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This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic 

algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment.                

A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the 

coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in 

quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well 

known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN 

results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The 

QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the 

quantum algorithm lowers the cost of overall running time. 
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1.   INTRODUCTION 

Multiple Sequence Alignment (MSA) is one of the most 

challenging tasks in bioinformatics. Most of the  

MSA methods are based on the dynamic programming 

approach. The dynamic programming approach requires 

time proportional to the product of the lengths of 

sequences which makes it computationally difficult. In 

the general case, the theoretical sound and biologically 

motivated scoring methods are not straightforward 

connected. Usually, it is hard to efficiently align more 

than a few sequences. For larger instances, a variety of 

heuristics strategies have been developed. In general, 

two basic classes of MSA methods have been proposed: 

progressive alignment and iterative alignment
1
. 

Progressive alignment methods use dynamic 

programming to build MSA. The best known software 

system based on progressive alignment method is maybe 

CLUSTALW
2
. Other well-known MSA systems based 

on progressive alignment method are MULTALIGN
3
, 

T-COFFEE
4
, MAFFT

5
, MUSCLE

6
, Align-m

7
, and 

PROBCONS
8
. Mostly,  they target proteins or short 

DNA sequences. The main advantages of progressive 

  

alignment methods are speed and simplicity. The main 

disadvantage of progressive alignment methods is  

that mistakes in the initial alignments of the most  

closely related sequences are propagated to the multiple 

alignments. 

Iterative alignment methods depend on algorithm 

that produces an alignment and refines it through a 

serious of iterations until no more improvement can be 

made. Iterative alignment methods can be deterministic 

or stochastic. The deterministic iterative strategies 

involve extracting sequences one by one from a multiple 

alignment and realigning them to the remaining 

sequences. Stochastic iterative alignment methods 

include Hidden Markov Model (HMM) training, 

simulated annealing
9
 and evolutionary computation

10
. 

The main advantage of  stochastic iterative alignment 

methods is a good separation between the optimization 

process and evaluation criteria. The main disadvantages 

of stochastic iterative alignment methods are local 

optima, slow convergent speed, and lacking a specific 

termination condition. 
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In the last twenty years a growing interest in 

quantum computation and quantum information is due to 

the possibility to efficiently solve hard problems for 

conventional computer science paradigms. Quantum 

algorithms exploit the laws of quantum mechanics.  

The quantum computation can dramatically improve 

performance for solving problems like factoring and 

search in an unstructured database. Genetic algorithms 

are stochastic search algorithms based on the principles 

of natural selection and natural genetics. They work on a 

set of chromosomes, called population that evolves by 

means of crossover and mutation towards a maximum of 

the fitness function. Genetic algorithms are efficient and 

flexible algorithms. 

Han-Kim
11

 proposed the possibility to integrate the 

quantum and genetic algorithms. Huo and Stojkovic
12

 

presented Quantum-inspired Evolutionary Algorithms 

(QEA) with a quantum representation. By adapting a 

qubit chromosome representation, a quantum population 

is generated. Classical population is generated by 

performing measurements on the quantum population. 

The best elements are searched in the classical 

population and used to update the quantum population. 

Experiments are carried out on the knapsack problem. 

Now we go one step further. We redesigned QEA to 

solve the multiple sequence alignment problem. This 

paper presents a Quantum Genetic algorithm for 

Multiple sequence ALIGNment (QGMALIGN). It 

exploits the expression power of quantum mechanics in 

the coding and shows how to take advantage of  

quantum phenomena to efficiently speed up classical 

computation. A new probabilistic coding method for the 

MSA representation is given. A quantum rotation gate  

as a mutation operator is used to guide the quantum  

state evolution of the population. Six genetic operators 

are designed on the basis of the coding to help to 

improve the solutions during the evolutionary process. 

The features of implicit parallelism and state 

superposition in quantum mechanics and the global 

search capability of the genetic algorithm are exploited 

to perform efficient computation. The COFFEE  

(Consistency based Objective Function For alignmEnt 

Evaluation)
13

 function is used to measure individual 

fitness. To demonstrate QGMALIGN’s effectiveness, a 

set of well known test cases from BAliBASE2.0 is  

used as reference to evaluate the efficiency of the 

optimization for QGMALIGN. The QGMALIGN  

results have been compared with the most popular 

methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, 

and QGMALIGN) results. The QGMALIGN results 

show that QGMALIGN performs well on the presenting 

biological data. 

2.   CODING AND FITNESS 
 EVALUATION 

2.1.   Quantum probabilistic coding 

The basic information unit of quantum computation is 

the qubit. A qubit is a two-level quantum system and can 

be considered a superposition of two independent basis 

states |0〉 and |1〉, denoted by: 

 |ψ 〉  = α |0〉 +β |1〉. (1) 

where α and β are complex number such that |α |2 + |β |2 

= 1.  

A two-level classical system can be only in one  

of the basis states |0〉 or |1〉. α and β are probability 

amplitudes associated with the |0〉 state and the |1〉 state, 

respectively. If we want to transfer information from  

the quantum system to a classical 0-1 system, we have  

to perform measurement of the quantum state, whose  

result is probabilistic: we get the state |0〉 with 

probability |α |2 and the state |1〉 with probability |β |2. 

There is no way to know exactly both values. We cannot 

clone the unknown state |ψ 〉 as stated by the No cloning 

theorem. 

The evolution of a quantum system is described by 

a special linear operator, unitary operator Uf, which 

operates on qubits. 

Uf |ψ 〉 = Uf [α |0〉 + β |1〉] = αUf |0〉 +  βUf |1〉 

An important consequence of the linearity of quantum 

operators is that the evolution of a two-level quantum 

system is the linear combination of the evolution of the 

basis states |0〉 and |1〉. It is possible to compute f(x) for 

many different values of x simultaneously in a single 

application of Uf. 

A system of m-qubits can represent 2
m
 different 

states simultaneously. The observing quantum state 

collapses to a single state among these states. 

A qubit individual in a quantum genetic algorithm is 

defined as follows: 
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where |αi |
2
 + |βi |

2
 = 1, i = 1, 2, …, m. The quantum 

coding is inspired by the features of quantum mechanics. 

During the evolution process of a quantum system, we 

need to compute |αi |
2
 to obtain the probability matrix of 

the quantum system and then to transform it to the 

corresponding binary matrix by performing the quantum 

observation. The quantum variation has an indirect 

effect on the qubit state by changing the values of αi at 

the expense of some extra space for storing probability 

matrix. It is disadvantageous for solving complex 

problems. The new quantum probabilistic coding is 

proposed for representing the multiple sequence 

alignment. This way of coding shields the underlying 

information of complex α and β. The genetic operators 

can perform directly on the probabilistic matrix while 

the feature of superposition from quantum mechanics is 

preserved.  

Assume that Q(t) = {q
t
1,q

t
2,…,q

t
n} is a population  

of the generation t, where n is the number of 

chromosomes in the population. The chromosome q
t
j is 

defined as 

 ]...[ 321

t

jm

t

j

t

j

t

j

t

j ppppq = . (3) 

where p
t
ji = |β t

ji |
2
, p

t
ji is the probability of the letter 

being observed with value one at that position, p
t
ji is the 

length of the chromosome. When p
t
ji = 1/2, there are 2

m
 

underlying different linear superposition states occurring 

with the same probability. The probabilistic coding  

that substitutes the form of (2) simplifies the encoding 

and saves the running time of the algorithms while 

maintaining the quantum properties. 

2.2.   Mapping the coding to the 
 solution to MSA 

The MSA problem can be formulated mathematically as 

follows: Given n sequences S = {S1, S2,…, Sn} defined 

over the finite alphabet Σ, where n ≥ 2. Sij where 1 ≤ i ≤ 

n, 1≤ j ≤ li is a character of the alphabet Σ, where li is the 

length of Si. A potential alignment is the set S’ = {S’1, 

S’2, …, S’n}, satisfying the following conditions: (i) The 

sequence S’i is the extension of Si and is defined over the 

alphabet Σ’ = Σ ∪ {-}. ‘-’ denotes a gap. The deletion of 

gaps from S’i gives Si; (ii) S’i and S’j have the same 

length; (iii) An objective function is a reference to 

biological significance that evaluates the quality of 

alignments. 

An alignment for MSA can be obtained by 

measuring the quantum probabilistic matrix. The system 

collapses to a superposition of states that have the 

observed fitness. The measurement operation stems 

from quantum observation on a quantum computer. The 

difference is that the quantum observation on a quantum 

state can be performed many times without destroying 

all other configurations as it is not done in pure  

quantum systems. The quantum observation allows us to 

extract one state from the superposition of quantum 

probabilistic representation, having value of one with 

probability pji and zero with probability 1–pji. The result 

of this operation is a binary matrix (BM, see Fig. 1). 

‘1’means that there is a letter at the position of the 

original sequence. ‘0’means a gap. The number of ‘1s’ 

in a row has to be the length of the sequence. The result 

must be repaired to fit the length of the sequence. Fig. 2 

shows the alignment obtained from the binary matrix. 
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Fig. 1.  Measurement operation. 
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Fig. 2.  From binary matrix to an alignment. 

2.3.   Objective function 

Objective function is used to measure the quality of 

MSA, which provides the basis for selection mechanism 

of the algorithm. Ideally, what score is better, then the 

multiple alignment is more biologically relevant.  In this 

paper, we have used the COFFEE function as fitness 

criterion. Firstly we have a set of pairwise reference 

alignments (library), which includes n*(n-1)/2 pairwise 

alignments. The COFFEE function evaluates the 

consistency between the current multiple alignment and 

the pairwise alignments contained in the library. It can 

be formalized as follows: 
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where N is the number of sequences to be aligned. Aij is 

the pairwise projection (obtained from the multiple 

alignment) of sequences Si and Sj, LEN(Aij) is the length 

of this alignment, SCORE(Aij) is the number of aligned 

pairs of residues that are shared between Aij and the 

corresponding pairwise alignment in the library, and Wij 

is the weight associated with the pairwise alignment. 

3.   THE OPTIMIZATION MECHANISM OF 
 QUANTUM GENETIC ALGORITHM 

3.1.   Quantum mutation 

The mutation operator in standard genetic algorithms  

is performed randomly. Individual variation of the 

evolutionary process with random disturbances can  

slow the convergent process. Quantum evolutionary 

processes are unitary transformations: rotations of 

complex space. Repeated application of a quantum 

transform may rotate the state closer and closer to the 

desired state. The basic result for quantum evolutionary 

process is that an unitary matrix can be represented by a 

finite set of universal gates. The quantum state evolution 

is guided by adding the optimal individual information 

to the variation so as to increase the probability of  

some quantum states to observe the better alignments 

and improve the convergence for the algorithm. The 

quantum rotation gate is the quantum unitary 

transformation U, defined as follows: 

 
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the angles δθ can be found in table 1. The rotation gate 

is used to update the quantum state. 
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The quantum rotation gate is implemented by 

rotating the complex space. In Fig. 3, |α |2 gives the 

probability that the qubit will be found in the |0〉 state 

and |β |2 gives the probability that the qubit will be 

found in the |1〉 state. Counterclockwise rotation in the 

first and third quadrants will increase the probability 

amplitude |β |2, while in the second and fourth quadrants 

will increase the probability amplitude |α |2. 
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Fig. 3. Quantum observation: a projection on the basis. 

 

According to the quantum probability coding, 

expression (5) can be simplified as follows: 

 +−+= )1)((sin)(cos 22'

iii ppp δθδθ   

 )1()(sin)(2cos ii pp −δθδθ . (6) 

Eq. (6) hides the influence of the sign of αi and βi on pi. 

The unitary transformation makes pi to take real values 

between 0 and 1. Only angles in the first quadrant can be 

took into account, as shown in Fig. 2. 

 The setting of rotation angle δθ is through 

experimentation and refer to the results in reference 11. 

The settings of δθ are application dependent. Many 

factors have an influence on the selection of the rotation 

angles, including the numbers of iterations associated 

with the characteristics of the sequences, the diversity of 

the population and convergent rate. Following the 

experimentation on the multiple sequence alignment 

problem, a lookup table for the choice of δθ is shown in 

the table 1. The values of the fitness for the best 

chromosome in the third column in the table have all 

values false because when the genetic operators perform 

on the chromosomes - the best one has been optimal in 

the current population. 

 

Table 1.  Lookup table of the  rotation angle δθ. 

 

xi  besti f(x) ≤ f(best) δθ 

0 0 false -0.005π 

0 1 false 0.025π 

1 0 false -0.025π 

1 1 false 0.005π 

 

3.2.   Genetic operators 

The quantum mutation operator can bring good  

diversity of population. However, for the complexity of 

MSA, it is more probably for the evolutionary process to 

trap into the local optimum. Therefore, several  
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genetic operators are designed to avoid local optimum 

inspired by SAGA
10

, which enhanced the capabilities to 

find the global optimal solutions. 

3.2.1.   Local adjustment mutation 

operators 

To improve the convergence - the better evolutionary 

strategies are needed. Inserting a gap to the left or to the 

right of the same position in each of the selected 

sequences often generate a better arrangement. An 

operator is designed to move blocks of residues or gaps 

inside an alignment. Two local adjustment operators are 

designed: the ResidueBlockShuffle operator and the 

GapBlockShuffle operator. 

 

ResidueBlockShuffle: Move a full block without gaps 

to the right or to the left one position. A gap is inserted 

into the left or the right to that position. The block of 

randomly chosen length is chosen at a random position. 

Fig. 4(a) outlines this mechanism. 

 

GapBlockShuffle: Split the block horizontally with the 

probability 15% and move one of the sub-blocks to the 

left or to the right. Move a full block of gaps with the 

probability 85% to the right or left until it merges with 

the next block of gaps, as Fig. 4(b) indicates. 
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(a) ResidueBlockShuffle 
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(b) GapBlockShuffle 

 

Fig. 4.  Local adjustment mutation operator examples. 

3.2.2.   Global mutation operators 

BlockMove: Find a block with gaps randomly in an 

alignment, with width between two and length of the 

  

sequence and exchange position of the block with the 

position of a non-gap block. A special treatment for the 

gap-column. Fig. 5 shows how the BlockMove operator 

works. The length of the migration block is generated at 

random. The new location is taken from the nearby 

position including non-gaps with a large probability and 

randomly generated. Migrates to the neighbor with a 

large probability. The operator has a good effect on 

avoiding the local optimum. 

 

 
 

Fig. 5.  Global mutation operator example: BlockMove. 

 

ConsistencyShuffle: To make full use of the 

information from pairwise alignment library to perform 

the corresponding positions of adjustment and alignment, 

the ConsistencyShuffle operator, inspired by PHGA-

COFFE, is designed to adjust the relative position of the 

residues. The process is as follows: Find a non-gap 

location of a sequence randomly in the multiple 

alignment, such as the positions with box in Fig. 6(a); 

Find the relative positions at which the selected 

sequence is aligned in the pairwise alignments library 

and record them in an array; Adjust gaps in the 

alignment so that the letters of the site for the multiple 

alignment coincide with the corresponding ones in 

pairwise alignment library, see Fig. 6(b). 

 

 

 

 

 

 

 (a) Finding the position in the pairwise library 

 
 

 

 

 
 

 (b) Adjustment 

 

Fig. 6.  ConsistencyShuffle. 
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The Crossover operators merge two different 

alignments with a higher quality into a new one. 

QGMALIGN implemented two different types of 

crossover: SingleCrossover and UniformCrossover. The 

former may be very disruptive. To avoid this drawback, 

the UniformCrossover operator is designed to promote 

multiple exchanges between two parents in a more 

subtle manner. Exchanges are promoted between zones 

of homology. In QGMALIGN, check whether or not the 

two chromosomes can do UniformCrossover, otherwise 

do SingleCrossover. 

 

SingleCrossover: The X-shaped crossover is performed 

at the point where the perfected matched column 

belongs to, as shown in Fig. 7. After the crossover, the 

two new alignments maybe don’t satisfy the constraints 

to the length of the sequence. The new chromosomes 

and the original chromosomes have different number of 

gaps. So we have to adjust the new chromosomes. We 

change pij with 1- pij in the shadowed area at random 

until the requirement for the number of gaps is met. 

UniformCrossover: Find the crossover position in the 

two selected alignments, respectively. Children are 

produced by swapping blocks between the two parents 

where each block is randomly chosen between two 

positions. The shadowed blocks (see Fig. 8) are  

different areas between the two new alignments, coming 

from the two parents. During the process, the gaps are 

adjusting at random and the strategies are the same as 

the ones used in SingleCrossover. The choice of 

crossover points must satisfy the constraints: (i) The 

distance between the crossover positions is at least ten; 

(ii) At least one of the points is not available in another 

alignment. 

3.2.3.   The Selection operator 

The Selection operator chooses the good alignments 

with a probability based on their fitness measured by 

OF(Objective Funcation). The selection operator makes 

sure that the good alignments survive and an optimal 

alignment can be found. It acts the same roles as the 

process of migration in evolutionary algorithms. The 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. SingleCrossover operator. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8. UniformCrossover operator. 
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selection mechanisms in QGMALIGN are: typically 

30% of the new generation is directly from the previous 

generation with the fittest alignments and the remaining 

70% of the chromosomes in the new generation are 

created by roulette wheel selection. 

3.3.   Building the pairwise alignment 
 library 

In the QGMALIGN, the Needleman-Wunsch algorithm 

is used to build the pairwise alignment library and  

n*(n-1)/2 pairwise alignments are obtained. The 

BLOSUM matrices are chosen as the substitute matrix 

for protein sequences. The BLOSUM series ranges from 

BLOSUM30 to BLOSUM90, which one to choose 

depends on the distance between the two sequences, that 

is, the similarity of the two sequences. The penalty 

function is defined as follows: 

 penalty(gaps) = GOP + NG*GEP (7) 

where GOP (Gap Open Penalty) is a penalty for opening 

a new gap, GEP (Gap Extension Penalty) is a penalty 

for extending the length of an existing gap, and NG is 

the length of the gaps after the extension. 

4.   ALGORITHM 

To perform multiple sequence alignment, the MSA 

method QGMALIGN is presenetd. QGMALIGN is 

derived from applying genetic algorithm in quantum 

computation. It uses a m-qubit representation variation 

of the form (3). For each representation, a binary matrix 

is defined, where each entry is selected using the 

corresponding qubit probability, |αi |
2
 or |βi |

2
. It follows 

that if |αi|
2
 or |βi|

2
 approaches to 1 or 0, then the  

qubit chromosome converges to a single state and the 

diversity given by the superposition of states disappears 

gradually. 

The quantum-inspired computing algorithm 

QGMALIGN can be summarized in four steps:  

(i) Initialize the population Q(t) = {q
t
1, q

t
2,…,q

t
n} of  

n-qubit chromosomes, where  

]...[ 321

t

jm

t

j

t

j

t

j

t

j ppppq =  , j = 1,…,n;  

(ii) Apply Hadamard gate to chromosome of the 

population and generates a superposition of all 2
n
 

possible states;  

(iii) A sequence of rotate gate and genetic operators to 

evolve the population;  

(iv) Quantum measurements and evaluation. 

4.1.   QGMALIGN algorithm 

The QGMALIGN can be presented as a pseudocode as 

follows:  

 

Algorithm QGMALIGN 

  1. Build pairwise library. 

  2. Initial population QM of 10 chromosomes. 

  3. Measurement from QM to BMs. 

  4. Evaluate the solutions of BMs and save the best one 

 to Best_BM. 

  5. while (not termination-condition) do 

             6. Apply global mutation with a probability. 

             7. Apply local mutation with a probability.  

         8. Apply the quantum mutation according to the 

 best solution Best_BM.  

             9. Measurement from QM to BMs. 

            10. for each BMi do evaluate the corresponding 

 alignment  

            11. if (fitness of Best_BM < fitness of BMbest) 

                               12.   Best_BM = BMbest 

                 13. Elite selection. 

 

The procedure QGMALIGN works as follows. Line 1 

uses the Needleman-Wunsch algorithm to build the 

pairwise alignment library with n*(n-1)/2 pairwise 

alignments. Line 2 initializes the population QM to 10 

chromosomes. Line 3 extracts one state from the 

superposition of quantum probabilistic representation, 

having value of one with probability pji and zero with 

probability 1–pji. The result of this operation is a binary 

matrix. ‘1’ means that there is a letter at the position of 

the original sequence. ‘0’means a gap. Line 4 uses the 

COFFEE function to evaluate the alignment and  

saves the current best alignment. Lines 2-13 refine an 

alignment through a serious of optimization mechanisms. 

A quantum rotation gate as a mutation operator is used 

to guide the quantum state evolution. Six genetic 

operators are designed on the coding basis to improve 

the solution during the evolutionary process. The 

procedure ternimates when the current best alignment is 

not improved after 1000 times iterations. 
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5.   THE EXPERIMENTAL RESULTS  
 AND  ANALYSIS 

5.1.   The experimental results 

The parameters in QGMALIGN have been set as 

follows: GOP = 5, GEP = 0.1, the size of population is 

10, and Tmax = 30000. The probabilities for various 

operators are given in table 2. 

The experimental database comes from benchmark 

BAliBASE2.0. SPS (Sum-of-Pairs Score), is used to 

evaluate the final alignment. Comparisons (see tables 3~ 

7) of the experimental results have been made with the 

  

the most popular methods (CLUSTALX, SAGA, 

DIALIGN, SB_PIMA, and QGMALIGN). Experimental 

results show that QGMALIGN performs well. 
 

Table 2.  The probabilities for five genetic operators. 

 

Name Probability 

ResidueBlockShuffle     0.36 

GapBlockShuffle 0.36 

BlockMove 0.25 

ConsistencyShuffle 0.65 

Crossover 0.15 

 

 

Table 3. SPS of Ref1. 

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN 

1idy 14% 5×65 0.705 0.342 0.018 0.145 0.450 

1r69 13% 4×80 0.481 0.550 0.406 0.681 0.467 

2trx 17% 4×95 0.754 0.801 0.728 0.451 0.515 

1havA  15% 5×200 0.446 0.411 0.130 0.300 0.200 

2hsdA 19% 4×260 0.691 0.771 0.679 0.470 0.313 

Kinase 20% 5×280 0.736 0.862 0.764 0.733 0.345 

1lvl 19% 4×450 0.632 0.619 0.699 0.559 0.223 

1hfh 31% 5×125 0.917 0.945 0.410 0.868 0.687 

1hpi 33% 4×75 0.861 0.916 0.785 0.909 0.762 

1pfc 28% 5×110 0.988 0.994 0.894 0.927 0.808 

451c 27% 5×85 0.719 0.662 0.729 0.541 0.554 

1aym3 32% 4×235 0.969 0.955 0.962 0.976 0.720 

1pii 32% 4×255 0.864 0.896 0.890 0.832 0.575 

1pkm 34% 4×440 0.921 0.955 0.927 0.907 0.717 

1csp 51% 5×70 0.993 0.993 0.980 1.000 0.921 

1dox 46% 4×105 0.919 0.879 0.859 0.868 0.835 

1fmb 49% 4×105 0.981 0.979 0.959 0.952 0.901 

1plc 46% 5×95 0.958 0.931 0.931 0.904 0.931 

2fxb  51% 5×65 0.945 0.951 0.945 0.945 0.946 

9rnt 57% 5×105 0.974 0.965 0.864 0.970 0.978 

1led 43% 4×250 0.946 0.923 0.516 0.987 0.765 

1ppn 46% 5×230 0.989 0.983 0.648 0.962 0.910 

1thm 49% 4×280 0.961 0.956 0.946 0.971 0.809 

5ptp 43% 5×250 0.966 0.940 0.888 0.966 0.694 

1gtr 42% 5×430 0.986 0.995 0.961 0.960 0.755 

1rthA 42% 5×540 0.977 0.960 0.958 0.962 0.786 
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Table 4. SPS of Ref2. 

dataset identity Seq_no×length CLUSTALX SAGA DIALIGN SB_PIMA QGMALIGN 

1idy 28% 19×65 0.515 0.548 F F 0.920 

1ubi 32% 15×100 0.482 0.492 F 0.129 0.763 

1aboA 28% 15×85 0.650 0.489 0.384 0.391 0.573 

1csy 29% 19×100 0.154 0.154 F F 0.684 

1r69 26% 20×80 0.675 0.475 0.675 0.675 0.738 

1tvxA 34% 16×70 0.552 0.448 F 0.241 0.832 

1tgxA 35% 19×80 0.727 0.773 0.630 0.678 0.697 

2trx 34% 19×95 0.870 0.870 0.734 0.850 0.883 

1sbp 23% 16×280 0.231 0.217 0.374 0.043 0.364 

2hsdA 28% 20×250 0.484 0.498 0.262 0.039 0.601 

1ajsA 35% 18×390 0.324 0.311 F F 0.612 

1pamA 35% 18×500 0.761 0.623 0.576 0.393 0.572 

2myr 32% 17×490 0.904 0.825 0.840 0.727 0.736 

4enl 48% 17×450 0.375 0.739 0.122 0.096 0.655 

 

Table 5. SPS of Ref3. 

dataset identity Seq_no×length CLUSTALX SAGA DIALIGN SB_PIMA QGMALIGN 

1idy 20% 27×70 0.273 0.364 F F 0.468 

1r69 19% 23×85 0.524 0.524 0.524 F 0.247 

1ubi 20% 22×105 0.146 0.585 F F 0.321 

1pamA 34% 19×530 0.678 0.579 0.683 0.546 0.526 

1ped 32% 21×425 0.627 0.646 0.641 0.450 0.372 

1wit 22% 19×110 0.565 0.484 0.500 0.645 0.548 

2myr 24% 21×540 0.538 0.494 0.272 0.278 0.547 

4enl 41% 19×480 0.547 0.672 0.050 0.393 0.394 

 

Table 6. SPS of Ref4. 

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN 

1csp 32％ 6×700 F F 0.889 F 0.304 

1vln 43% 14×230 0.879 0.606 0.545 0.636 0.372 

1ckaA 26％ 10×820 F 0.375 1.000 1.000 0.120 

1mfa 18％ 8×480 1.000 0.385 1.000 0.846 0.345 

1ycc 36％ 9×210 0.485 0.485 0.727 0.970 0.436 

2abk 30％ 7×520 F F 1.000 0.471 0.126 
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Table 7. SPS of Ref5. 

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN 

S51 21％ 15×335 0.938 0.831 0.646 0.338 0.363 

S52 29％ 5×340 1.000 1.000 1.000 0.515 0.789 

1eft 19％ 8×310 F F 0.579 F 0.088 

1pysA 25％ 10×320 0.429 0.429 0.762 0.190 0.176 

1qpg 35％ 5×510 1.000 0.521 1.000 1.000 0.525 

1thm2 38％ 7×240 0.774 0.774 1.000 0.194 0.546 

Kinase1 26％ 5×380 0.806 0.484 0.806 0.677 0.346 

        

CLUSTAL X is a greedy based progressive alignment 

method. When there are more sequences to be aligned, 

the major problem with the methods is that mistakes in 

the initial alignments of the most closely related 

sequences are propagated to the multiple alignments. 

The approach doesn’t work well on ref4. The 

DIALIGN program constructs multiple alignment 

iteratively using the results from segment-to-segment 

comparisons. It works well on ref4 and ref5, but not 

very good for ref1 to ref3. SAGA uses twenty-two 

different genetic operators and each operator has a 

probability of being chosen - that is to be dynamically 

optimized during the run. QGMALIGN performs 

better on ref2 than the other listed methods. In 

addition, QGMALIGN can compete with CLUSTAL 

X and SAGA on ref3 and ref4. Experimental results 

showed that QGMALIGN obtained a better alignment 

with advantages on global optimization when there are 

more sequences to be aligned and the length of 

sequence is nearly 400. 

5.2.   Comparisons and analysis 

To study the effects of the various genetic operators on 

the alignment, the comparisons of test results of the 

use of quantum mutation operator and adding genetic 

operators in it have been made. (See Table 8). The 

experimental results show that the genetic optimization 

operators are essential to obtain the better alignment. 

They can improve the alignment with a lower cost, 

because the program performs iterations from the 279 

per 10 seconds before adding the genetic operators to 

282 per 10 seconds after adding the genetic operators 

on the average. 

        The quantum rotation angle mutation operator 

guides the evolutionary process using a single optimal 

information. Although the optimal solutions of 

information constantly changes, if the information 

varies a little, it is easier for the process to fall in the 

local optimal solution, especially for the difficult 

multiple sequence alignment problem. The problem is 

not the unimodal extreme optimization and also the 

solutions of the problem are not unique. With genetic 

operators, the QGMALIGN algorithm guides the 

population towards the optimal solution, while 

maintaining the diversity of the population during the 

process of iterations. The added genetic operators 

improve the efficiency of the algorithm. 

(a)  the convergent rate for 9rnt 

(b) the convergent rate for 1aho 

 

Fig. 9.   The convergent rate of the algorithm in two cases. 

 

The dashed line represents the convergent rate of the 

algorithm with only quantum mutation operator in it. 
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The real line represents the convergent rate of the 

algorithm with six genetic operators in it.  

        The results in Fig. 9 show that the quantum 

algorithm with six genetic operators performs better 

on the data 1aho and 9rnt than the pure quantum 

mutation algorithm.  

        The algorithm with genetic operators converges 

faster to the better solution and the quality of the 

alignment is improved significantly. 

6.   CONCLUSION 

This paper presents the Quantum Genetic algorithm 

for Multiple sequence ALIGNment - QGMALIGN. 

The QGMALIGN results show that QGMALIGN 

performs better on ref2 than the most popular methods 

(CLUSTALX, SAGA, DIALIGN, SB_PIMA, and 

QGMALIGN). Also, QGMALIGN can compete with 

CLUSTAL X and SAGA on ref3 and ref4. If there are 

a lot of sequences to be aligned and the lengths of 

sequences are near to 400, then QGMALIGN obtaines 

the better alignment with advantages on global 

optimization. The  added  genetic operators produced 

a lower cost running time. 

 

Table 8. The experimental results of the algorithm with different operators in it. 

 

All operators Quantum mutation     sequences                  Seq_no×length 

SPS          #Iterations/time SPS     #Iterations/time 

1plc_ref1 5×100 0.931 4061/28s 0.874 6535/35s 

1csy_ref2 19×102 0.684 23479/677s 0.465 27134/789s 

1idy_ref3 27×72 0.468     7044/228s 0.320 18633/653s 

1pysA_ref4 4×820 0.207 16459/598s 0.103 30000/1223s 

1pysA_ref5 10×340 0.176 30000/1375s 0.068 30000/1308s 

Average  — 0.493 16209/581.2s 0.366 22460/795.6s 
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