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We present two heuristics for speeding up a time series alignment algorithm that is related to dynamic time warp-
ing (DTW). In previous work, we developed our multisegment alignment algorithm to answer similarity queries for
toxicogenomic time-series data. Our multisegment algorithm returns more accurate alignments than DTW at the
cost of time complexity; the multisegment algorithm is O(n5) whereas DTW is O(n2). The first heuristic we present
speeds up our algorithm by a constant factor by restricting alignments to a cone shape in alignment space. The
second heuristic restricts the alignments considered to those near one returned by a DTW-like method. This heuristic
adjusts the time complexity to O(n3). Importantly, neither heuristic results in a loss in accuracy.

1. INTRODUCTION

Characterizing and comparing temporal gene-
expression responses is an important computational
task for answering a variety of questions in biolog-
ical studies. We have previously presented an ap-
proach for answering similarity queries about gene-
expression time series that is motivated by the task
of characterizing the potential toxicity of various
chemicals1. This approach is designed to handle
the plethora of problems that arise in comparing
gene expression time series, including sparsity, high-
dimensionality, noise in the measurements, and the
local distortions that can occur in similar time series.
Our experimental evaluation showed that our ap-
proach produces more accurate alignments and clas-
sifications of gene-expression time series than a hand-
ful of alternative approaches, and is robust to relative
distortions in time between similar chemical treat-
ments. However, this accuracy comes at the cost of
efficiency: the algorithm’s time complexity is O(n5).
In this paper, we present two heuristic methods for
speeding up our alignment algorithm. We show that
these heuristics result in significant speedups without
sacrificing the accuracy of the resulting alignments.

The task that we consider is motivated by the
need for faster, more cost-efficient protocols for char-
acterizing the potential toxicity of industrial chem-
icals. The effects of toxic chemicals may often be
predicted by how they influence global gene expres-
sion over time2. By using microarrays, it is possible

to measure the expression of thousands of genes si-
multaneously. It is likely that transcriptional profiles
will soon become a standard component of toxicol-
ogy assessment and government regulation of drugs
and other chemicals.

The source we use for toxicology-related gene ex-
pression data is the Edge (Environment, Drugs and
Gene Expression) database2. Edge contains expres-
sion profiles from mouse liver tissue following ex-
posure to a variety of chemicals and physiological
changes, which we refer to as treatments. Some of
the treatments in Edge have been assayed as time
series. Figure 1-A provides a simplified illustration
of the type of data with which we are concerned. The
small database in this figure contains time series data
for four different treatments, each of which includes
measurements for three genes. The true, underlying
expression response is not known, but instead the
database contains sampled observations which may
be noisy. We use the term observation to refer to
the expression measurements made at a single time
point in a treatment.

Figure 1-B then shows the computational task.
Given an expression profile as a query, we want to
identify the treatment in the database that has the
expression profile most similar to the query. In the
general case, the query and/or some of the database
treatments are time series. In this case, we want
to also determine the temporal correspondence be-
tween the query and putatively similar treatments
in the database. In the toxicology domain, we are
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Fig. 1. An example of the similarity-query task for four different treatments with three genes. In Panel A the curves show the
actual hidden expression profile for each treatment, even though we must rely on the noisy sampled observations (the points). In
Panel B we have reconstructed the profiles at unobserved times, and used them to perform a similarity query. The highlighted
areas represent possible good matches.

interested in answering this type of query in order to
characterize poorly understood chemicals.

We have developed an approach that is de-
signed to handle several key challenges that this task
presents.

• The time series available from toxicological stud-
ies are typically sparse, containing measurements
from fewer than ten time points.

• Because the time series have been sampled at
non-uniform time intervals which vary between
treatments, the time points present in a given
query may not correspond to measured points in
database series.

• Queries may vary in their number of observations
or their extent. Some queries may consist of only
a single observation, whereas others may contain
multiple time points. Some may span only a few
hours whereas others include measurements taken
over days.

• A given query and its best match in the database
may differ in the amplitude, temporal offset, or
temporal extent of their responses. For example,
the expression profile represented by a query treat-
ment may be similar to a database treatment ex-
cept that the gene expression responses are atten-
uated, or occur later, or take place more slowly.
Alternatively, the query may be similar to a trun-
cated version of the database series, or vice versa.

Our approach to this task involves first using
an interpolation algorithm to reconstruct unobserved
expression values from sparse time series, and then
using an alignment algorithm to find the highest
scoring alignment of the query series to each treat-
ment series in the database. The approach returns
the treatment from the database that is most similar
to the query, and the calculated alignment between
the two series.

Several different methods have been applied to
the task of aligning gene-expression time series. Aach
and Church3 were the first to apply the method of
dynamic time warping4, 5 to gene expression pro-
files, and other groups have followed6, 7. Dynamic
time warping, originally developed for speech recog-
nition problems, is an approach for aligning pairs of
time series that uses dynamic programming to find
an optimal alignment with respect to a given scor-
ing function. Although DTW has a time complexity
of O(n2), Ratanamahatana and Keogh8 have shown
that using bounding heuristics can effectively make
DTW run in O(n). However their method is de-
signed for global alignments, which align all of one
series to the entirety of the other. Our method, in
contrast, does not force the two series to be globally
aligned. Instead, it permits a type of local alignment
in which the end of one series is unaligned. We refer
to this case as shorting the alignment. This aspect of
the approach is motivated by the consideration that
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one of the series may show more of the temporal re-
sponse than the other (e.g., one series may not have
been measured for as long, or may have responded
more quickly).

Bar-Joseph et al.9 used a warping method that
finds a linear mapping between the two time series
being aligned. Although it allows local alignments
like our method, the linear model does not ade-
quately represent complex alignments. Our method
considers alignments that represent a middle ground,
in terms of expressiveness, between dynamic time
warping and linear warping approaches. Our method
is based on a “multisegment” model that warps dif-
ferent regions of the series by different amounts.

Another time-series alignment approach that is
somewhat similar to our multisegment method is cor-
relation optimized warping (COW)10. This method
compares time series by dividing them into several
roughly equal segments and summing the Pearson’s
correlations of corresponding segments. Unlike our
approach, the COW method assumes that the series
are to be globally aligned, without any shorting. Fur-
ther, the use of correlation can be limiting as COW
is unable to distinguish between two series that are
proportional to one another.

In previous work, we evaluated our multisegment
alignment method in the context of aligning and
classifying gene-expression profiles from the Edge

database. This empirical evaluation showed that our
multisegment method returned more accurate align-
ments and classifications than dynamic time warp-
ing, two linear alignment methods, and the COW
algorithm. The disadvantage of the multisegment
method is that its computational complexity is O(n5)
where n is the number of time points in the se-
ries being aligned (assuming the two series have the
same length). Although the number of observed time
points is typically small in the series we consider, n is
considerably larger because each series is represented
by interpolated “pseudo-observations” in addition to
the observed time points.

2. TIME SERIES ALIGNMENT
METHODS

In this section we discuss two previously developed
methods for aligning two series. Figure 2 illus-
trates the type of alignment problem we consider.

The figure shows the types of alignments calculated
by dynamic time warping and by our multisegment
method1. (For simplicity, the figure shows each
treatment as consisting of only a single gene.) These
alignment paths exist in alignment space, where each
dimension represents the time of one of the aligned
series. A point (x, y) on a path corresponds to a
mapping between Series 1 at time x and Series 2 at
y. The diagonal represents a special path, in which
no warping of time takes place. Here, both align-
ments short, so that the whole of Series 2 is aligned
with only a portion of Series 1.

Fig. 2. Aligning two time series in alignment space with dy-
namic time warping and our three-segment model. We refer to
this graph as an alignment matrix. A point (x, y) corresponds
to a mapping between Series 1 at time x and Series 2 at y.
The paths thus show the overall alignments chosen by both
methods. Notice that the alignments short before Series 1 has
ended, as there is no evidence that Series 2’s expression has
begun to increase again at the end.

2.1. Dynamic Time Warping

Dynamic time warping4, 5 is often used for time se-
ries alignment problems. Briefly, this method com-
putes an alignment matrix Γ from two series as
shown in Figure 2. In our context, the series are
a query series q and a database series d. Each el-
ement γ(x, y) holds the best score aligning q, up to
time x, against d, up to time y. The matrix elements
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are calculated recursively as:

γ(x, y) = DE(qx, dy) + min

⎧⎨
⎩

γ(x − 1, y)
γ(x, y − 1)
γ(x − 1, y − 1)

(1)

where DE(qx, dy) is the Euclidean distance between
points qx and dy in the two series. The base element
γ(0, 0) is just the Euclidean distance at time 0.

Traditional DTW then returns γ(q.r, d.r), where
q.r and d.r are the rightmost (last) times of the two
series, along with the path that resulted in this score.
However we are interested in possibly shorting the
alignment, finding a local alignment rather than a
global one. In this case, allowed alignments are those
that explain the entire extent of at least one of the
two given time series. We scan the elements of Γ that
represent alignments that include the entirety of the
query series, the entirety of the database series, or
both, and return the best one:

bestscore = min
a≤q.r, b≤d.r

⎧⎪⎨
⎪⎩

γ(a,d.r)√
|a|2+|d.r|2

γ(q.r,b)√
|q.r|2+|b|2

. (2)

The variables a and b represent positions in the two
time series. Given series of length m and n, the align-
ment matrix has mn entries to be calculated. Each
of these calculations takes constant time. Thus, if
m ≈ n, the time complexity is O(n2).

2.2. Multisegment Time Series
Alignment

The three-segment path in Figure 2 shows the type
of alignment that our multisegment model calculates.
In each segment the amplitude and stretching rela-
tionships between the two series are somewhat differ-
ent. We use the term stretching to refer to distortions
in the rate of some response, and the term amplitude
to refer to distortions in the magnitude of the re-
sponse. The total number of segments is specified in
advance.

To determine the similarity between a query
time series q and a particular database series d, we
can calculate how likely it is that q is a somewhat
distorted exemplar of the same process that resulted
in d. In particular, we can think of a generative pro-
cess that uses d to generate similar expression pro-
files. We can then ask how probable q looks under
this generative process.

Given this generative process idea, we calculate
the probability of a particular alignment of query q

given a database series d as follows:

P (q|d, s, a) = Pm(m)
m∏

i=1

Ps(si)Pa(ai)Pe(qi|di, si, ai),

(3)
where m is the number of segments in the alignment,
qi and di refer to the expression measurements for the
ith query and database segments respectively, and si

is the stretching value and ai is the amplitude value
for the ith segment. The location of each segment
pair is assumed to be given here. Pm represents a
probability distribution over the number of segments
in an alignment, up to some maximum number M of
allowed segments. Ps represents a probability dis-
tribution over possible stretching values for a pair
of segments, Pa represents a probability distribution
over possible amplitude values, and Pe represents a
probability distribution over expression observations
in the query series, given the database series and the
stretching and amplitude parameters.

We omit the details of this generative model
here, but we note that it results in a scoring func-
tion that can be used to assess the likelihood of
any given alignment. Moreover, we can find opti-
mal scoring alignments under this model using dy-
namic programming. The core of the dynamic pro-
gram involves filling in a three-dimensional matrix Γ
in which each element γ(i, x, y) represents the best
score found with i segments that align the query sub-
series from time 0 to x with the database subseries
from time 0 to y. Here, x and y represent time points
in the two series.

We define γ(i, x, y) with the following recurrence
relation:

γ(i, x, y) = max
a<x, b<y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

log Pm(i) + γ(i − 1, a, b)
+ score(a, x, b, y)
if x = q.r or y = d.r

γ(i − 1, a, b)
+ score(a, x, b, y)
otherwise

. (4)

Here, log Pm(i) is a scoring term that considers only
the number of segments used in the alignment, and
score is the remainder of the scoring function, which
takes into account the stretching and amplitude dis-
tortions involved in aligning a pair of segments, in
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addition to how well the observations from the two
segments match given these distortions. Again, the
indices a and b represent positions in the two time
series and q.r and d.r refer to the rightmost (last)
time coordinates in the query series and the database
series, respectively. The base case is similar. We
then find the highest scoring element of Γ that cor-
responds to a legal shorting:

bestscore = max
i, a≤q.r, b≤d.r

{
γ(i, a, d.r)
γ(i, q.r, b)

, (5)

along with its generating path.
Assuming that the two series are of equal length

n, Γ is of size O(n2). For each entry of Γ we must
scan through O(n2) previous segments, and perform
O(n) calculations to score a pair of segments. This
results in a final time complexity of O(n5).

2.3. Data

The data we use in our experiments comes from the
Edge toxicology database2, and can be downloaded
from http://edge.oncology.wisc.edu/. Our data set
consists of 216 unique observations of microarray
data, each of which represents the expression values
for 1600 different genes. Each of these expression
values is calculated by taking the average expression
level from four treated animals, divided by the aver-
age level measured in four control animals. The data
are then converted to a logarithmic scale, so that an
expression of 0.0 corresponds to the average basal
level observed in the control animals.

Each observation is associated with a treatment
and a time point. The treatment refers to the chemi-
cal to which the animals were exposed and its dosage.
The time point indicates the number of hours elapsed
since exposure occurred. Times range from six hours
up to 96 hours. The data used in our computational
experiments span 11 different treatments, and for
each treatment there are observations taken from at
least three different time points.

The alignment methods we use all assume that
the data is sampled at regular intervals. Because that
is not the case here, all our experiments use an in-
terpolation preprocessing step to generate regularly
sampled pseudo-observations. Database and query
series are interpolated using third order splines in
most cases. We use second order splines when there

are only two data points.

2.4. Experiments

In order to evaluate our multisegment alignment
method on the Edge data, we assembled query series
by randomly sampling a random number of observa-
tions of the same treatment but at different times.
We then tested the query against a database built
from all the remaining observations. In some cases,
the expression responses induced by similar treat-
ments may evolve at different rates. To simulate this
situation, we temporally distort some query series.
For example, one of the distortions doubles all times
in the first 48 hours (i.e., it stretches the first part of
the series), and then halves all times (plus an offset
for the doubling) for the next 24 hours. The other
distortions were similar.

We note that this task is only a surrogate for
the actual task with which we are concerned: clas-
sifying uncharacterized chemicals and aligning them
with the most similar treatment in the database. It
is a useful surrogate, however, because it is a task in
which we know the most similar treatment and the
correct alignment of the query to this treatment.

We preprocessed each query and the eleven
database treatments using splines to reconstruct
pseudo-observations at every four hours. In this ex-
periment, our method returned the database treat-
ment with the highest scoring alignment, as defined
by Equation 5. We then measured how accurately we
are able to (i) identify the treatment from which each
query series was extracted, and (ii) align the query
points to their actual time points in the treatment.
We refer to the former as classification accuracy and
the latter as alignment accuracy.

In the experiments we report here, our multiseg-
ment method is limited to three segments in its align-
ments. Our previous experiments 1 indicate that the
accuracy of the multisegment method remains stable
when it is allowed to use more segments.

We considered several other alignment methods
as baselines. Dynamic time warping is described in
Section 2.1. Linear parametric warping finds the co-
efficient which, when multiplied by the query times,
results in the smallest Euclidean distance between
the series. It is similar to the method used by Bar-
Joseph et al.9. Finally correlation optimized warping
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(COW)10 is another segment-based method that di-
vides both series into the same number of segments
and then sums the cross correlations of correspond-
ing segments.

Fig. 3. Classification and alignment accuracies of several
methods, including our three-segment model. Each line rep-
resents a different method. In each, the top point represents
classification accuracy, while the bottom two points add the
additional correctness criteria of the average alignment error
being less than 24 hours and 12 hours, respectively. High-
lighted points are those that are significantly different from
the multisegment method (p ≤ 0.05), by McNemar’s χ2 test.

The results of these experiments are shown in
Figure 3. The left half represents those cases in which
we did not distort the queries temporally, while in
the right half we show the cases in which we did.
Each line represents a different method. For each
method the top point represents classification accu-
racy, the middle point represents alignment accuracy
by adding the criterion that the average time error
in the mapping is less than or equal to 24 hours, and
the bottom point shows alignment accuracy where
this tolerance is decreased to 12 hours. Highlighted
points are those that are significantly different from
the multisegment method (p ≤ 0.05) according to
McNemar’s χ2 test. Only COW exhibits accuracies
competitive with those of our multisegment method.
These estimates of COW’s alignment accuracies are
optimistic, however, because we have run COW with
many settings for its parameters and report only the

best results here.
Thus our multisegment method dominates the

others in terms of both classification and alignment
accuracy, but this comes at the cost of efficiency. Its
time complexity of O(n5) is much greater than the
other algorithms. With spline interpolation provid-
ing a pseudo-observation every four hours, a typical
value for n is on the order of 25. The three-segment
method takes about three minutes to do a single
alignment. By contrast, the O(n2) DTW does the
calculation in a fraction of a second. We would like
our multisegment algorithm to be able to scale to
handle queries for large databases of expression time
series.

3. THE CONE HEURISTIC

We now describe the first of two new heuristics which
address the efficiency limitation of our multisegment
algorithm.

The alignment methods we use work by filling
in an alignment matrix Γ. One well studied heuris-
tic in similar time-series alignment problems is to
restrict the cells of the matrix that are calculated.
Several ways of doing this are illustrated in Fig-
ure 4. Each panel shows the alignment space when
warping one series against another, and the shaded
elements indicate the area to which the search is
restricted. The so-called Sakoe-Chiba Band4 and
Itakura Parallelogram11 are the most commonly used
heuristics. The former restricts the search to a con-
stant distance from the diagonal, while the latter al-
lows progressively more warping closer to the mid-
dle. However both of these methods implicitly as-
sume that the alignment being sought is a global one,
in which there is no shorting of either input series.
Here we consider a novel approach which confines
the search to a cone starting at the origin and cen-
tered on the diagonal, as illustrated in Panel C of the
figure.

Formally, we define the cone by a slope c > 1.
We modify Equation 4 so that:

γ(i, x, y) = undefined if
x

y
> c or

y

x
> c. (6)

With this heuristic, we do not compute undefined
values and we do not consider segments anchored in
them.
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Fig. 4. Restricting the search in alignment space by shape. Each cell represents one element of the alignment matrix, and
the shaded areas are those that are actually calculated. Both the Sakoe-Chiba Band (A) and the Itakura Parallelogram (B) are
intended for globally aligning whole series to each other. By contrast, our cone (C) is designed for local alignments in which one
series might be shorted.

3.1. Theoretical Analysis

Here we do a theoretical analysis of the expected
speed-up in restricting the search space to a cone.
The primary effect is to reduce the number of seg-
ments calculated by a constant factor, so we do not
expect to see an improvement in its time complexity
of O(n5). Instead we expect to see a constant speed-
up proportional to the relative size of the cone to the
alignment matrix. For a square matrix (i.e. where
both series are of the same length), the relative size
of the cone depends only on the slope of its bounding
rays. With a slope of c, this ratio is c−1

c . We expect
the execution time of the multisegment method with
the cone heuristic to take roughly this fraction of the
exact calculation’s time.

We expect deviation from this value in two cases.
First, nonsquare matrices will exhibit smaller ratios,
as the cone covers proportionately less of their areas.
Second, our calculation assumes that an alignment
matrix can be split to an arbitrarily fine granular-
ity. Because the matrix really consists of discrete
elements, the ratio of elements covered by a cone
will be more than expected for small matrices. For
example, in a 5 × 5 matrix a cone with c = 2 will
cover 13 cells, for a ratio of 13

25 rather than 1
2 .

3.2. Experiments

Here we evaluate restricting the search in alignment
space to a cone, in order to assess (i) its speedup rela-
tive to our original multisegment method, and (ii) its

ability to find high-scoring alignments and produce
accurate time-series classifications.

For the experiments in this section, we again use
the data described in Section 2.3 and the same set of
queries we used in Section 2.4.

Fig. 5. Relative speed of the cone heuristic method. Time
is measured by the number of comparisons of a point in each
series.

First, we determine how much faster the cone
method makes our calculations. We measure time in
terms of point comparisons, or comparisons of a sin-
gle time point in one series with a single time point in
another. This is a good surrogate for calculation time
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Fig. 6. Comparison of the cone heuristic method scores
to the scores on the terminal edges of the alignment matrix
of the exact multisegment calculation. These are the best
alignments found for each legal shorting of the alignment.

Fig. 7. Comparison of the cone heuristic method scores
to the scores of 1000 randomly sampled multisegment align-
ments.

needed. Dynamic time warping performs O(n2) of
these calculations, while our method performs O(n)
for each of O(n4) pairs of segments compared, for
a total of O(n5). Figure 5 graphs the number of
point comparisons done by the exact multisegment
method versus the fraction done by the heuristic cone
method, for the undistorted experiment we ran in
Section 2.4. Although we obtain good speed-up, it is
by no more than a constant factor. When the series
are of roughly equal length, the time taken is in good
agreement with our earlier calculated value of c−1

c .
We predicted earlier that nonsquare matrices, which
have less area covered by the cones, would run faster.
These account for the dips visible in the figure. Ad-
ditionally as predicted, smaller matrices tend to have
larger values on this graph, because of the way cones
divide the cells discretely.

Next we assess the alignments found using the
cone heuristic, when we align each query to the
database observations derived from the same treat-
ment. We compare the score of each such alignment
to a standard set of other alignments of the same
query and database series. The first standard set
we use consists of possible alignments found when
doing the exact calculation. Recall that by Equa-
tion 5, the multisegment method chooses the best

score from among all the possible shortings. We use
all these scores—the best found for each shorting—
as the standard set. Because the scores are drawn
from the terminal edges of the alignment matrix, we
refer to this set as the terminal-edge scores. We il-
lustrate the comparison in Figure 6. Here we graph
the percentage of heuristic-based scores that are bet-
ter or equal to a percentage of the terminal-edge
scores. For example, 80% of the cone-based scores
are better or equal to at least roughly 70% of the
edge scores when c = 3. If each query’s score were
drawn from the same distribution as its standard set,
we would expect the curves to roughly coincide with
the graphed diagonal. Thus with c = 1.1, the align-
ment found will likely not be better than picking one
of the edge alignments at random. However with
larger cones (c ≥ 2), there is a good chance that the
heuristic will lead to an alignment that scores well.

Figure 7 shows a similar comparison, but this
time we compare against the scores from 1000 ran-
domly sampled three-segment alignments as our
standard set. These alignments are determined by
randomly picking three contiguous segments in align-
ment space from origin to a terminal edge, and then
picking the best amplitude coefficient for each seg-
ment by least squares. As before, when c = 1.1
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Fig. 8. Classification and alignment accuracies for the
cone heuristic method with varying values of the slope pa-
rameter. Also shown for reference are the accuracy values
for the exact three-segment method. Highlighted points are
significantly different (p ≤ 0.05) from the exact method by
McNemar’s χ2 test.

Fig. 9. Alignment space diagram of the hybrid-DTW
heuristic for the multisegment method. We first find an
alignment path using our hybrid-DTW method, and then
we restrict the multisegment search to elements within a
spread s of this path. Here s is two.

the alignment does not appear to be much better
than random. With wider cones, however, the result-
ing alignments have better scores than most random
alignments. Thus we conclude that, given a large
enough cone, the segments that are not calculated
are often not part of the optimal alignment. The
alignment that is found by the cone heuristic will
likely be comparable to the best alignment found by
the exact method.

Finally we perform the classification/alignment
task as in Section 2.4, except using the cone heuris-
tic with the multisegment method. The results are
shown in Figure 8. Except for the most narrow cones
considered (c = 1.1), there is not a loss in accuracy
due to finding suboptimal alignments. There may be
some benefit to accuracy in using a moderate cone,
with c = 2 or c = 3. If so, this is because such
cones preclude the multisegment method from using
extreme alignments, such as mapping the beginning
of one series to the end of the other or using too great
a slope in alignment space.

4. THE HYBRID-DTW HEURISTIC

Now we consider an alternative method for speeding
up our multisegment alignment method. Here we re-
strict the search space by doing a first pass with a
DTW-like method, and then considering only multi-
segment alignments that are close to the DTW path
in alignment space. This method is illustrated in
Figure 9.

We refer to the first pass method as hybrid-
DTW, because it combines the dynamic program-
ming of dynamic time warping with a scoring func-
tion similar to that used in our multisegment algo-
rithm. The scoring function we use for it is:

D(qx, dy) =
D2

E(qx, αdy) + D2
E( 1

αqx, dy)
−D2

E(qx, µDB,y) − D2
E(µDB,x, dy)

(7)

where DE is the Euclidean distance, α is a value cho-
sen by least squares to minimize the first two terms,
and µDB,x is the average value in the database for
time x. Unlike classic DTW, any element γ(x, y)
can either add to or subtract from the final score. In
DTW, the final score is a normalized sum, so it has a
strong bias to reduce the number of elements on its
alignment path. Our hybrid-DTW is able to avoid
this bias.
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Given the alignment path returned by the
hybrid-DTW calculation, the second step of our ap-
proach restricts the search space of the exact mul-
tisegment calculation. We define the spread s to be
the maximum distance from the hybrid-DTW path
that we will search. We modify Equation 4 so that:

γ(i, x, y) =
undefined
if |x − xh| > s or |y − yh| > s

(8)

for all points (xh, yh) in the hybrid path. Thus
we only consider segments that both begin and end
within s of the hybrid path.

4.1. Theoretical Analysis

Like classic DTW, the time complexity of hybrid-
DTW is O(mn), where m and n are the lengths of
the series being aligned. The maximum length of the
path it returns is m + n. This gives us a maximum
bound on the number of segments calculated for the
multisegment method of:

m+n∑
i=1

(i − 1)(2s + 1) =

1
2 ((m + n)2 − (m + n))(2s + 1),

(9)

where s is the spread. Assuming that s � m ≈ n,
the number of segments considered is O(n2). We
multiply this value by the O(n) time required to cal-
culate the score of a segment, and obtain a total time
complexity of O(n3).

4.2. Experiments

As with the cone heuristic, we assess the hybrid-
DTW heuristic by considering (i) its speedup rela-
tive to the original multisegment method, and (ii) the
quality of the alignments it finds. Recall that we have
interpolated pseudo-observations at four-hour inter-
vals. Thus we evaluate these criteria with s ranging
from zero elements (zero hours) up to four elements
(16 hours).

Fig. 10. Relative speed of the multisegment method with
and without the hybrid-DTW heuristic. Again, time is mea-
sured by the number of comparisons of a point in each series.

Speedup is shown in Figure 10, which is again
measured in terms of point comparisons. With s = 0
or s = 1 we obtain speedups of an order of magni-
tude. We again see the dips corresponding to non-
square matrices. The best speed-ups occur for the
largest matrix sizes. In contrast to the cone heuris-
tic, the ratio of comparisons done still appears to be
decreasing for the largest values. This is what we
would expect with a better time complexity.

Next we consider the resulting alignment scores,
and as before we compare them to the scores of both
terminal-edge alignments and random alignments.
The results of these score comparisons are shown
in Figures 11 and 12. The hybrid-DTW heuristic
method does well here, even when s is zero. Most of
the scores found using this heuristic are better than
or equal to the edge and random scores for the same
query.

Finally, Figure 13 shows the classification and
alignment accuracies for the exact multisegment cal-
culation and the calculation using the hybrid-DTW
first pass. There is no significant difference in accu-
racy when using the heuristic versus doing the exact
multisegment calculation. For completeness, the fig-
ure also shows the accuracies when using the hybrid-
DTW method by itself (i.e. not as a first pass for
the multisegment method). Although it is more ro-
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Fig. 11. Comparison of the hybrid-DTW heuristic scores
to the scores on the terminal edges of the alignment matrix
of the exact multisegment method.

Fig. 12. Comparison of the hybrid-DTW heuristic scores
to the scores of 1000 randomly sampled multisegment align-
ments.

bust to distortion than ordinary DTW and seems
to align well, its accuracy—especially classification
accuracy—is still significantly worse than that of the
multisegment method.

Fig. 13. Classification and alignment accuracies for the
hybrid-DTW heuristic method with varying values of the
spread parameter. Also shown for reference are the accuracy
values for the exact three-segment method and the hybrid-
DTW method on its own. As before, highlighted points are
significantly different (p ≤ 0.05) from the exact method by
McNemar’s χ2 test.

Taken together, these results imply that the
hybrid-DTW’s alignment paths are a good approxi-
mation to those found by the multisegment method.
Using spread values of zero or one has the potential
to speed up the calculation greatly while not signifi-
cantly harming the accuracy provided.

5. DISCUSSION

In a previous investigation1 we showed that our mul-
tisegment alignment method is more accurate than
other methods, both in terms of classification and
alignment accuracy. In this study, we have presented
two heuristics that can be used to speed up its cal-
culation.

• By restricting the search space in the warping ma-
trix to a cone, we may speed up the calculation
by a constant factor. The cone may also serve
as a useful bias, preventing alignments that are
shorted too much when there is reason to believe
that they should be excluded. The cone shape
is analogous to both the Sakoe-Chiba Band and
the Itakura Parallelogram, but it allows non-global
alignments.

• By restricting the search space to alignments that
are near those found by a modified DTW method,
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we can improve the time complexity from O(n5)
to O(n3).

Of the two heuristics, the hybrid-DTW based
method offers clearly superior results. However the
cone based heuristic is not without merit, as it seems
to have somewhat of a regularization effect, biasing
the alignments found toward more accurate ones. In
future work we will explore using the two methods
in conjunction.

Acknowledgments

This work was supported by NIH/NIEHS grant R01
ES012752, and NIH/NLM grant R01 LM07050. We
would also like to thank Christopher Bradfield and
Aaron Vollrath of the Edge project.

References

1. Smith AA, Vollrath A, Bradfield C, Craven M. Simi-
larity queries for temporal toxicogenomic expression
profiles. PLoS Computational Biology 2008; In press.

2. Hayes K, Vollrath A, Zastrow G, McMillan B,
Craven M, Jovanovich S, Walisser J, Rank D, Penn
S, Reddy J, Thomas R, Bradfield C. EDGE: A cen-
tralized resource for the comparison, analysis and
distribution of toxicogenomic information. Molecu-
lar Pharmacology 2005; 67: 1360–1368.

3. Aach J, Church G. Aligning gene expression time
series with time warping algorithms. Bioinformatics
2001; 17: 495–508.

4. Sakoe H, Chiba S. Dynamic programming algorithm
optimization for spoken word recognition. IEEE
ASSP Magazine 1978; 26: 43–49.

5. Sankoff D, Kruskal J. Time Warps, String Edits,
and Macromolecules: The Theory and Practice of
Sequence Comparison. Addison-Wesley 1983.

6. Criel J, Tsiporkova E. Gene time expression warper:
A tool for alignment, template matching and visual-
ization of gene expression time series. Bioinformatics
2006; 22: 251–252.

7. Liu X, Müller HG. Modes and clustering for time-
warped gene expression profile data. Bioinformatics
2003; 19: 1937–1944.

8. Ratanamahatana C, Keogh EJ. Three myths about
dynamic time warping data mining. In: Proceedings
of SIAM International Conference on Data Mining.
SIAM, 506–510.

9. Bar-Joseph Z, Gerber G, Gifford D, Jaakkola T,
Simon I. Continuous representations of time-series
expression data. Journal of Computational Biology
2003; 10: 341–356.

10. Nielsen NV, Carstensen JM, Smedsgaard J. Aligning
of single and multiple wavelength chromatographic
profiles for chemometric data analysis using correla-
tion optimised warping. Journal of Chromatography
A 1998: 17–35.

11. Itakura F. Minimum prediction residual principle ap-
plied to speech recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing 1975; 23:
67–72.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


