique Merging
To merge cliques found in the PPI network, we define the
term “partial cliques” as strongly connected subgraphs
formed from the amalgamation of one or more cliques.
Trivially, all cliques in the PPI network G are partial
cliques. We begin with an initial graph Gp0 in which each
vertex represents a partial clique, and add an edge (u, v)
between any pair of partial cliques u and v in GPO if
ICD(u,v)=ICDes. From GPO, we can again find maximal
cliques among the vertices. Each clique in Gpo is therefore
a cluster of partial cliques from G, where all pairs of
partial cliques in the cluster fulfils a minimum level of
interconnectedness defined by ICD. In other words, the
vertices in each clique from GpO can be merged to form a
larger partial clique.

This process is then repeated to form bigger partial
cliques. In each iteration i, a graph Gpi is formed from

S, Sh

ICD(Saa Sh)

=(0.8+0.5+0.7+0.6+0.9+0.8)/(3*4)=0.36
(@)

PC™', the partial cliques from the previous iteration, i.e.
Gpi = (PCH, {(u,v) | ICD(u,v)=ICDyes, U,vE PCH}). From
Gpi, we can again find maximal cliques among the vertices
(partial cliques in Gpi'l) and merge the proteins in these
cliques to form bigger partial cliques. This is done until no
further merge can be made. In order for the more
connected partial cliques to merge first, we first perform
the merge using ICDy,s = 1. The merging process is then
repeatedly reinitiated while reducing ICDy,s by 0.1 until
ICDyyres < ICDpin. ICDy;p is a threshold to be determined
empirically. A smaller ICD,;, will yield bigger clusters
and vice versa. We refer to this merging method as
“partial clique merging”.

4 EXPERIMENTS

Experiment Settings and Datasets

The PCP algorithm is implemented in C++ and Perl. We
compare PCP with state-of-the-art algorithms: RNSC [4],
MCODE [5] and MCL [6] algorithms. The experiments
are performed on a PC with 3.0 GHz CPU and 1.0 GB
RAM, running a Linux system.

e PPI datasets

We use two high-throughput datasets obtained from
different sources for analysis of these algorithms. The first
dataset is obtained from the GRID database [12]. This
dataset is a combination of six protein interaction
networks from the Saccharomyces cerevisiae (Bakers’

‘O '0
()

FS . ({a.b.c})+ FS ., (1d})> FS ., (la}) + FS . (ib.c.d})

Merge({a,b,c},{b,c,d}) = {a,b,c},{d}
(b)

Fig 1. (a) Example of ICD computation. There are two clusters, and solid lines are used for ICD calculation. (b) Example of resolving

overlapping cliques. Edge thickness represents the FS-Weight of the edge.



Yeast) genome. These includes interactions characterized
by mass spectrometry technique from Ho et al.[13], Gavin
et al.[14], Gavin et al. [15] and Krogan et al. [16], as well
as two-hybrid interactions from Uetz et al. [1] and Ito et
al. [17]. We shall refer to this dataset as PPI[Combined].
The second dataset is taken from a current release of the
BioGRID database [18]. We only consider interactions
derived from mass spectrometry and two-hybrid
experiments since these represents physical interactions.
We shall refer to this dataset as PPI[BioGRID]. Table 3
presents the features of the two datasets, as well as some
characteristics of the clusters predicted by different
algorithms.
e Protein Complex datasets
As a yardstick for prediction performance, we use protein
complex data from the MIPS database [2]. These protein
complexes are treated as a golden standard for analysis.

To examine whether false positives in predictions
may turn out to be undiscovered annotations, we use two
releases of the MIPS complex datasets - a dataset released
on 03/30/2004 and a newer dataset released on
05/18/2006. We refer to two protein complex datasets as
PCyp4 and PC,gp, respectively. During validation,
proteins that cannot be found in the input interaction
network are removed from the complex data.
e Cluster Scoring
Density of a graph G = (V,E) is defined as Dg= |E|/|E |mnax »
where for a graph with loops and |E|,.«= [V] ([V[+1)/2 and
for a graph with no loops, |E|n.x= |V| ([V]-1)/2. So, Dg is a
real number ranging from 0.0 to 1.0. Resulting cluster S =
(V,E) from the algorithm are scored and ranked by cluster
score, which is defined as the product of the density and
the number of vertices in S, (D¢ % |V|). This ranks larger
more dense clusters higher in the results.
e Validation Criterion
In order to study the relative performance of PCP against
existing algorithms, we need to define the criterion that
determines whether a predicted protein cluster matches a
true protein complex. [S] defined a matching criterion
using the overlap between a protein cluster S and a true
protein complex C:

N

0verlap(S,C)— W (5)
N C
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V, are the vertices of the subgraph defined by S; and V.
are the vertices of the subgraph defined by C.

In [5], an overlap threshold of 0.2 is used to
determine a match. [4] used a modified version of the
overlap which is more stringent but involves many
empirically derived parameters which may not be
applicable across different datasets. To simplify
comparison, we used an overlap threshold of 0.25 to
determine a match for all experiments in this work.
Predicted protein clusters that match one or more true
protein complexes with overlap score above this threshold
are identified as “matched predicted complexes”, and the
corresponding complexes are identified as “matched
known complexes”. Note that the number of “matched
clusters”, matched s, may differ from the number of
“matched complex”, macthed,mpiex because one known
complex can match one or more predicted clusters.

To measure the accuracies of prediction, the analysis
on the Precision and Recall, of different algorithms are
computed. Precision and Recall are defined as

‘o matched , .
Precision = clusters ©)
p redZCtedclus'ters
Recall = matched complexes o
kn own complexes

where predictedysters and KNOWNgompiexes are the number of
predicted clusters and the number of known (real)
complexes, respectively.

The recall measure in our validation is determined by
matched complexes instead of predicted clusters, and is
hence not prone to bias. Moreover, the precision measure
uses the number of predicted clusters as a denominator.
Hence there should not be any significant bias in these
validation measures. We only consider clusters and
complexes of size 4 and above, since matches between
clusters and complexes of smaller sizes have relatively
high probabilities of occurring by chance [4]. Note that
unlike the validation measures used in [6], we do not seek
to evaluate the clustering properties of each algorithm.
Rather, we are concerned about the actual usefulness of
the algorithms in detecting clusters that match real
complexes reasonably well.
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To avoid bias that may arise from large variations in
the size of predicted complexes, we also introduce another
precision-recall analysis based on protein membership
assignment. For this analysis, we defined two terms:
protein-cluster pair (PC/) and protein-complex pair (PCo).
Each PCI represents an unique protein-cluster
relationship. For example, given two predicted clusters
CIl(A) = {P;, P>} and CI(B) = {P,, P;}, we have four PClIs,
namely (Ci(4), P,), (Cl(4), P), (CI(B), P;) and (CI(B),
P;). Similarly, each PCo represents an unique protein-
complex relationship.

Precisiony,q.in: A PCI is considered to be matched if its
protein belongs to some complex that matches its cluster.
The definition of a match between a predicted cluster and

a complex is described earlier in this section.
Precision,y,ein is defined as:
. matched
Precisionein =M )
| predicted.,, |

Recally,otein: A PCo is considered to be matched if its
protein belongs to some cluster that matches its complex.
Recallorein is defined as:

_ | matched ., |

Recallprotein - (9)
| known ., |

Results

e Parameters determination
The optimal parameters for RNSC, MCODE and MCL
algorithms are given by [6] (Table 2).

Table 2. Optimal parameters for RNSC, MCODE and MCL
algorithms.

Algorithm | Parameter Optimal
value
RNSC No. of experiments 3
Tabu length 50
Scaled stopping tolerance 15
MCODE Depth 100
Node score % 0
Haircut True
Fluff False
% of complex fluffing 0.2
MCL Inflation 1.8

There are two tunable parameters in our experiments:
FS-Weight,;,, and ICD,;,. FS-Weight,,;, determines the
FS-Weight (1) threshold for filtering out level-1 and level-
2 interactions. ICD,,;, determines the Inter-Cluster Density
(4) threshold for which two clusters are allowed to merge
during clustering for the PCP algorithm. Based on
PPI[Combined] and PC,gy4, we use level-1 interactions
(without any filtering) to determine ICD threshold. FS-
Weight threshold is determined on the same dataset using
PCP algorithm.

Inter-Cluster Density Threshold: We first vary
ICDpin, the Inter-Cluster Density threshold for merging
clusters between 0.1 and 0.5 and perform the predictions.
The corresponding precision and recall of the predictions
are shown in Fig 2 (a). Lower ICD,,;, results in more
clusters being merged and vice versa. We find that
ICD,;;,=0.1 yields the best precision against recall and use
this for the rest of our experiments.

FS-Weight Threshold: [10] showed that filtering
level-1 and level-2 interactions with a FS-Weight
threshold of 0.2 resulted in interactions that have a
significantly higher likelihood of sharing functions. Here
we perform protein complex prediction using the PCP
algorithm with a range of FS-Weight,,;, to determine
which value can yield the best prediction performance.
The ICD,y, is set to 0.1. The corresponding precision and
recall of the predictions are shown in Fig 2 (b). We find

Precision vs Recall for different ICD Thresholds
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Fig 2. Effect of (a) ICD threshold and (b) FS-Weight threshold on
Precision and Recall values for PPI[Combined] dataset.



that FS-Weight,;,=0.4 yields the best precision against
recall, and use this for the rest of our experiments.

e Introduction of indirect neighbors

The introduction of indirect neighbors is the key part of
our analysis in this paper. To evaluate the performance
this process, we transform the original PPI network in
three different ways: (1) All level-1 interactions; (2) All
level-2 interactions; (3) All
interactions, and level-2 interactions with FS-Weight >
FS-Weight,i,; and (4) level-1 and level-2 interactions with
FS-Weight > FS-Weight,;,. For (2), Due to the large
number of level-2 interactions, results can only be
obtained for MCL and RNSC. For example, on
PPI[combined], there are 20,461 level-linteractions. With
the introduction of level-2 interactions, the number of
interactions increased to 404,511. After filtering level-2
interactions based on FS-Weight, we have 23,356
interactions. Finally, upon filtering both level-1 and level-

level-1 and level-1

2 interactions, we are left with only 7303 interactions.

If two proteins in an interaction belong to some
common known complex, we defined the interaction as an
intra-complex interaction. To justify our intuition for
using level-2 interactions and FS-Weight for complex
prediction, we compute the fraction of interactions in the 4
transformed networks that are intra-complex interactions.
Since proteins are clustered based on interactions, a higher
fraction of intra-complex interactions will naturally yield
more accurately predicted clusters. In Fig 3, we present
the corresponding fractions for two PPI networks,
PPI[Combined] and PPI[BioGRID] using the known
protein complexes in PCygp4.. We observe that the fraction
of intra-complex interactions did not change significantly
after adding filtered level-2 interactions into the network.
However, if both level-1 and level-2 interactions are
filtered, the fraction of intra-complex interactions become
significantly higher. Without any filtering, level-2
interactions will contain too many false positives to be
useful, as reflected by the very small fraction of intra-
complex interactions. This is consistent with the findings
for function similarity in [10]. From the observations, we
believe that using a PPI network with filtered level-1 and
level-2 interactions would yield the best results for protein
complex prediction.
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Fig 3. Fraction of intra-complex interactions with nodes sharing
some complex membership for different PPI networks.

e Comparison with existing approaches

We compared clusters predicted using four clustering
algorithms: MCL, RNSC, MCODE and PCP on the two
datasets PPI[Combined] and PPI[BioGRID]. PC,yy4 is
used to represent real protein complex against which the
results from these algorithms are validated.

Table 3 summarizes some general characteristics of
clusters predicted by four clustering algorithms. The
PPI[BioGRID] dataset is larger than PPI[Combined]. We
observe that upon the introduction of filtered level-2
interactions, the number of predicted clusters generally
decrease while average cluster sizes increase. This is due
to greater connectivity in the graph since more edges are
added among the same number of nodes. We also observe
that the average cluster sizes of clusters predicted by the
MCODE and MCL algorithms are larger than those
predicted by the RNSC and PCP algorithms. After
filtering both level-1 and level-2 interactions using FS-
Weight, all algorithms produced less clusters. With the
exception of MCODE, the average cluster sizes of clusters
predicted by the various algorithms are also larger.

We have also studied the average density of the
clusters predicted by the four different algorithms using
the different networks. Generally, all algorithms predicted
clusters with the highest density using only level-1
interactions, followed by using level-1 and filtered level-2
interactions. Using filtered level-1 and level-2 interactions
resulted in clusters of lower density. When level-1 and
level-2 interactions without filtering are used, the clusters
found have the lowest density. RNSC yielded clusters
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Table 3. The features of the datasets, and the features of the clusters that are predicted by different algorithms.

Datasets Nodes Edges No. Avg. Setting No. of Clusters Avg. Cluster Size
Complex Complex Size
RNSC MCODE MCL PCP |[RNSC MCODE MCL PCP
PPI[Combined] 4672 20461 815 8.80 1) 2332 121 936 1537 (2.00 5.75 499  3.04
2) 874 - 209 - 534 - 22.35 -
3) 2233 120 720 1499 |2.09 6.48 649 3.12
4) 699 92 259 417 244 583 6.59  4.09
PPI[BioGRID] 5036 27560 815 8.82 1) 2404 152 830 1764 |2.20 3.98 6.38 285
2) 811 - 159 - 6.21 - 31.67 -
3) 2331 142 681 1557 |2.16  5.69 740  3.23
4) 901 121 285 555 236  5.51 746  3.83
with the highest density, followed by MCODE, PCP and Precision vs Recall Precision vs Recal
K . (Biogrid, L1+Filtered L2) (Biogrid, Filtered L1&L2)
MCL. Interestingly, we found that the average density of - ST o
real protein complexes is quite low, around 0.55, which o3 4 lcove o8
. . 5 06 S 06
suggests that the density of predicted clusters do not 2 05 205
. L. £ o4 2 04
correlate with prediction accuracy. o 08 K
- - —a— MCODE
Fig 4 presents the precision-recall analysis of the ° o e
predictions made by the four algorithms. By varying a 0 1 Reca o ° T o2
threshold on cluster score, we can obtain a range of recall (2 (h)

and precision for the predictions from each algorithm.
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Fig 4. The precisions and recalls of RNSC, MCODE, MCL and PCP
algorithms on PPI[Combined] with (a) original level-1 interactions,
(b) level-1 and level-2 interactions, (c) original level-1 and filtered
level-2 interactions, and (d) filtered level-1 and level-2 interactions;
PPI[BioGRID] with (e) original level-1 interactions, (f) level-1 and
level-2 interactions, (g) original level-1 and filtered level-2
interactions, and (h) filtered level-1 and level-2 interactions. Results
are based on comparison with PC,g4 protein complex dataset.

From Fig 4 (a)-(d) on the PPI[Combined] dataset, we
observed that RNSC performs the best in precision and
recall on the original network (level-1 interactions). With
the introduction of lelvel-2 interactions, the precision and
recall decreased. When these level-2 interactions are
filtered, precision and recall are improved in MCODE and
RNSC, while PCP and MCL remain almost unchanged.
However, when filtered level-1 and level-2 interactions
are used, all methods show significant improvement in
precision except RNSC. In all the combinations, PCP with
filtered level-1 and level-2 interactions performs the best
(Fig 4 (d)). A similar trend is observed in the bigger
PPI[BioGRID] dataset (Fig 4 (e)-(h)). Precision is
improved in most algorithms with the introduction of
filtered level-2 neighbors, and further improvement is
achieved when level-1 interactions are also filtered based
on FS-Weight. In particular, the performance of MCODE
and MCL improved substantially with the introduction of
level-2 interactions and FS-Weight filtering. Again, PCP



with filtered level-1 and level-2 interactions performs the
best (Fig 4 (h)).

To illustrate the contribution of PCP to complex
prediction, we compare predictions made by each
algorithm natively (i.e. RNSC, MCODE, MCL on original
level-1 interactions against PCP on filtered level-1 and
level-2 interactions) in Fig 5. We observe that PCP
outperforms the other algorithms significantly (Fig 5 (a)
and (b)). We arrived at similar conclusions using
precision-recall analysis based on protein membership
assignment (Fig 5 (¢) and (d)).
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Fig 5. Precisions-recall analysis of RNSC, MCODE, MCL and PCP
algorithms on (a) PPI[Combined] and (b) PPI[BioGRID] using native
settings (RNSC, MCODE, MCL on original level-1 interactions, and
PCP on filtered level-1 and level-2 interactions); Precision-recall
analysis based on protein membership assignment on the same
predictions on (c) PPI[Combined] and (d) PPI[BioGRID]. Results are
based on comparison with PC,g4 protein complex dataset.

Examples of predicted complexes: We have proposed
two new concepts in this paper: the introduction of
indirect interactions as a preprocessing step, and the PCP
clustering algorithm. To illustrate how these concepts can
help to predict protein clusters that better match real
complexes, we examine some examples of protein clusters
predicted by the PCP based on the modified network, as
well as RNSC and MCL algorithms based on the original
network, and how they correspond to real protein
complexes in the PCyy, dataset. Fig 6 shows two
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examples where PCP can predict protein clusters that
match a real complex more precisely than other
algorithms. In the first example (Fig 6 (a)), PCP predicted
a cluster that matches a 4-member protein complex
completely, while RNSC’s 3-member cluster has only one
member, “YDR121W?”, that matches the same complex.

YBR27EW
YPRITSW
RN A
—_ . T . [
@ YOR0OIW YDRI2IW I

YNL262W

YHR046C

YBRI8SC

YOR304W

()
= m= = PCyps complex -I
= « == MCL cluster .
——————— RNSC cluster

PCP cluster

(®)

Fig 6. Example of predicted and matched complexes. Complexes in
PCyo04, the predicted clusters by MCL, RNSC and PCP are shown in
different boxes. (a) A complex in PCyy4 of size 4, PCP’s cluster matched
it perfectly, while MCL and RNSC’s clusters matched 1 and 2 of the
proteins in the complex, respectively. (b) In this complex in PCyps of
size 8, RNSC’s predicted cluster matched only 2 proteins, while PCP’s
predicted cluster matched 5 proteins, MCL also matched 5 proteins, but
predicted 6 proteins that are not in the complex.
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This is probably due the fact that members in RNSC’s
cluster are well connected by level-1 interaction. But by
including level-2 interactions and filtering unreliable
interactions, their connections are shown not to be strong
enough to be in one cluster. Therefore PCP is able to
identify the correct complex. Similarly, the cluster
predicted by MCL only overlaps with two members of the
complex, while the other 6 members of the cluster do not
belong to the real complex. The second example (Fig 6
(b)) shows a 5-member protein cluster predicted by PCP,
which is a subset of a 8-member protein complex. The
best match with the same complex from RNSC is a 7-
member cluster, in which only 2 belongs to a subset of the
real complex. Though PCP’s predicted cluster matched 5
proteins and MCL also matched 5 proteins, but the latter
predicted 6 proteins that are not in the complex. A closer
look will reveal that PCP’s cluster member do not have
any interactions among them, and this subset of the real
protein complex can only be identified by level-2
interactions with the rest of the complex members. PCP is
unable to discover the rest of the complex as their
connectivity with the other members is very weak or
unknown. The protein “YLLO11W” is missed by PCP
because its local topology resulted in a low FS-Weight
score. This may be due to the reason that “hub proteins”
like “YLLO11W?” are automatically penalized by the FS-
Weight score.

e Validation on newer protein complex data

A comparison of prediction performance validated against
an old protein complex dataset and a newer, more updated
standard protein complex dataset can reveal the
parameter-independent  identification power of the
different algorithms. We have previously assessed the
RNSC, MCODE, MCL and PCP algorithms with PCy4.
Here, we validate the predicted clusters of PCP and other
algorithms against a more recent and more updated
protein complex dataset, PCypp6. We have used modified
PPI networks (PPI[Combined] and PPI[BioGRID]) with
filtered level-1 and level-2 interactions which have the
shown earlier (Fig 4) to yield the best performance for
most algorithms studied. The corresponding precision-
versus-recall graphs are shown in Fig 7. Comparing Fig 4
against Fig 7, we find that against the same recall range,
the precision of all algorithms studied has increased

substantially when validating against PC,gs for both PPI
network datasets. A significant number of clusters which
are predicted by PCP, but have been treated as false
positives because they cannot be matched against any
known complex in PCy4, are now found to match against
known complexes in PCygp6. This indicates that PCP has a
good potential for finding novel protein complexes.
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Fig 7. The precisions and recalls of different algorithms on (a)
PPI[Combined] and (b) PPI[BioGRID] with filtered level-1 and level-2
interactions. Results are based on comparison with PCys protein
complex dataset.

We also present two illustrative examples in Fig 8
which show that PCP predicted novel members to some
complexes, which are later verified in the newer complex
dataset. In the first example (Fig 8 (a)), PCP predicted a
cluster of 4 proteins. The cluster is found to match well
with a real 4-member complex from PC,y, that contains
all but 1 of the proteins in the predicted cluster. A
comparison with PC,y 4, however, reveals that the
predicted cluster matched a real complex in the dataset
that contains all the 4 proteins. The protein “YFLOOSW”
in PC,y06 has level-1 interactions with the other 3 proteins,
but since the FS-Weight of these interactions are low, PCP
did not predict it to be in the same cluster. It is also
interesting that in Fig 8 (b), PCP has predicted
“YHRO33W” to be in the same cluster as the other 5
proteins, and this is consistent with PC,g06 but not PCyps.
However, the other 5 proteins in the new complex are not
predicted by PCP, since they do not have any level-1
interaction with other proteins. We think that more
accurate prediction of this protein complex may be
achieved by incorporating additional information such as
function annotations. Moreover, while “YJR072C” protein
is predicted by PCP, it is not in new protein complex.
Since the interactions of this protein with “YDR212W”
and “YJR064W” are present in quite a few other protein



complexes [8], we believe that even though this protein is
not in the same complex with other proteins, it should be
in the same “function unit” [3] with these proteins.
Discriminating “function unit” with protein complex may
need additional information such as function annotations.

PCy006 complex
PCP cluster
""" PCyp04 complex

YDL188C

(b

Fig 8. Examples of predicted and matched complexes based on old
and new PPI networks. Complexes in PCjps, PCoo0s and the
predicted PCP clusters are shown in different boxes for
comparison. (a) The complex in PCyg4 is of size 4, while in PC;gg6,
its size is 5. PCP predicted 4 proteins in this complex correctly. (b)
This complex is of size 5 in PCy4, for which PCP predicted all 5
protein correctly. In PCy, its size is 11, while PCP algorithm
predicted 6 of them correctly.
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¢ Robustness against noise in interaction data

To assess the robustness of the algorithm, we have
computed the precision and recall of predictions by PCP
when noise of different types and amount is randomly
added into the reliable PPI[Combined].

In robustness experiments, noises are usually
introduced by swapping edges, or randomize the node
labels. However, these methods, which are used in
estimating p-values and uniqueness of PPI motifs, are not
a good model for our purpose. We are considering errors
produced by high-throughput PPI experiments. In this type
of experiments, the errors should be closer to edges
missing (not detected) or sticky proteins, which are
modeled by random noises. Hence, to simulate such noise,
we randomly add, delete and reroute (delete and add) 10%
to 50% of “pseudo” interactions in the network. The
precision and recall of the predicted clusters on the
various perturbed datasets are shown in Fig 9.

We can see from Fig 9 (a) that the precision against
recall of the clusters predicted by PCP remains fairly
consistent even with random additions of interactions up
to 50% of the original interactions in PPI[Combined]. This
is a clear indication that PCP algorithm is robust against
spurious interactions. The filtering of the PPI network
based on FS-Weight removes most of these random
additions, and retains only confident interactions for
clustering. Random deletion of interactions has a greater
impact on clustering performance, as can be seen in Fig 9
(b). This is analogous to a lack of information, leading a
reduction in recall. As FS-Weight is a local topology
measure, it becomes less effective when the interaction
network become very sparse, since there will be
insufficient interactions in the local neighborhood to give
a confident score. The formulation of the measure will
assign low weights in these cases, which will cause many
interactions to be filtered. Nonetheless, precision remains
high for clusters that can be discovered. A combination of
random addition and deletions results in a simultaneous
reduction in precision and recall.
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Fig 9. The precision and recall of predictions made by the PCP algorithm
when different types and amount of noise are introduced into the reliable
PPI network. Three ways of perturbing the network are studied: (a)
Random addition (b) Random deletion (c) Random deletion and addition
(reroute).

5 DISCUSSIONS AND CONCLUSIONS

Since protein complexes plays an important role in cells,
identification of protein complex from PPI networks is an
interesting and challenging problem in systems biology.
However, current PPI networks are incomplete and
contain many errors.

In this paper, we proposed a preprocessing step on
PPI networks before complex prediction: 1) introduce
level-2 interactions; 2) weigh level-1 and level-2
interactions using FS-Weight; and 3) remove interactions
with weight lower than a certain threshold. From our
experiments, we have shown that existing clustering
algorithms are able to produce clusters that match protein
complexes with significantly higher precision and recall
using PPI networks processed in this way.

Based on modified PPI network, we have also
proposed the PCP clustering algorithm in which, cliques
are identified in the network, and merged progressively
using the “partial clique merging” method. We have
compared PCP with RNSC, MCODE and MCL
algorithms and showed that PCP has superior precision
and recall in complex prediction. By validating against
newer MIPS complex data, we find that PCP can discover
novel members of complexes which are only found in the
newer complex dataset. Through comprehensive noise
analysis, we also showed that PCP maintains high
precision even when used on significantly noisier datasets.

Nonetheless, one limitation still plague previous and
our current approach: complexes which has subsets of
proteins that are not tightly connected to the rest of the
complex members cannot be identified, as illustrated in
Fig 8 (b). This is inevitable since clustering methods are
highly dependent on interaction density. We are currently
studying the possibility of using other biological
information to represent a more reliable and complete
network of relationships between proteins for complex
prediction.
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