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OPTIMIZING BAYES ERROR FOR PROTEIN STRUCTURE
MODEL SELECTION BY STABILITY MUTAGENESIS
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Site-directed mutagenesis affects protein stability in a manner dependent on the local structural environment of the
mutated residue; e.g., a hydrophobic to polar substitution would behave differently in the core vs. on the surface
of the protein. Thus site-directed mutagenesis followed by stability measurement enables evaluation of and selection
among predicted structure models, based on consistency between predicted and experimental stability changes (∆∆G◦
values). This paper develops a method for planning a set of individual site-directed mutations for protein structure
model selection, so as to minimize the Bayes error, i.e., the probability of choosing the wrong model. While in
general it is hard to calculate exactly the multi-dimensional Bayes error defined by a set of mutations, we leverage
the structure of “∆∆G◦ space” to develop tight upper and lower bounds. We further develop a lower bound on the
Bayes error of any plan that uses a fixed number of mutations from a set of candidates. We use this bound in a
branch-and-bound planning algorithm to find optimal and near-optimal plans. We demonstrate the significance and
effectiveness of this approach in planning mutations for elucidating the structure of the pTfa chaperone protein from
bacteriophage lambda.

1. INTRODUCTION

With the extensive development of genome projects,
more and more protein sequences are available. Un-
fortunately, while structural genomics efforts have
greatly expanded the set of experimentally deter-
mined protein structures, the Protein Data Bank
(PDB) still has entries for only about 1% of the
protein sequences in UniProt. A significant part of
the gap between the sequence and structure determi-
nation lies with difficulties in crystallization; among
the 75104 targets (45391 cloned) in phase one of the
Protein Structure Initiative, only 3311 crystallized
and only 1307 of these crystals provided sufficient
diffraction1. At the same time, it has been suggested
that only a small number (perhaps a few thousand2)
of distinct structural organizations, or “folds,” ex-
ist among naturally-occurring proteins, and many of
them can already be found in the current PDB3.
Therefore, structure elucidation (as opposed to ex-
perimental structure determination) may soon de-
volve to selecting the correct model among those gen-
erated from existing templates.

Since many more proteins are available for struc-
tural studies than can be handled by crystallography,
we have been developing integrated computational-

experimental methods that use relatively rapid, tar-
geted biochemical/biophysical experiments to select
among predicted structure models, based on consis-
tency between predicted and observed experimen-
tal measurements4. Purely computational protein
structure prediction methods5–8 can often produce
models close to the correct structure. However, as
the series of Critical Assessment of Structure Pre-
diction (CASP) contests illustrates9, it remains dif-
ficult for any method to always select the correct
model, particularly in cases where low sequence iden-
tity to templates precludes homology modeling. The
best model is often among a pool of highly ranked
models, but not necessarily the highest-ranked one.
Furthermore, different methods often employ differ-
ent scoring functions and yield different rankings for
the same models. Thus using rapid, planned exper-
iments to select the correct one(s) from a given set
of predicted models combines the strengths of both
computation and experimentation.

This paper focuses on an approach we call “sta-
bility mutagenesis,” which exploits the relationship
between protein structure and thermodynamic sta-
bility to perform model selection. A number of
methods10–15 are available for predicting changes

∗Contact authors. CBK: 6211 Sudikoff Laboratory, Hanover, NH 03755, USA; cbk@cs.dartmouth.edu. AMF: Lilly Hall, Purdue
University, West Lafayette, IN 47907, USA; afried@purdue.edu.



100

in unfolding free energy (∆∆G◦) upon site-directed
mutagenesis (i.e., substitution of one amino acid for
another at a specific position). These prediction
methods provide good accuracy in the aggregate or
for defined subsets of mutations, e.g., the FOLD-
X method achieved a global correlation of 0.83 be-
tween the predicted and experimental ∆∆G◦ values
for 95% of more than 1000 point mutations, with
a standard deviation of 0.81 kcal/mol13. Since dif-
ferent structure models place some of their equiv-
alent residues in different environments, they yield
different predicted ∆∆G◦ values for those residues.
The consistency between predicted and experimen-
tally determined ∆∆G◦ values thus allows selecting
the correct model(s) from a given set.

This paper develops a method for planning the
most informative stability mutagenesis experiments
for selecting among a given set of protein structure
models. In particular, we seek to minimize the ex-
pected probability of choosing a wrong model, i.e.,
the Bayes error. It is difficult to compute exactly
the Bayes error in multiple dimensions (here, for
sets of mutations), and the general problem of es-
timating and bounding it has received considerable
attention16–19. We take advantage of the particu-
lar structure of our mutagenesis planning problem in
order to derive tight upper and lower bounds on the
Bayes error for “∆∆G◦ space.” In order to efficiently
find an optimal set of mutations, we develop a lower
bound on the Bayes error of any plan that uses a
fixed number of mutations from a set of candidates,
along with a branch-and-bound algorithm to identify
optimal and near-optimal plans.

2. METHODS

2.1. Bayes Error Bounds

Let S = {s1, s2, ...sn} be a given set of predicted pro-
tein structure models, and X be a vector of random
variables representing the experimental ∆∆G◦ val-
ues with Normal errors (as is standardly assumed).
Then each model can be represented as a conditional
distribution in the “∆∆G◦ space” (Fig. 1), in which
each dimension has the ∆∆G◦ value for one muta-
tion. That is,

p(X |si) = N (µi, σ
2I) (1)

where µi is the vector of expected ∆∆G◦ values for
model i, and the variance σ2I (where I is the identity

matrix) is mutation independent and model indepen-
dent.
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Fig. 1. Intuition for upper bound on εi, the Bayes error con-
ditioned on model si. (top) In the 1D case, εi is determined
by sj and sk, the closest neighbors on each side of si, with no
effect from other models (dashed curves). (middle) In higher-
dimensional cases, multiple models are unlikely to be collinear.
However, if the angle between −−→sisj and −−→sisk is small and sk

is not closer to si than sj is, adding sk will only increase
εi by a small amount, the integral of p(X|si) over the “#”
shaded area. (bottom) To find representative models that are
“closest” to si, other models are represented as vectors from
si and hierarchically clustered w.r.t. their angles. Here there
are three clusters (different markers), each represented by the
model closest to si (bold markers) for the purposes of error
bounds.
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Once the experimental ∆∆G◦ values have been
measured, we will choose the model with the max-
imum posterior probability. In considering a possi-
ble set of mutations during experiment planning, we
don’t know what the resulting experimental ∆∆G◦

values will be. Thus we integrate over the possible
values, computing the Bayes error ε, formulated as:

ε =
n∑

i=1

P (si)εi (2)

where P (si) is the prior probability of model si and
εi is the conditional error given that model si is cor-
rect. By “correct” we mean that the distribution of
the measurements X w.r.t. this model is very similar
to that for the “true” protein structure. For simplic-
ity, we assume a uniform prior for models, but all
discussion applies to the case of non-uniform priors.
We define εi as:

εi = Pi{p(X |si) < max
j �=i

p(X |sj)} (3)

Here and in the following we use notation Pi{e} for
the probability of predicate e w.r.t. model si:

Pi{e} =
∫

p(X |si) · I{e}dX (4)

where the integral is taken over all possible ∆∆G◦

values and the indicator function I{e} returns 1 if
predicate e is true, or 0 if false. The predicate in
Eq. 3 evaluates whether a wrong model is selected
because the experimental data X is more consistent
with it than with the correct model. Weighted inte-
gration over all possible datasets then calculates the
total probability of error.

Straightforward initial bounds on εi can be de-
rived from the Bonferroni inequalities20:

εi ≤
∑
j �=i

Pi{p(X|si) < p(X|sj)} (5)

εi ≥
∑
j �=i

Pi{p(X|si) < p(X|sj)}

−
∑

j<k �=i

Pi{p(X|si) < min(p(X|sj), p(X|sk))} (6)

The union bound (Eq. 5) evaluates the probabil-
ity that at least one of the wrong models beats the
correct one, which is at most the sum of the probabil-
ities of each individual wrong model beating the cor-
rect one. Eq. 6 subtracts out the potential “double-
counting” in the union bound, when multiple wrong
models beat the correct one but some are better than

others. Both bounds are easy to calculate, but are
too loose for our purposes here.

Since we assume a common variance for all mu-
tations in all models, the error probability is com-
pletely determined by the relative distances among
the distribution means. The top and middle panels
of Fig. 1 illustrate that in cases where the means are
nearly collinear, εi is much less than the sum of the
individual error probabilities (i.e., the union bound).
Conditioning on model si, we shift the coordinate
system so that µi is at the origin and the rest of
the models are represented as vectors from the ori-
gin. We cluster these vectors (Fig. 1, bottom) into
disjoint sets Ct for t = 1, 2, . . .. We discuss our clus-
tering method below, but for any set of clusters, the
following inequality holds:

εi ≤
∑

t

Pi{p(X |si) < max
j∈Ct

p(X |sj)} (7)

The difference between Eq. 7 and Eq. 5 is that in
Eq. 7 the Bonferroni inequality is applied on clusters
instead of individual models. Choosing a represen-
tative model sjt from cluster Ct, we have
Pi{p(X|si) < maxj∈Ct

p(X|sj)}
= Pi{p(X|si) < p(X|sjt

)}
+Pi{p(X|sjt

) < p(X|si) < max
j∈Ct,j �=jt

p(X|sj)} (8)

≤ Pi{p(X|si) < p(X|sjt
)}

+
∑

j∈Ct,j �=jt

Pi{p(X|sjt
) < p(X|si) < p(X|sj)} (9)

Eq. 8 is just a rewriting of the probability; either
model sjt beats si or some other models in clus-
ter Ct beat it. Eq. 9 is obtained by applying the
union bound on the second term of Eq. 8, where
the first and second terms correspond to the inte-
gral of p(X |si) over the stripe-shaded area and the
“#” shaded area in the middle panel of Fig. 1, re-
spectively.

Turning to the lower bound, we note that Eq. 6
could be very loose (even negative) if models are
highly dependent, because the number of pairwise
joint probabilities subtracted out could be much
larger than the number of individual probabilities
added in. For example, consider a variation of the
top panel in Fig. 1 where sj and the models to the
left of it have nearly identical distributions and sim-
ilarly for sk and the models to the right of it, such
that Pi{p(X |si) < p(X |sj)} ≈ ε for all wrong mod-
els. Then Eq. 6 gives a lower bound of −2ε (one
added and two pairs subtracted on each side). How-
ever, we can obtain a tighter lower bound by using
a subset of the models that are highly independent;
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in the example, one from the left and one from the
right. More generally, still conditioning on si, let
S′ ⊂ S − {si} be a subset of the remaining models.
Then

εi ≥ Pi{p(X|si) < max
j∈S′ p(X|sj)} (10)

≥
∑
j∈S′

Pi{p(X|si) < p(X|sj)}

−
∑

j<k∈S′
Pi{p(X|si) < min(p(X|sj), p(X|sk))}(11)

Eq. 10 holds because the probability that a model
in a superset beats si is always at least the probabil-
ity that a model in a subset does. Eq. 11 is just the
Bonferroni inequality applied to S′.

We now have lower and upper bounds that are
tighter than simply applying the Bonferroni inequali-
ties. The tightness depends on the choices of cluster-
ing method (upper bound) and model subset (lower
bound). In fact, we can readily trade off tightness
and computation, using more, finer clusters and more
trial subsets in order to obtain tighter bounds. For
the results presented below, we employ an agglomer-
ative approach to cluster models, with distance be-
tween two clusters defined as the maximum angle
between any two vectors in them. A cutoff θ deter-
mines the number of clusters, and then the model
with the smallest distance to si in each cluster is
selected as the representative model for the cluster
(bottom panel of Fig. 1). We also use the representa-
tive models as the model subset for the lower bound,
because these models are likely to be relatively in-
dependent and thus the pairwise joint probabilities
are smaller and the lower bound tighter. Since the
quality of the bounds depends on the choice of θ and
the best choice could be model specific and different
for the upper bound and the lower bound, we simply
try three different values: π/4, π/3, and π/2. The
running time is only three times that of using a fixed
cutoff, and we found that the result is significantly
improved in practice.

2.2. Planning Algorithm

If there are only a few candidate mutations, or a
few are to be selected for a plan, we can enumerate
all possible plans, calculate their upper and lower
bounds, and choose a good one. In terms of Bayes
error, plan A is definitely better than plan B if the
upper bound for A is less than the lower bound for
B. In practice, the computational complexity of such

a brute force method becomes prohibitive for even a
modest number of mutations.

In cases where the exhaustive method is infeasi-
ble, we can use a greedy approach to minimize the
upper bound on the Bayes error—select mutations
one by one, minimizing the upper bound on Bayes
error at each step. A tight upper bound will allow
us to identify a set of selected mutations guaranteed
to be of high quality. However, we still do not know
how close a plan is to the optimal one, and the greedy
plan may be far from optimal.

To evaluate the optimality of a given plan M , we
compute a lower bound on how its Bayes error com-
pares to that of the best possible (though unknown)
plan that uses the same number of mutations from a
set of candidates C:

Optimality(M, C) ≥ lb(C, |M |)
ub(M)

(12)

where ub(M) is the upper bound we previously
discussed (Eq. 7, Eq. 9) and we develop below
lb(C, |M |), a lower bound on the Bayes error of the
optimal plan. An Optimality score close to 1 indi-
cates that the plan is guaranteed to be near optimal.
A plan with a lower score may still be good, but
we just cannot prove it with our bounds. The Op-
timality score also supports the branch-and-bound
algorithm we develop below: we can ignore all plans
chosen from mutations in C if the score in Eq. 12 is
greater than 1 for some plan M .

To derive lb(C, |M |), the lower bound on the op-
timal plan, we start from a lower bound on the Bayes
error based on pairwise risk functions developed for
multi-hypothesis testing19:

ε ≥
(

2
n

)2

·
n−1∑
i=1

n∑
j=i+1

εij (13)

We can also prove the following lemma.

Lemma 1. Let d2 =
∑n

i=1 d2
i be the sum of squares

of n positive real numbers di, i = 1, 2, ..., n, and let
εi be the cumulative density of Normal distribution
N (0, σ) at point −di/2. Then for a fixed value of d2,∑n

i=1 εi is minimized when di = dj for 1 ≤ i, j ≤ n.

Proof. Suppose we can find di = b and dj = a

that are not equal, say 0 < b < a, and let c =√
(a2 + b2)/2 be new equal values for di and dj , so

that the sum of squared values d2 is not changed. εi
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decreases more than εj increases:

1√
2π

∫ c/2

b/2

e−
x2
2 dx >

1√
2π

∫ a/2

c/2

e−
x2
2 dx (14)

This follows from the fact that c − b > a − c, so
that the first integral region is larger than the sec-
ond; along with the fact that the density is higher
in the first region because it is closer to the mean.
Thus equalizing a pair reduces the total error, and
if we could equalize all pairs, we would minimize the
sum. �

Combining Lemma 1 and Eq. 13, we have

ε ≥ 2(n − 1)
n

∫ −r

−∞

1√
2πσ

e−x2/2σ2
dx (15)

where r = 1
2

√
d2/

(
n
2

)
and d2 is the sum of squared

distances among all model distribution means:

d2 =
∑
i<j

∑
k

(µki −µkj)2 =
∑

k

∑
i<j

(µki −µkj)2 (16)

where µki is the predicted ∆∆G◦ value of the kth mu-
tation according to model si. Since the inner sum on
the right-hand side of Eq. 16 is for only one mutation,
we can easily maximize d2 by independently choos-
ing mutations according to their sums of squared dis-
tances over all models. With d2 thus maximized, the
lower bound in Eq. 15 is minimized and becomes a
lower bound for any plan of the same size, including
the optimal plan.

With the lower bound on the optimal plan in
place, let us now turn to the branch-and-bound
search for an experiment plan (set of mutations).
First let us define the structure of the search tree
we will use. In this tree, a node corresponds to an
index into the list of possible mutations. All muta-
tions on the path to the root have been eliminated,
all those with smaller indices but not on the path
to the root have been selected, and all those with
larger indices are still candidates. In the example in
Fig. 2, at the starred node (index 4), mutations A2G,
F3A and R4A (indices 1, 2 and 4) have been elim-
inated, mutation F3L (index 3) has been selected,
and mutations R4G and M5A (indices 5 and 6) are
still candidates.

*
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Fig. 2. Example branch and bound search tree structure
for choosing two from six mutations at four positions, {A2G,
F3A, F3L, R4A, R4G, M5A}. Circles are internal nodes and
squares leaf nodes (i.e., plans of the desired size). ‘X’s indi-
cate violation of a constraint allowing at most one mutation
per position.

We now develop our branch-and-bound algo-
rithm, MutPlanBB (Fig. 3), to explore this search
tree, using the lower bound on the Bayes error of the
optimal plan, along with our earlier upper bound on
the Bayes error of a specific plan. The algorithm
prunes a node (and its subtree) if the Optimality
with respect to the best plan found so far (and thus
also to the best one) is more than a user-specified
threshold λ. If λ > 1.0, sub-optimal plans will also
be listed. If λ < 1.0, some good plans might be
missed in order to speed up the algorithm, but plans
that are “really” good are guaranteed to be kept.
For example, if λ = 0.5, any plan with Bayes error
at most half of ub∗, the best upper bound found in
the search, cannot be missed. Since ub∗ bounds the
Bayes error of the optimal plan, this means that we
would find all plans with Bayes error no more than
half the upper bound on the optimal error. The de-
fault value of λ is 1.0, so that all good plans will be
listed.

An additional function in the search, con-
straintsSatisfied, checks user-specified constraints,
e.g., indicating that at most one mutation per posi-
tion can be selected. In our branch-and-bound algo-
rithm, we assume that a constraint is monotonic—it
is violated by a superset of mutations if it is violated
by any subset—as is the case with the one-mutation-
per-position constraint. In fact, we can avoid visiting
right siblings if any monotonic constraint is violated
(a simple modification to the pseudocode in Fig. 3).
We can also modify the algorithm in Fig. 3 to handle
non-monotonic constraints: only check the satisfac-
tion of constraints on complete plans.
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MutPlanBB(m, λ, ub∗, Ψ, S, C)
if |S|+ |C| = m

# only one possible plan
S ← S

⋃
C

C ← ∅
if constraintsSatisfied(S) and lb(S

⋃
C, m)/ub∗ ≤ λ

if |S| = m
Ψ← Ψ

⋃{S}
ub∗ ← min{ub(S), ub∗}

else
for i from 1 to m− |S|+ 1

# discard C[i] for the ith child
S′ ← S

⋃
C[1..i − 1]

C′ ← C[i + 1..|C|]
[ub∗, Ψ]← MutPlanBB(m,λ, ub∗, Ψ, S′, C′)

return [ub∗, Ψ]

Fig. 3. Branch and bound algorithm for mutagenesis plan-
ning. The inputs include the desired size of plan (m), pruning
cutoff (λ), the best upper bound (ub∗) and good plans (Ψ) so
far (initially from the greedy approach), and sets of selected
and candidate mutations (S and C) at the current node.

There is clearly an exponential number of nodes
in the search tree; practical efficiency is attained by
effective pruning high up in the tree, so that many
nodes need be explicitly visited. As discussed, if de-
sired, the bounds are “tunable”—at more computa-
tional cost, we can obtain tighter bounds and thus
better pruning. In addition, in order to increase the
pruning rate, we initially sort all mutations in as-
cending order of upper bound on Bayes error, which
is easy to calculate in the 1D (single mutation) case.
This heuristic21 structures the search so as to try
to exclude good mutations first, so that the error of
the remaining mutations is larger, as is the chance of
pruning left subtrees, which are larger (see again the
tree in Fig. 2). In practice, we found that this re-
ordering improves the pruning rate significantly. Al-
though we can reorder mutations at each level of the
search tree, the cost of the sorting may not be worth
the benefit, which is not likely to be as significant as
the initial sorting.

The cost of visiting an internal node is a table
lookup of the Normal cumulative density function
(Eq. 15), to compute the lower bound on the op-
timal plan (lb(S

⋃
C, m)). Visiting a leaf node is

more expensive, as it requires computing the upper
bound (ub(S)), by numerical integration in 2D space
(Eq. 9).

2.3. Accounting for Bias

While ∆∆G◦ predictors are based on general deter-
minants of protein stability, some proteins are natu-
rally easier or harder to destabilize than others are.
This could lead to bias in the experimental data,
which, without care, could result in selection of the
incorrect model. For example, if the plan included
mutations in which one model was predominantly
predicted to be more destabilized than the others,
that model would tend to be favored if the protein
were relatively easy to destabilize independent of mu-
tation choice. If we knew the bias for a protein,
as a single number or a distribution, we could in-
corporate it into the prediction distribution p(X |si).
We assume, however, that we only know the range
of a constant bias (i.e., a constant offset to ∆∆G◦,
from anywhere in a specified range), because that is
a fairly realistic situation in practice.

Conditioning on model si (so that its predictions
should be biased, as it reflects the native state), its
distribution is moved from µi to µ′

i = µi +δ ·1, for δ

in the specified range. Significantly, the error bound
expressions (Eq. 9, Eq. 11) are all in terms of only
two or three models. Thus, the vector

−−→
µiµ

′
i can be

decomposed into two perpendicular vectors, one par-
allel and the other orthogonal to line µiµj or plane
µiµjµk. Since the orthogonal vector does not pro-
vide any information for model discrimination (dis-
tributions p(X |si), p(X |sj) and p(X |sk) have iden-
tical projections in that direction), such projections
lose no information for discrimination. In our im-
plementation, we try bias values within the range
[−2, 2] kcal/mol at a resolution of 0.1 and use the
worst case (maximum upper bound of Bayes error)
as the robustness measurement of a plan. A robust
plan will have a biased error bound close to the un-
biased one.

3. RESULTS

We employ one representative ∆∆G◦ prediction
method, FOLD-X13, which predicts stability by de-
veloping an empirical effective energy potential in-
cluding van der Waals, solvation, hydrogen bonding,
and electrostatics, and training its parameters and
weights using stability data from wild-type and site-
directed mutants. We use WHAT-IF22 to model the
mutant structures and version 2.5 of FOLD-X13 to
calculate the stability of mutant and wild-type pro-
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teins, and thereby ∆∆G◦.
In a planning-based framework, we have the

luxury of considering only those experiments which
we believe to be most reliable. Thus we exclude
substitutions involving Cys and Pro, at the first
residue position, and in poorly modeled regions. We
also adopt FOLD-X’s restriction allowing only “non-
augmenting” mutations, those whose mutant struc-
tures are easy to predict because they involve either
a substitution to a smaller sidechain (e.g., Ile → Val)
or direct replacement of atoms (e.g., Asp → Asn).

We evaluated the tightness of our bounds using
models deposited for a number of different CASP tar-
gets. Fig. 4 shows the bounds for four representative
test cases from CASP 5, each consisting of the top
10 models by GDT TS z-score. (Other test cases dis-
played similar behavior.) Our upper bound is much
less than the union bound, and quite close to our
lower bound. We have tightly bracketed the Bayes
error.

We put our planning mechanism into practice on
the pTfa protein of bacteriophage lambda. Lambda
pTfa is a small 194 amino acid protein, and, ex-
cept for our cross-linking work4, 23, no structural in-
formation is available for it or any homolog. The
pTfa fragment from residues 1 to 108 forms a stable
well-expressed protein that unfolds cooperatively in
urea by a two-step mechanism24. We previously con-
structed three high-quality threading models of pTfa
1–1084, with templates from chaperone DnaK sub-
strate binding domain (PDB id 1dkz), heme chaper-
one Ccme (PDB id 1liz), and mRNA capping enzyme
(PDB id 1ckm). There are altogether 2052 possible
substitutions, 19 at each of 108 positions. After ap-
plying the restrictions described above, we were left
with 192 possible mutations at 77 positions.

Our algorithm first finds a plan by greedily se-
lecting mutations. As Fig. 5 illustrates, the Bayes
error has converged fairly well by about 6 mutations
(intuitively, 3 mutations distinguishing each pair of
models). The Optimality score (Eq. 12) of the six-
mutation greedy plan is about 0.6, which means that
the Bayes error is within a factor of two of the op-
timal value. Therefore, we expect a high pruning
rate in the branch-and-bound algorithm using this
greedy plan as the initial solution. The greedy plan
is good in the unbiased case, with a Bayes error of
1.4%. However, we found that with a bias range of
[−2, 2] kcal/mol, the Bayes error goes up to 17%.

Fig. 4. Error probabilities for greedy plans for four CASP
targets: union bound (dotted), tight upper bound (solid), and
tight lower bound (dashed).
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Fig. 5. Greedy plans for three pTfa models. (top) Bayes

error of greedy plans (solid line, circles) and lower bound of
the optimal plan of the same size (dash-dotted line, squares).
(bottom) Optimality, as defined in Eq. 12, of greedy plans.

In order to be robust to a constant bias in
how easily pTfa is unfolded, we use our branch-and-
bound search to generate a number of good plans,
and apply our robustness analysis. With a total of
192 candidate mutations at 77 positions, there are
about 5.7 × 1010 possible combinations of six muta-
tions. Our search was much more efficient, visiting
a total of 15942 nodes in about 2 hours and identi-
fying 73 good plans at λ = 1 (the value that ensures
finding the optimal plan). Fig. 6 summarizes the
Bayes errors for the identified plans, assuming either
no bias or bias between −2 and 2 kcal/mol. While
the greedy plan happens to be the best if there were
no systematic experimental offset, it is much worse
in the presence of such possible bias.

0 20 40 60
0.014

0.015

0.016

0.017

0.018

0.019

Plan

P
ro
ba
bi
lit
y

greedy

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

Plan

P
ro
ba
bi
lit
y

greedy

Fig. 6. Bayes error of the six-mutation plans selected by
MutPlanBB for three pTfa models. (top) unbiased; (bot-
tom) biased by −2 to 2 kcal/mol. The big circles indicate the
Bayes error of the greedy plan in each case.

Table 1 details three particular plans: the se-
lected plan, the initial greedy plan, and the worst
among all plans identified by our branch-and-bound
search (“worst-of-bb”). These three plans are com-
parable without bias, with Bayes errors of 0.018
(selected), 0.014 (greedy), and 0.017 (worst-of-bb).
However, the selected plan stands out in the pres-
ence of bias, with a significantly smaller Bayes error
of 0.020, compared to 0.170 for the greedy and 0.553
for the worst-of-bb. The difference in the presence
of bias comes down to a certain “balance” among
the selected mutations, in terms of how they dis-
criminate among models. Both D83G (selected) and
R10G (greedy) have quite different predictions for
the first model and the third model, with a differ-
ence of 2.08 kcal/mol for D83G and −2.85 kcal/mol
for R10G. Mutation Y77G, common to both plans,
also differs for these two models, with a difference
of −2.92 kcal/mol. Significantly, this difference has
the same sign as that of R10G, but is opposite from



107

Table 1. Three six-mutation pTfa plans, with the predicted ∆∆G◦ values for the three models

mut ∆∆G◦
p

N22D 0.68 -3.26 0.02
Y77G -3.26 0.23 -0.34
T75G -2.98 -0.75 0.27
F3A 0.15 -0.09 -2.71
D83G 1.73 -1.29 -0.35
T11G -0.56 0.19 -2.34

mut ∆∆G◦
p

N22D 0.68 -3.26 0.02
Y77G -3.26 0.23 -0.34
T75G -2.98 -0.75 0.27
F3A 0.15 -0.09 -2.71
R10G -1.35 -0.84 1.50
N16D -0.71 -2.77 -0.17

mut ∆∆G◦
p

N22D 0.68 -3.26 0.02
Y77G -3.26 0.23 -0.34
T75G -2.98 -0.75 0.27
R10G -1.35 -0.84 1.50
N16D -0.71 -2.77 -0.17
V79S -2.45 -2.93 -0.50

selected greedy worst-of-bb

D83G. Thus a systematic bias would be balanced out
in the selected plan but not in the greedy plan.

Two mutations differ between the greedy and
the selected plans. In fact, the plans selected by
the branch-and-bound search do tend to overlap, as
shown in Fig. 7. There are a relatively small number
of informative mutations, and the search eliminates
the rest while identifying ways to combine the good
ones so as to optimize the overall Bayes error.
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Fig. 7. Frequencies of the 24 unique mutations involved in
the six-mutation plans identified by MutPlanBB for three
pTfa models.

4. CONCLUSION

Bayes error provides a powerful criterion for evaluat-
ing the quality of an experiment plan, assessing how
likely we are to make the wrong decision once we have
collected the data. Since it is hard to compute Bayes
error exactly, we develop here tight error bounds to
estimate it for the case of selecting among predicted
protein structure models by mutagenesis followed by
stability evaluation. We use these error bounds in a
branch-and-bound algorithm to optimize experiment
plans for model selection. To allow for systematic

bias in the experimental data (since proteins vary in
how easy or hard they are to destabilize, overall), we
consider the predicted performance of possible plans
under a range of possible offsets in stability measure-
ment. We demonstrated the tightness of our bounds
on several test sets of models, and the effectiveness
of our planning mechanism on a system of particular
interest to us. Our experimental results for stabil-
ity mutagenesis will be published separately24, but
we believe the present computational contribution
stands on its own as a new solution to the important
challenge of planning experiments optimizing Bayes
error.

Our approach readily supports several exten-
sions. (1) A mutation may have reliable ∆∆G◦ pre-
dictions in some models but not in all of them. In
the calculation of error bounds, what matters is the
differences between predictions in different models;
thus we set to zero the differences involving miss-
ing values, so that they convey no information. (2)
In selecting plans, the constraint check can incor-
porate additional criteria such as the dispersion of
selected mutations in the sequence or 3D structure.
(3) In a sequential experiment plan, we can seek in
each round of experiments to select a “top group” of
models rather than a single best; then a subsequent
round can focus on selecting among the top models.
We can modify our error bounds (Eq. 9 and Eq. 11)
so that the correct model will be included in the top
group with high probability. To choose a top group
of size t, we should ignore the closest t− 1 neighbors
in calculating the error bounds; we will then bound
the probability that more than t−1 models beat the
correct one.
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