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Metagenomics is an emerging methodology for the direct genomic analysis of a mixed community of uncultured mi-

croorganisms. The current analyses of metagenomics data largely rely on the computational tools originally designed

for microbial genomics projects. The challenge of assembling metagenomic sequences arises mainly from the short
reads and the high species complexity of the community. Alternatively, individual (short) reads will be searched

directly against databases of known genes (or proteins) to identify homologous sequences. The latter approach may

have low sensitivity and specificity in identifying homologous sequences, which may further bias the subsequent di-
versity analysis. In this paper, we present a novel approach to metagenomic data analysis, called Metagenomic

ORFome Assembly (MetaORFA). The whole computational framework consists of three steps. Each read from a
metagenomics project will first be annotated with putative open reading frames (ORFs) that likely encode proteins.

Next, the predicted ORFs are assembled into a collection of peptides using an EULER assembly method. Finally,

the assembled peptides (i.e., ORFome) are used for database searching of homologs and subsequent diversity analysis.
We applied MetaORFA approach to several metagenomics datasets with low coverage short reads. The results show

that MetaORFA can produce long peptides even when the sequence coverage of reads is extremely low. Hence, the

ORFome assembly significantly increased the sensitivity of homology searching, and may potentially improve the
diversity analysis of the metagenomic data. This improvement is especially useful for the metagenomic projects when

the genome assembly does not work because of the low sequence coverage.
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1. INTRODUCTION

Owning to the rapid advancement of the ultra-high
throughput DNA sequencing technologies 1, the ge-
nomic studies of microorganisms in environmental
samples have recently shifted from the focused se-
quencing of 16sRNA sequences 2 to the shotgun se-
quencing of the whole DNAs in the sample. This
new methodology, now called metagenomics or envi-
ronmental genomics, has opened a door for biologists
to assess the unknown world of the uncultured mi-
croorganisms that are believed to be the majority
in any environmental sample. The early attempts
of this kind can be traced back to a report pub-
lished in 2002, in which extremely high diversity of
uncultured marine viral communities were revealed
through genome sequencing 3. However, the most
important progress in shotgun metagenomics hap-
pened in 2004 4–7, when two research groups pub-
lished results from their large-scale environmental se-
quencing projects. The first project studied the sam-
ple from the Sargasso Sea, and revealed ∼ 2000 dis-

tinct species of microorganisms, including 148 types
of bacteria that have never been observed before 8 .
In the second project, a handful of genomes of bacte-
ria and archaea that had previously resisted attempts
to culture them were revealed based on the analysis
of the sample from the acid mine drainage 9. Since
then, many more metagenomics projects have been
conducted, involving broadened applications from
ecology and environmental sciences to chemical in-
dustry 10 and human health, e.g., the human gut
microbiome projects 11, 12.

The rapid growth of metagenomic data has
posed great challenges to the computational anal-
ysis 13, 14. Some metagenomics projects applied di-
rectly the data analysis pipeline that includes the
whole genome assemblers 15–18 and gene finding
programs 19—originally designed for the conven-
tional Whole Genome Shotgun (WGS) sequencing
projects—with only some small parameter modifica-
tions 8, 9, 12, 20. However, it is unclear how accu-
rate these existing tools for fragment assembly and
genome annotation are when applied to metagenomic
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data. Mavromatis and colleagues have conducted
a valuable benchmarking experiment to evaluate
the performance of conventional genome assembly
and annotation pipeline on simulated metagenomic
data 21. In this experiment, sequencing reads were
randomly collected from 113 assembled genomes that
are mixed at various complexities. Afterwards, the
quality of the results from each processing step (i.e.,
assembly, gene prediction, and phylogenetic binning)
was assessed separately by comparison to the cor-
responding genomes used in the simulation. This
experiment delivered an encouraging message that
the number of errors made at each step overall is
not high, and some errors (e.g., the chimeric con-
tigs) would not be propagated into the subsequent
steps (e.g., binning). Nevertheless, we argue that
this experiment may not completely reflect the chal-
lenge of metagenomic data analysis, especially the
difference between metagenomic data and the data
from conventional genome sequencing. Conventional
genome projects deal with only one or sometimes a
few individual genomes from the same species that
are isolated prior to sequencing, whereas metage-
nomics attempts to analyze simultaneously a huge
amount of genomes not only from hundreds of dif-
ferent microorganisms, but also from many individ-
uals of each organism. As a result, even the reads
from the same species might be quite different from
each other since they might be sampled from differ-
ent individuals’ genomes. Furthermore, those micro-
bial species may exist in the sample at a wide range
of abundances. Hence, typically, only a few domi-
nant species can receive good sequence coverage for
their genomes, whereas the sequence coverage for the
remaining species is low.

More and more metagenomic projects have ap-
plied Next-Generation Sequencing (NGS) technolo-
gies that produce massive but shorter reads (e.g.,
∼ 200 bps for 454 pyrosequencing machines) than
those from the Sanger sequencing methods. There-
fore, many metagenomic sequencing projects that
acquired a merely small number of short sequenc-
ing reads often skipped the step of fragment as-
sembly, and directly used the short reads for down-
stream analysis 3, 22, 23. For instance, short reads

can be used to search against protein database using
TBLASTX to identify homologous proteins, in which
an arbitrary E-value (e.g., ≤ 1e− 5) was chosen as a
cutoff 22. This direct search approach, however, of-
ten missed many homologous genes (or proteins) 24,
and resulted in a very low false positive rate a but
high false negative rate. This drawback may bias the
further analysis of species diversity (i.e., how many
different species are present in the sample) and func-
tional coverage (i.e., how many functional categories
of proteins are present in the sample).

In this paper, we present a novel ORFome
assembly approach to assembling metagenomic se-
quencing reads. Different from the conventional
genome analysis pipeline that first assembles se-
quencing reads into contigs (or scaffolds) and then
predicts protein coding regions within the contigs,
our method first identifies putative protein coding
regions (i.e., open reading frames, or ORFs) within
unassembled reads, and then focuses on the assem-
bly of only these sequences (i.e., ORFome). The
ORFome assembly approach has several advantages.
First, it significantly simplifies the task of fragment
assembly that is often complicated by the repetitive
sequences present mainly in non-coding regions 25.
Meanwhile, we argue that ORFome assembly does
not lose much useful information by neglecting the
non-coding sequences due to several reasons: (1) the
set of proteins (or the ORFome that encodes them)
carry the most important information for the down-
stream analysis; (2) the microbial genomes are of-
ten very compact and protein coding regions com-
prise a major fraction of them; and (3) microbial
proteins are mainly encoded by continuous non-split
open reading frames (ORFs), thus the prediction
of coding sequences prior to assembly is relatively
straightforward. Second, from ORFome assembly,
complete proteins (or long peptides) may be derived,
thus higher sensitivity and specificity can be achieved
in the step of database searching for homologs 24.
Furthermore, most single nucleotide polymorphisms
are synonymous mutations that do not change the
encoding amino acids so that ORFome assembly does
not even feel them. So by working on the peptide se-
quences (translated from sequencing reads in silico)

aFor example, the MEGAN analysis based on the direct BLAST search method has achieved a 0 false positive rate 23!
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instead of the raw DNA sequences, the ORFome as-
sembly alleviates the assembly difficulty caused by
the differences among individual genomes at poly-
morphic sites. We used four marine viral metage-
nomic datasets of short reads, acquired using 454
sequencing technique, to test our ORFome assem-
bly method—no genome assemblies are available for
these metagenomic datasets because the reads are
extremely short and the sequence coverage is low.

2. METHODS

The computational framework of ORFome assembly
consists of three steps (Fig. 1 (e-f)): (1) each read is
assessed individually and the putative open reading
frames (ORFs) that likely encode proteins are anno-
tated; (2) the annotated ORFs are assembled into a
collection of peptides using a modified EULER as-
sembly method 26; and (3) the assembled peptides
are used for the database searching of homologs.

A major difference between the ORFome assem-
bly approach and the conventional whole genome
assembly is that the former approach conducts
gene annotation before assembly, whereas the lat-
ter approach conducts gene annotation after assem-
bly. Conventional fragment assembly algorithms are
mostly based on the analysis of overlap graph, in
which the reads are represented by vertices and the
overlaps between reads are represented by edges 27.
The presence of repeats in the genomes often induce
many spurious edges in the overlap graph, which
is a major challenge in fragment assembly. There
are two additional aspects in the metagenomic data
that make fragment assembly even more challeng-
ing. First, metagenomics projects often apply NGS
technique, and produce shorter reads (∼ 200 bps)
than Sanger sequencing methods (500-1000 bps).
As a result, many short repeats (with lengths be-
tween 200 bps and 500 bps) may increase the com-
plexity of the overlap graph, and cause many more
mis-assemblies 28. Second, unlike the conventional
genome shotgun sequencing, which handles a single
species, metagenomics sequencing reads are collected
from a large amount of different genomes. Hence,
we anticipate these reads should be assembled into
not one but many sequences that may even share
high similarity on multiple regions. Therefore, the
straightforward application of conventional fragment

assemblers may encounter difficulties. In contrast,
the ORFome assembly approach attempts to assem-
ble only the most important portions of the target
genomes, i.e., the protein coding regions, which can
highly reduce the complexity of the overlap graph
and thus improve the assembly quality.

It is worth pointing out the idea of ORFome
assembly can be viewed as an extension of the re-
peat masking approach used in whole genome assem-
bly of large eukaryotic (including human) genomes.
To avoid the complication induced by the many in-
terspersed repeat copies present in most eukaryotic
genomes, Celera Assembler first masked out putative
repeats in the unassembled reads, and then focused
on the assembly of the remaining reads from non-
repetitive regions 29, 30. The resulting overlap graph,
which consists of a number of connected compo-
nents each representing reads from continuous non-
repetitive regions, is much simpler and easy to be
analyzed. Similarly, the ORFome assembly approach
divides the complex overlap graph into a number of
components each representing reads from a single
gene or several highly similar genes from the same
family.

We applied the ORFome assembly approach to
several metagenomics datasets from Ocean samples
with low coverage and short reads 22. The results
show that MetaORFA can produce long peptides
even when the sequence coverage of reads is ex-
tremely low. Hence, further analysis of assembled
peptides significantly increased the sensitivity for
subsequent homology searching, and may potentially
improve the diversity analysis of the metagenomic
data.

2.1. ORFome Assembly Algorithm

We implemented a tool called MetaORFA in C/C++
under linux platforms for the ORFome assembly.
MetaORFA consists of two programs. One program
takes as input a set of reads and predicts a number
of putative ORFs; and the other program takes as
input the set of putative ORFs, and reports a set
of peptides corresponding to the assembled ORFs.
Prior to be supplied to MetaORFA, the original
reads were first processed by MDUST (a popular
tool for autonomous masking from TIGR, which im-
plements the DUST algorithm 31) to mask out low-
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(a) Shotgun sequencing

Whole genome
assembly (WGA)

(b) Overlap
graph

(c) Scaffolding

(d) Gene
annotation

Mate-pairs

Metagenomic
ORFome Assembly
(MetaORFA)

(e) Gene
annotation

(f) Assembly of
annotated ORFs

(g) Scaffolding of
assembled peptides

Fig. 1. A schematic comparison of the ORFome assembly approach with the whole genome assembly (WGA) pipeline for the
metagenomic sequence analysis. Both approaches attempt to characterize the protein coding genes in the shotgun sequencing

reads from the metagenomic analysis of an environmental sample containing a number of different microorganisms (the reads
are shown as double-barreled, as currently several NGS techniques are capable of generating such data; however, some early

metagnomics projects, including the datasets used in this paper, did not produce double-barreled sequencing reads, and thus the

scaffolding step is not feasible) (a). The whole genome assembly (WGS) pipeline (b-d) first assembles the reads into contigs and
scaffolds, and then annotates the genes in the assembled sequences. In comparison, ORFome assembly approach (e-g) first applies

gene finding in the unassembled reads, and then assembles only those annotated (partial) ORFs into peptides. These peptides

may be further connected to form scaffolds if there are mate-pairs available from double-barreled sequencing (g).

complexity regions, and then processed by Tandem
Repeat Finder (TRF V4.0) 32 to mask out short tan-
dem repeats.

In this preliminary study, we adopted a very sim-
ple method for ORF prediction. For each read (and
its reverse complement), a region from the beginning
(i.e., position 1, 2, or 3, depending on the frame) or
a start codon to the end of the read or a stop codon
is considered as a potential ORF. Only ORFs with

more than a threshold K (default K = 30) codons
were reported. These ORFs will be then transformed
into peptide sequences, and subsequently assembled
using a modified EULER algorithm originally de-
signed for DNA fragment assembly 26. In this pro-
cess, we first build a de Bruijn graph using all k-
mers (default k = 10) in the putative peptides from
previous step, and then apply the equivalent trans-
formations as described in Ref. 26 to resolve short
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repeats among peptides. Unlike many other genome
assemblers that assemble reads into linear contigs,
EULER aims at constructing from the reads a repeat
graph that represents not only the unique regions but
also the repeat structures 33. Although we anticipate
there are not many repeats in the coding sequences,
the similar parts of homologous proteins from the
same family may act like repeats during the ORFome
assembly. EULER assembly method can generate a
compact graph structure representing the architec-
ture of domain combinations, including domain re-
currences and shuffling34. We note further analysis
of the ORFome assembly results, as described below,
has not fully taken advantage of the information em-
bodied in the repeat graph. Ideally, one can adopt a
network matching approach to identify a path in the
repeat graph representing a peptide sequence that is
most similar to a protein in databases of known pro-
teins. Nevertheless, our analysis has demonstrated
that even the simple analysis of individual assembled
peptides (corresponding to the edges in the repeat
graph) revealed more proteins in the sample.

2.2. Functional Coverage Assessment

The ORFome, i.e., the set of assembled peptides, is
ready for further computational analysis with differ-
ent purposes, e.g., searching against database for ho-
mologous sequences, or mapping to biological path-
ways to study metabolic diversity 35. Here we
show that we can improve the functional coverage
of metagenomics sequences by using assembled pep-
tides instead of unassembled reads. There are vari-
ous ways to estimate functional coverage of a sample.
In this study we used PANTHER (Protein ANalysis
THrough Evolutionary Relationships) protein fam-
ily classification 36 for such assessment. The com-
parison of the functional coverage between different
ORFomes is then straightforward, and we can simply
count the number of families (subfamilies) found in
each assembled ORFome and calculate their differ-
ences.

In the PANTHER classification system, pro-
teins are classified into families and subfamilies of
shared function by experts. Families and subfamilies
are presented as Hidden Markov Models (HMMs).
We downloaded the PANTHER HMM library Ver-
sion 6.1 (release date December 17, 2007) from

ftp://ftp.pantherdb.org, which contains 5547 protein
family HMMs, divided into 24,582 functionally dis-
tinct protein subfamily HMMs. We also downloaded
the HMM searching tool (pantherScore.pl, version
1.02), which utilized fast BLAST search prior to the
more sensitive but time-consuming HMM matching
procedure to speed up the process. The query pro-
tein sequence will first be blasted against the con-
sensus sequences of each PANTHER HMMs, and
then based on the results, some heuristics are ap-
plied to determine which HMMs (i.e., protein fam-
ilies or subfamilies) that the query should be com-
pared with using hmmsearch from the hmmer pack-
age (http://hmmer.janelia.org).

2.3. Metagenomic Sequences Datasets

We tested our algorithm on four datasets each con-
taining metagenomics sequences of a major oceanic
region community (the four regions are Sargasso Sea,
Coast of British Columbia, Gulf of Mexico, and Arc-
tic Ocean) (referred to as Ocean Virus datasets) 22.
The reads were acquired by 454 sequencing machine,
and they are typically very short. All the metage-
nomic sequences were downloaded from CAMERA
website (http://camera.calit2.net/) 37.

3. RESULTS

We applied our ORFome assembly tool MetaORFA
to assemble the four Ocean Virus datasets. The as-
sembly of a dataset took about from several minutes
to half an hour for the four datasets we used here
(on a linux machine with Intel(R) Core(TM)2 CPU@
2.40GHz). The unassembled reads and assembled
peptides were searched against Integrated Microbial
Genomics (IMG) database 38 using BLASTP to iden-
tify known homologous proteins in pre-sequenced mi-
crobial genomes. To show the improvement of func-
tional coverage after the ORFome assembly, we also
searched both sets of sequences against PANTHER
families and subfamilies. Below we first report the
basic statistics of the assembled peptides as com-
pared to the unassembled reads, and then show the
annotation of the ORFs by BLAST search and PAN-
THER family annotation.
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Table 1. Statistics of the ORFs for Ocean Virus datasets

Sample Num Min Max Ave Num60

Arctic Ocean Reads 688590 35 370 99 -
UA-ORF 1015432 30 58 33 0

A-Pep 368278 30 175 37 12428

Sargasso Sea Reads 399343 36 282 104 -
UA-ORF 345411 30 49 33 0

A-Pep 214330 30 162 34 1530

Coast of British Reads 16456 37 254 102
Columbia UA-ORF 426666 30 61 33 1

A-Pep 304106 30 196 34 2559

Gulf of Mexico Reads 771849 38 246 95 -
UA-ORF 467085 30 54 33 0

A-Pep 206111 30 157 34 1703

Num, Min, Max and Ave represent the total number, the minimum, maximum, and average length of the reads (in nucleotides),

unassembled ORFs (UA-ORF, in amino acid residues) and assembled peptides (A-Pep, in amino acid residues), respectively.
Num60 represents the total number of unassembled ORFs and assembled peptides of length ≥ 60. We note that the minimum

length of unassembled ORFs is 30 because we used a default cutoff 30 to detect ORFs in original short reads, which are used as

inputs for MetaORFA.

3.1. Assembled Peptides from the
ORFome Assembly

Table 1 shows the statistics of the reads, unassembled
putative ORFs and assembled peptides for the four
Ocean Viruses datasets. For all four datasets, the
ORFome assembly successfully produced long pep-
tides (≥ 60) that are not present in the unassembled
reads. However, the number and the length of long
peptides are different from one dataset to another.
For example, the ORFome assembly produced the
largest number (12,428) of long peptides with longest
average length (37 aa) in the Arctic Ocean dataset,
even though comparable number of sequencing reads
were acquired in each of these four datasets. This
may indicate either the diversity of the microorgan-
isms in Arctic Ocean sample is lower than the di-
versity in the other samples, or the microorganism
genomes in this sample are more compact than the
genomes in the other samples.

We use the second longest peptide assembled
from the Gulf of Mexico dataset as an example to
illustrate the advantages of the ORFome assembly.
b Fig. 2 shows that 12 putative ORFs detected from
different short reads were assembled into a long pep-
tide (144 aa) by the ORFome assembly, which shows
strong similarity across the entire peptide with an

annotated protein in IMG database.

3.2. Homology Search of Assembled
Peptides

One of the commonly used analysis of metage-
nomic data is the searching of the unassembled reads
against databases of known microbial proteins in an
attempt to use the identified homologous proteins to
assess the function and species diversity in the sam-
ple 39, 23. In this type of analysis, a quite high cutoff
is often chosen for the BLAST E-values (i.e., less
significant) because the query sequences (i.e., reads)
are quite short. As a result, there may be many false
hits included in the final list of homologous proteins,
which can mislead the diversity analysis. Comparing
with this straightforward approach, we anticipate the
homology search using the assembled peptides from
the ORFome assembly can achieve higher sensitivity
and result in more hits with higher significance (i.e.,
lower E-values).

We compared the results of homology searches
using assembled peptides with the results using
unassembled reads. The four Ocean Virus datasets
were tested separately against IMG database. As
reported in Ref. 22 c, only few reads hit proteins
in the database. We emphasize that the assembled

bThe longest peptide has 157 amino acids, which only has very weak similarity to the protein sequences collected in IMG; it is

hard to identify this peptide based on the similarity search result.
cWe note that a direct comparison is not feasible since different databases were used for homology searching in these two studies.
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SCUMS_READ_GOM1512629

SCUMS_READ_GOM1560413

SCUMS_READ_GOM1498329

SCUMS_READ_GOM1560503

SCUMS_READ_GOM1436336

SCUMS_READ_GOM1499876

SCUMS_READ_GOM1431063

SCUMS_READ_GOM1559585

SCUMS_READ_GOM1555366

SCUMS_READ_GOM1452206

SCUMS_READ_GOM1443003

SCUMS_READ_GOM1512492

Assembled peptide
1 144

Query  1    ALEHGAGYTPYGDHFIMQCGMEVVLADGEVVRTGQGALAGSKHWQVTKHAAGPQFDGMFT  60
            ALEHGAGYTPYGDHF+MQCGMEVVLADG+VVRTGQGA+ GS+HWQ TKHAAGP FDGMFT
Sbjct  160  ALEHGAGYTPYGDHFVMQCGMEVVLADGQVVRTGQGAIEGSQHWQSTKHAAGPHFDGMFT  219

Query  61   QSNFGVVTKMGIWLMPEPPGYKPFMITYEREEDLEAIFEITRPLKVNQIIPNAAVAVDLL  120
            QSNFG+VTKMGIWLMPEPPGYKPFMITYEREEDL AIF+  +PLKVNQ+IPNAAVAVDLL
Sbjct  220  QSNFGIVTKMGIWLMPEPPGYKPFMITYEREEDLAAIFDAVKPLKVNQVIPNAAVAVDLL  279

Query  121  WEASAKTTRRHYFDGKGP  138
            WE SAKTTRRHYFDGKGP
Sbjct  280  WEVSAKTTRRHYFDGKGP  297

(a)

(b)

Fig. 2. A long peptide with 144 aa (contig11088, highlighted in bold line) assembled from 12 putative ORFs (represented as

thin lines below the contig) in the Gulf of Mexico dataset shows strong similarity with proteins in IMG database with known
function (a). (b) shows the BLAST alignment between the peptide and the flavoprotein subunit p-cresol methylhydroxylase from

Novosphingobium aromaticivorans in IMG database.

peptides increase the number of significant hits (i.e.,
E-value ≤ 1e − 5) in all four datasets, from 26% in
the Gulf of Mexico dataset (i.e., 2489 read hits were
added to 9517 read hits received from the searching
using unassembled reads) to 43% in the Arctic Ocean
dataset (26,578 read hits were added to 61,578 origi-
nal read hits). Fig. 3 shows the detailed comparison
of the added number of read hits when various E-
value cutoffs were applied. For all four datasets, a
nearly constant number of read hits can be added by
using assembled peptides. In comparison, a major-
ity of read hits from the similarity searching using
unassembled reads received high E-values. For in-

stance, there are only 11,144 read hits in the Arctic
Ocean dataset with E-values ≤ 1e-10, whereas 30,151
additional read hits (i.e., 270% more!) can be added
from the similarity searching using assembled pep-
tides. Among four datasets, the improvement of read
hits is most significant in the Arctic Ocean dataset,
which is consistent with the result that this dataset
also achieved the best assembly performance.

3.3. Novel Assignments of Functional
Categories by Assembled Peptides

We further assessed the performance of the ORFome
assembly in improving the function annotation on



July 8, 2008 9:11 WSPC/Trim Size: 11in x 8.5in for Proceedings 022Ye

10

Arctic Ocean

0

20000

40000

60000

80000

100000

120000

140000

160000

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

log(E-value)

N
u

m
b

e
r 

o
f 

re
a
d

s

using unassembled ORFs

adding assembled peptides

Sargasso Sea 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

log(E-value)

N
u

m
b

e
r 

o
f 

re
a
d

s

using unassembled ORFs

adding assembled peptides

(a) (b)

Coast of British Columbia

0

5000

10000

15000

20000

25000

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

log(E-value)

N
u

m
b

e
r 

o
f 

re
a
d

s

using unassembled ORFs

adding assembled peptides

Gulf of Mexico

0

5000

10000

15000

20000

25000

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

log(E-value)

N
u

m
b

e
r 

o
f 

re
a
d

s

using unassembled ORFs

adding assembled peptides

(c) (d)

Fig. 3. Detailed comparison of the total number of read hits in IMG database using unassembled and the total number of read

hits including those read hits belonging to the assembled peptides at different BLAST E-value cutoffs. The deviation between
the two lines indicates the gain of read hits by using assembled peptides from the ORFome assembly.

the Ocean Virus datasets. Table 2 summarizes the
statistics of the number of matched families in PAN-
THER database for all four datasets. Both the num-
ber of hits from the searching of unassembled reads
as well as the additional number of hits from the
searching of assembled peptide are listed. Although
the additional numbers of families detected by using
assembled peptides are relatively low for all datasets,
there are still some new protein families (or novel
protein functions) that can be annotated when as-
sembled peptides were used. This suggests that we

may be able to improve the protein function annota-
tion using assembled peptides.

In the Gulf of Mexico dataset, the assembled
peptides hit additional 20 PANTHER protein fam-
ilies. One of them is ATP synthase mitochondrial
F1 complex assembly factor 2 (Panther family ID
PTHR21013). The peptide corresponding to this hit
is assembled from two ORFs from different reads (see
Fig. 4).
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RTPQRAPLIVASAALAETIAAEWQDQGDTVDPA

RTPQRAPLIVASAALAETIAAEWQDQGDTVDPAAMPITGLTNAAIDLALPDPLGFAE

                       QDQGDTVDPAAMPITGLTNAAIDLALPDPLGFAE
SCUMS_READ_GOM1406881: 2-103

SCUMS_READ_GOM1547922: 1-99

Fig. 4. An example of assembled peptide in the Gulf of Mexico dataset, which is assembled from two reads. The sequence of

the assembled ORF is shown in the box; the overlap of the two putative ORFs from two reads are highlighted by italic and bold
fonts. This assembled peptide hits the protein family of ATP synthase mitochondrial F1 complex assembly factor 2 in PANTHER

database.

Table 2. Summary of the family annotation of assembled

peptides versus unassembled reads for the four ocean virus

datasets

Sample Family Add-on Example

Arctic Ocean 590 33 PTHR22748
Sargasso Sea 265 4 PTHR11527

Coast of British Columbia 352 7 PTHR10566

Gulf of Mexico 413 21 PTHR17630

The Family column lists the total number of protein families

that are found from unassembled reads. The ”Add-on” column

lists the additional panther protein families that are detected by
using assembled peptides. The last column gives a few exam-

ples of the additional protein families (or functions) that are
annotated based the assembled peptides only: PTHR22748,

AP endonuclease (E-value = 5.4e-12); PTHR11527 (sub-

family SF15), heat shock protein 16 (E-value = 1.5e-07);
PTHR10566 (subfamily SF7), ubiquinone biosynthesis pro-

tein AARF (E.coli)/ABC (Yeast)-related (E-value = 7.3e-11);

PTHR17630 (subfamily SF20), carboxymethylenebutenolidase
(Evalue = 4.7e-08) .

4. DISCUSSION

One of the main issues in whole genome assembly
is the chimeric contigs that are resulted from mis-
assemblies. Tremendous finishing efforts have to be
invested in order to identify and correct these er-
rors. This issue is expected to be more serious in
metagenomics data analysis because of the higher
complexity of metagenomics sample and the intro-
duction of short reads. Although it remains unclear
whether the mis-assemblies will dramatically influ-
ence the conclusion on the principal aims of metage-
nomics, such as the assessment of species diversity

in the sample, many metagenomics project avoided
assembling sequencing reads, and analyzed the orig-
inal reads directly. The ORFome assembly provides
a simple solution to conduct a small-scale but ac-
curate assembly of protein coding regions that can
improve the sensitivity of homology search. In this
study, although we showed the homology searching
was improved after the ORFome assembly, we have
not systematically evaluated the influence of these
improvements on the diversity analysis. We will ap-
ply the ORFome assembly approach to more datasets
with various sequence coverage and sample complex-
ities (i.e., the approximate number of species and the
range of abundances among these species). Our in-
tention is to estimate the sequencing efforts that are
required to get a good assessment of species diversity
for samples with different complexities.

There are several ways to further improve the
ORFome assembly algorithm described here. First,
the current method for predicting putative ORFs in
sequencing reads can be improved by incorporating
additional features of gene coding sequences (e.g.,
the codon usages) and utilizing sophisticated proba-
bilistic models. Second, a few parameters (e.g., the
length cutoff of putative ORFs) used in the ORFome
assembly should be optimized. This indicates that
there is still room for the further improvement of
the ORFome assembly approach by selecting more
appropriate parameters. Finally, as we mentioned
in the METHODS section, the advantages of the
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ORFome assembly have not been fully taken in the
downstream data analysis in this study. The EULER
method used here can assemble putative ORFs into a
repeat graph, in addition to the peptides represented
by edges in the graph. Therefore, one can adopt a
network matching approach as used in Ref. 40 to
achieve a more sensible database searching.

Finally we point out that the basic method we
adopted for ORF prediction may generate some spu-
rious peptides, and some of the assembled ORFs may
be not real proteins. Those spurious peptides may
not cause serious problems in applications such as
the homology search based annotations as used in
this paper. However, we should not neglect them in
other types of applications, such as comparison of the
number of protein clusters (families) among different
metagenomic datasets.

5. CONCLUSION

We present a novel ORFome assembly approach to
metagenomics data analysis. The application of
this method on four metagenomics datasets achieved
promising results. Even with low coverage short
reads from these datasets, our method has assembled
many long peptides, which can hit on annotated pro-
teins in the database that are not detectable other-
wise. The ORFome assembly provides a useful tool
to retrieve rich information from metagenomic se-
quencing reads, and it shows potential to facilitate
an accurate assessment of the species and functional
diversity in metagenomics.
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