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Establishing structural or functional relationship between sequences, for instance to infer the structural class of an unannotated protein,
is a key task in biological sequence analysis. Recent computational methods such as profile and neighborhood mismatch kernels have
shown very promising results for protein sequence classification, at the cost of high computational complexity. In this study we address
the multi-class sequence classification problems using a class of string-based kernels, the sparse spatial sample kernels (SSSK), that are
both biologically motivated and efficient to compute. The proposed methods can work with very large databases of protein sequences
and show substantial improvements in computing time over the existing methods. Application of the SSSK to the multi-class protein
prediction problems (fold recognition and remote homology detection) yields significantly better performance than existing state-of-the-

art algorithms.

1. INTRODUCTION

Protein homology detection and structure annotation are
fundamental problems in computational biology. With
the advent of large-scale sequencing techniques, experi-
mental elucidation of an unknown protein sequence func-
tion and structure becomes an expensive and tedious task.
Currently, there are more than 61 million DNA sequences
in GenBank !, and approximately 349, 480 annotated and
5.3 million unannotated sequences in UNIPROT 2. The
rapid growth of sequence databases makes development
of computational aids for functional and structural anno-
tation a critical and timely task.

The goals of remote homology detection and remote
fold detection are to infer functional and structural in-
formation based only on the primary sequence of an un-
known protein. In this study, we address these two prob-
lems in the context of Structural Classification of Pro-
teins (SCOP) 3.
data set derived from PDB 4, sequences are grouped into

In SCOP, a manually curated protein

a tree hierarchy containing classes, folds, superfamilies,
and families, from root to leaf. The difficulty of the re-
mote homology and structural similarity detection tasks
arises from low sequence identities among proteins on
the superfamily and fold levels.

Early approaches to computationally-aided homol-
ogy detection, such as BLAST ® and FASTA 6, rely on
pairwise alignment. Later methods, such as profiles ” and
profile hidden Markov models (profile HMM) 8, collect
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aggregate statistics from a group of sequences known to
belong to the same family or superfamily. Studies have
shown that these generative methods are accurate in de-
tecting close homology (family detection) with moder-
ate sequence identities. However, when sequence identi-
ties are low, which is typical for superfamilies (remote
homology) and folds (structural similarity), generative
method becomes insufficient and therefore discrimina-
tive methods are necessary. For protein remote homology
detection, several types of discriminative kernel methods
were proposed, for example, SVMFisher ? by Jaakkola
et al. and the class of string kernels 1% 1 by Leslie et
al. Both classes of kernels demonstrated improved dis-
criminative power over generative methods. Most of
the studies formulated binary-class problems. In a dif-
12=15 " studies formulated
multi-class learning problems. Ding et al. , in '2, pro-

ferent task, fold recognition

posed to extract features based on amino acid composi-
tions and physico-chemical properties and in '3, Ie et al.
extended the profile kernel ! framework with adaptive
codes for fold recognition. Both fold recognition meth-
ods showed promising results on detecting structural sim-
ilarities based on primary sequences only.

Protein classification problems are typically charac-
terized by few positive training sequences accompanied
by a large number of negative training examples, which
may result in weak classifiers. Enlarging the training
sample size by experimentally labeling the sequences is
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costly, leading to the need to leverage unlabeled data
to refine the decision boundary. The profile !¢ and the
mismatch neighborhood '7 kernels use large unlabeled
datasets and show significant improvements over the se-
quence classifiers trained under the supervised setting.
However, the promising results are offset by a significant
increase in computational complexity, hindering wide ap-
plication of such powerful tools.

In this study, we consider a new family of string-
based kernel methods, the sparse spatial sample kernels
(SSSK), for the multi-class sequence classification tasks.
The proposed kernels are induced by the features that
sample the sequences at different resolutions while taking
mutations, insertions and deletions into account. These
features are low-dimensional and their evaluation incurs
low computational cost. Such characteristics open the
possibility for analyzing very large unlabeled datasets
under the semi-supervised setting with modest compu-
tational resources. The proposed methods perform sig-
nificantly better and run substantially faster than exist-
ing state-of-the-art algorithms, including the profile '6- 11
and neighborhood mismatch '7 kernels, for both remote
homology and fold detection problems on three well-
known benchmark datasets. Moreover, in a multi-class
setting, use of SSSK does not incur the need for for-
mulating a complex optimization problem, as suggested
in 13- 14; we obtain our performance in a straightforward
manner with no parameter adjusting.

2. BACKGROUND

In this section, we briefly review existing state-of-the-art
methods, under supervised and semi-supervised learning
paradigms. We also briefly discuss the multi-class learn-
ing problem.

Supervised Methods: The spectrum-like ker-
nels, the state-of-the-art string kernels in the super-
vised setting, implicitly map a sequence X to a |X|%-
dimensional vector, where X is the alphabet set. The
mismatch(k,m) kernel ' relaxes exact string match-
ing by allowing up to m mismatches, or substitutions, to
accommodate the mutation process. The main drawback
of the mismatch kernel is the exponential size of the in-
duced feature space and the presence of mismatches, both
of which, when combined, incur high computational cost.

Semi-supervised Methods: The performance of the
supervised methods depends greatly on the availability
and quality of the labeled training data. In the presence

of limited number of labeled training sequences, the per-
formance of the classifiers estimated under such setting,

though promising 9 °

, is still sub-optimal. Enlarging
the size of the training set will improve the accuracy of
the classifiers; however, the cost of doing so by exper-
imentally obtaining functional or other group labels for
large numbers of protein sequences may be prohibitive,
but the unlabeled data can still be leveraged to refine and
potentially improve the decision boundary. Recent ad-
vances in computational methods for remote homology
prediction have relied heavily on the use of such data

sources 11,17, 13,

The profile kernel '! uses unlabeled
data directly by constructing a profile and using local in-
formation in the profile to estimate the mutation neigh-
borhood of all k-mers. Construction of profiles for each
sequence may incur high computational cost since highly
diverged regions in profiles may result in a mutational
neighborhood size exponential in the number of k-mers.

Multi-class classification: One way to solve the
multi-class learning problem is to directly formulate a
multi-class optimization problem, as done in ' 19, An
alternative is to combine binary predictors using one-vs-
one or one-vs-rest schemes. For instance, in a one-vs-rest
scheme, |Y'| classifiers are estimated, where Y is the out-
put space, and the predicted class, ¢, corresponds to the
highest scoring classifier output (Equation 1) where f,
denotes the binary classifier for class y. In contrast to
the simple decision rule, Ie et al. in '* proposed to use
the adaptive codes to tackle the multi-class fold recog-
nition problem with decision rule in Equation 2 where
x denotes component-wise multiplication, f(x) a 1-by-
(ny + ng) output vector from the binary classifiers and
Cy a binary code matrix and W the parameters to esti-
mate. Under such framework, one needs to train at least
nyf + ns + nyq independent binary classifiers, where n ¢,
ns, and ny, denote the number of folds, superfamilies
and families, respectively.

§ = argmax f, (z), (D
yey

g = argmax(W x f(x))Cy, )
yey

The practice of using one-vs-rest classifiers (Equa-
tion 1) has received both favorable and unfavorable com-
ments. In 20, showed that formulating complex optimiza-
tion problems, such as error-correcting codes 21 does not
offer any advantage over the simple decision rules, for
example, Equation 1. In contrast, Ie ef al. in '* argued



that the simple decision rule can only cope with prob-
lems with small number of classes. At present, no clear
evidence indicates one decision rule dominates the other.
In this study, we use one-vs-rest scheme (Equation 1) and
only estimate n ¢ or n, binary classifiers for fold and su-
perfamily detection, respectively.

3. THE SPARSE SPATIAL SAMPLE
KERNELS

Sparse spatial sample kernels (SSSK) present a new class
of string kernels that effectively model complex biolog-
ical transformations (such as highly diverse mutation,
insertion and deletion processes) and can be efficiently
computed. The SSSK family of kernels, parametrized by
three positive integers, assumes the following form:

KR (X Y) =

Z C(alvdla"' 7a't71adt717a’t|X)' (3)
C(a1;d17 . ;at—17dt—1)at|y),
(ay,dy,...s dy_1,a¢)

a; €XF,0<d; <d
where C'(a1,d1,- -+ ,at—1,di—1,a;|X) denotes the num-
d2 dtfl

. . d
ber of times we observe substring a; <> ag, <3, -+ , ——

as (a1 separated by d; characters from as, separated by
do characters from as, etc.) in X. This is illustrated in

Figure 1.

x ] [alr[nfofela] T T T T T T[]
a

x [ [ala] [ [ InJof [ fela] [ [ ]

ay <—d1—> ap <—d2* ag

Fig. 1. Contiguous k-mer feature « of a traditional spec-
trum/mismatch kernel (top) contrasted with the sparse spatial samples
of the proposed kernel (bottom).

The new kernel implements the idea of sampling the
sequences at different resolutions and comparing the re-
sulting spectra; similar sequences will have similar spec-
trum at one or more resolutions. This takes into account
possible mutations, as well as insertions/deletions. Each
sample consists of ¢ spatially-constrained probes of size
k, each of which lie no more than d positions away from
its neighboring probes. In the proposed kernels, the pa-
rameter k£ controls the individual probe size, d controls

aWe discuss how to define N (X)) in Section 4.2.
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the locality of the sample, and ¢ controls the cardinal-
ity of the sampling neighborhood. In this work, we use
short samples of size 1 (i.e., kK = 1), and set ¢ to 2 (i.e.
features are pairs of monomers) or 3 (i.e. features are
triples). These sample string kernels, unlike the family

of spectrum kernels 10 !

, not only take into account the
feature counts, but also include spatial configuration in-
formation, i.e. how the features are positioned in the se-
quence. The spatial information can be critical in estab-
lishing similarity of sequences under complex transfor-
mations such as the evolutionary processes in protein se-
quences. The addition of the spatial information experi-
mentally demonstrates very good performance, even with
very short sequence features (i.e. k=1), as we will show
in Section 4; the use of short features also leads to sig-
nificantly lower computational complexity of the kernel
evaluations as shown in Section 5.1.

The use of short features can also lead to signif-
icantly lower computational complexity of the kernel
evaluations. The dimensionality of the features induced
by the proposed kernel is |X|*d*~! for our choice of
k = 1. As a result, for triple-(1,3) (t = 3, &k = 1,
d = 3) and double-(1,5) (t = 2, k = 1, d = 5)
feature sets, the dimensionalities are 72,000 and 2, 000,
respectively, compared to 3,200,000 for the spectrum-
(k), mismatch(k,m) 10, and profile(k,o) ! kernels with
the common choice of £ = 5. The proposed kernels
can be efficiently computed using sorting and counting.
To compute the kernel values, we first extract the fea-
tures from the sequences and sort the extracted features
in linear time with counting sort. Then we count the
number of distinct features and update the kernel ma-
trix. For NV sequences of the longest length n and u dis-
tinct features, computing the kernel matrix takes linear
O(dnN + min(u,dn)N?) time. We provide a compre-
hensive comparison of the computational complexity and
running times in Section 5.

3.1. Spatial sample neighborhood
kernels

The proposed kernel can be extended to accommodate
the semi-supervised learning setting for sequence clas-
sification, for example, as in 7. Denote ®°"%9(X)
as the original representation of the sequence X and
N(X) the neighborhood of X?; then, the smoothed



136

re-representation ®"¢“(X) using the unlabeled data is
defined as Equation 4 with the corresponding kernel,
Km"*hd(XY'), in Equation 5:

new _ 1 E orig /
KXY
R - S o ©

X'eEN(X),Y'eN(Y)
Note that in this setting, unlike in the traditional semi-
supervised learning setting, both training and test se-
quences assume a new representation. Weston et al. in 17
showed that the discriminative power of the neighbor-
hood mismatch kernel improves significantly; however
such neighborhood kernel evaluation requires substan-
tially longer computational time, as indicated by the We-

ston ef al. in 16 17,

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed methods on
multi-class remote fold recognition and multi-class re-
mote homology detection in Sections 4.3 and 4.4, and
multi-class fold as well as superfamily prediction in Sec-
tion 4.5. We use three standard benchmark datasets to
allow comparison with previously published results. The
datasets used in our experiments and supplementary data
are made available at http://segam.rutgers.
edu/projects/bioinfo/spatial-kernels/
csb08.html.

4.1. Datasets

Ding and Dubchak dataset'?: Ding et al. designed a
challenging fold recognition data set , which has been
used as a benchmark in many studies, for example 3.
The data set contains sequences from 27 folds divided
into two independent sets, such that the training and test
sequences share less than 35% sequence identities and
within the training set, no sequences share more than 40%
sequence identities.

Remote fold detection data set '*: Melvin et al.
derived this data set from SCOP 1.65  for the tasks of
multi-class remote fold detection. The data set contains
26 folds, 303 superfamilies and 652 families for training
with 46 superfamilies held out for testing to model remote
fold recognition setting.

bhttp://ranger.uta.edu/Nchqding/bioinfo.html
‘http://www.kyb.tuebingen.mpg.de/bs/people/spider

Remote homology detection data set '*: Ie ef al.
prepared a different data set for remote homology detec-
tion in a similar fashion. The derived data set contains 74
superfamilies and 544 families for training with from 110
families held out for testing.

The three datasets lead to a 27-, a 26- and a 74-way
multi-class classification problems.

4.2. Settings, parameters used and
performance measures

For all kernel methods, we perform kernel normalization
to remove the dependencies between the kernel values
and sequence lengths:

K(X,Y)
VEX, X)K(Y,Y)

K'(X,Y) =

In all experiments, we use an existing implementation
of SVM from a standard machine learning package SPI-
DER® with the linear kernel and default SVM param-
eters. For kernel smoothing (Equation 5) on each se-
quence X, we query the unlabeled database with 2 PSI-
BLAST iterations and recruit the sequences with low e-
values (< 0.05) to form the neighborhood N(X). We
use Swiss-Prot 22 (moderate size) and the non-redundant
(large size) sets as unlabeled databases.

To evaluate our classifiers, we use zero-one and bal-
anced error rates, as well as top-5 error rates, as in 12714,
In addition, we also use standard performance measures
from the information retrieval literature: sensitivity (re-
call) (r), precision (p) and F'1 = 2pr/(p + r) scores.

4.3. Comparison on Ding and Dubchak
benchmark

We compare the performance of our methods under su-
pervised and semi-supervised settings with previously
published methods on Ding and Dubchak benchmark
data set in Table 1. As can be seen from the table, our
spatial kernels achieve higher performance compared to
the state-of-the-art classifiers (we highlight the best per-
formance in each category). Under the supervised set-
ting, the triple spatial features consistently demonstrate
better overall performance. The observed higher preci-
sion of the mismatch and profile kernels is achieved at



the cost of lower recall rates; the F1 score, a function
of both recall and precision measures, suggests that the
triple spatial features achieve better performance. Under
semi-supervised learning, we again observe better overall
performance of spatial kernels. We also note that the spa-
tial kernels strongly outperform the profile kernel evalu-
ated in the same setting with 2 PSI-BLAST iterations as
used by all our methods.

To demonstrate the benefit of leveraging unlabeled
data, in Figure 2 we contrast the confusion matrices under
the supervised (Figure 2(a)) and semi-supervised (Fig-
ure 2(b)) settings using the triple(1,3) feature set. Similar

to Damoulas et al. 23

, we observe that in the supervised
setting, testing examples in classes with fewer training
examples tend to be incorrectly assigned to two overly
represented folds (7 and 16). However, such problem is
alleviated in the semi-supervised setting when we enlarge
the training sets with neighboring sequences which, in
turn, reinforces class assignments of the target proteins.
Under the supervised setting, we observe 3 folds with ac-
curacy higher than 90%, one of which achieves 100% ac-
curacy, while under the semi-supervised setting, we ob-
serve 9 folds with accuracy higher than 90%, 7 of which
achieves 100% accuracy.

4.4. Remote fold and remote
homology detection

We report the performance on remote fold and homology
detection problems on the SCOP 1.65 benchmark data set
in this section.

Table 2 corresponds to the remote fold prediction
problem and we highlight the best performance in each
category. The spatial kernels consistently outperform the
one-vs-rest mismatch and profile kernels, as well as the
best profile NR with adaptive codes, under both super-
vised and semi-supervised settings.

We also note that the performance of profile NR
with adaptive codes was obtained by solving a complex
optimization problem of minimizing the balanced error,
whereas all other methods use the simple one-vs-rest de-
cision rule (Equation 1). The use of the adaptive and
error-correcting codes offers no clear evidence of advan-
tage over the simple decision rule.

Table 3 summarizes results of the remote homology
(superfamily) detection problem. Under the supervised
learning, the spatial kernels consistently outperform the
state-of-the-art mismatch(5,1) kernel. We make the same
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observation under the semi-supervised setting with the
Swiss-Prot data set. With the non-redundantdatabase, the
spatial kernels consistently outperform the profile(5,7.5)
kernel and, in particular, the triple (1,3) kernel shows the
best top-5 error rate of 8.6%. We similarly outperform
the highly optimized one-vs-rest profile NR by all mea-
sures. Further, compared to the profile NR, estimated us-
ing adaptive codes with complex optimization, our triple
kernel with the simple one-vs-rest decision rule achieves
better top-5 error and comparable error rates.

Substantial improvement in performance comes
from the use of unlabeled data. We observe that use of
a large unlabeled data set (non-redundant) results in sig-
nificantly better performance over a Swiss-Prot data set,
which is only moderate in size. The non-redundant data
set provides a richer neighborhood for the data sequences,
improving sensitivity of the methods. We take a further
look at this improvement in Section 5.3.

4.5. Multi-class protein fold and
superfamily recognition

For the remote homology and remote structural similar-
ity detection, the goal is to detect a possibly new subclass
within the class of interest. Another, simpler goal may
be to match an unknown sequence to one of the known
classes. We consider the direct multi-class protein fold
and superfamily prediction on the SCOP 1.65 datasets
and evaluate our classifiers using a 10-fold cross vali-
dation. We show the classification performance on the
multi-class fold recognition and superfamily prediction
tasks in Tables 4 and 5, respectively. The high error rates
of 45% and 37% of the methods under the supervised
setting highlight the difficulty of the problem. Tables 4
and 5, in both supervised and semi-supervised settings,
indicate that the spatial kernels consistently outperform
the mismatch and profile kernels on the multi-class fold
recognition task.

5. DISCUSSION

The low computational complexity and running times are
distinct characteristics of the spatial kernels, which we
discuss in the following section. We also contrast the in-
duced features of our kernel and those of traditional string
kernels. Finally, we illustrate potential benefits of SSSK
in view of the kernel-induced data manifolds on different
string kernels.
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Table 1. Comparison on Ding and Dubchak benchmark data set
Top 5
Method Error Top 5| Balanced Baﬁ)anced Recall Top 3 Precision Top.5. F1 Tops
Error |Error Recall Precision F1
Error
Supervised
SVM(D&D)t - - 56.5 - - - - - - -
Mismatch(5,1) 51.17|22.72|53.22 28.86 46.78 [71.14 |90.52 95.25 61.68|81.45
Double(1,5) 44.13(23.50(46.19 23.92 53.81 [76.18 [61.90 79.85 57.57|77.97
Triple (1,3) 41.51(18.54|44.99 21.09 55.01 {78.91 |80.42 89.19 65.33|83.74
Semi-supervised (Swiss-Prot)
Profile(5,7.5) 36.03|16.19(37.78 18.46 62.22 |81.54 |88.39 94.53 73.03|87.56
Double(1,5) 27.4216.45|21.81 13.26 76.57 |86.74 |77.73 86.07 77.15|86.4
Triple(1,3) 25.33(13.05|22.72 13.27 76.27 (86.74 |84.48 92.05 80.17|89.31
Semi-supervised (Non-redundant data set)
Profile(5,7.5) 31.85(15.14(32.17 16.73 67.83 (83.27 (89.49 94.9 77.16|88.71
Double(1,5) 28.72114.99|24.74 11.6 75.26 (88.4 |76.02 86.86 75.63|87.62
Triple(1,3) 24.28(12.79|22.38 11.79 77.62 |88.21 [84.02 91.45 80.69 (89.8
Profile NR(Perceptron){ |- - 26.5 - - - - - - -
All measures are presented as percentages.
t: quoted from 12
1: quoted from 14
Table 2. Multi-class remote fold prediction
Top 5
Method Error Top5 | Balanced Baﬁ)anced Recall Top 5 Precision Top 5 Fl1 Tops
Error Error Recall Precision F1
Error
Supervised
Mismatch(5,1) 53.75 | 29.15 | 82.75 52.4 17.25 47.6 16.61 70 16.92 | 56.67
Double (1,5) 50.98 | 25.73 | 70.77 37.6 29.23 62.49 33.27 67.04 31.12 | 63.26
Triple (1,3) 48.7 25.08 | 73.04 44.05 26.96 55.95 35.28 70.46 30.57 | 62.37
Semi-supervised (Swiss-Prot)
Profile(5,7.5) 49.35 | 20.36 | 76.67 35.28 23.33 64.72 29.47 71.82 26.05 | 68.09
Double (1,5) 43 19.22 | 60.94 27.76 39.06 72.24 45.8 70.48 42.16 | 71.35
Triple(1,3) 4397 | 15.64 | 62.29 26.77 37.71 73.23 40.74 77.04 39.17 | 75.08
Semi-supervised (Non-redundant data set)
Profile(5,7.5) 45.11 | 15.8 66.88 31.55 28.73 68.45 36.98 84.63 32.34 | 75.68
Double (1,5) 36.65 | 13.36 | 47.87 23.61 49.59 76.39 55.86 78.66 52.54 | 77.51
Triple (1,3) 37.13 | 1091 | 49.34 20.07 47.19 79.93 55.91 82.78 51.18 | 81.33
Profile NR (one-vs-rest) 46.3 14.5 62.8 23.5 - - - - - -
Profile NR (Adaptive codes)f | 37.0 11.4 49.9 15.5 - - - - - -
1: quoted from 4
Table 3. Multi-class remote superfamily prediction
Top 5
Method Error Top 5| Balanced Baﬁ)anced Recall Top 3 Precision T0p.5. F1 Top>
Error | Error Recall Precision F1
Error
Supervised
Mismatch(5,1) 65.34(35.9185.32 63.31 14.68 [36.69 (17.47 46.93 15.9641.18
Double (1,5) 64.71136.91|79.16 49.34 20.84 |50.66 |19.98 52.83 20.4 |51.72
Triple (1,3) 58.85(29.55(80.34 52.05 19.66 (47.95 [18.93 61.14 19.2953.75
Semi-supervised (Swiss-Prot)
Profile(5,7.5) 41.4 |19.58]66.07 39.51 33.93 160.49 |34.63 64.34 34.28|62.36
Double (1,5) 32.04(15.09 [46.99 25.75 53.01 (74.25 |53.37 76.21 53.37|76.21
Triple(1,3) 28.8 |14.34|46.98 27.14 53.07 |72.86 |55.84 76.28 54.39|74.53
Semi-supervised (Non-redundant data set)
Profile(5,7.5) 37.16|14.22|58.96 28.86 41.05 [71.15 |46.95 72.19 43.80(72.19
Double(1,5) 22.4419.85 |39.21 18.69 60.79 (81.31 [56.85 80.58 58.76|80.94
Triple(1,3) 22.9418.6 |39.86 17.29 60.14 | 82.72 |61.62 83.76 60.87|83.24
Profile NR (one-vs-rest) 27.1 |10.5 |44.5 19.7 - - - - - -
Profile NR (Adaptive codes)f|21.7 [10.3 |32.0 15.3 - - - - - -

1: quoted from 4
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(a) Confusion matrix using the triple(1,3) feature set under the supervised setting. (b) Confusion matrix using the triple(1,3) feature set

under the semi-supervised setting using the non-redundant (NR) unlabeled sequence database. In both figures, we remove the main diagonal terms to
emphasize the differences in off-diagonal (error) terms.

Table 4. Multi-class protein fold recognition (10-fold cross-validation)

Top 5
Method Error Top 3 Balanced Ba?anced Recall Top 3 Precision Top.5. F1 Tops
Error Error Recall Precision F1
Error
Supervised
Mismatch(5,1) [23.81 (1.25)|6.86 (1.32)|44.54 (1.94)|16.29 (2.47)(55.46 |83.71 |84.87 97.43 67.0990.05
Double (1,5) [23.52 (1.38)[9.09 (0.63)|38.76 (3.18) | 14.46 (1.95)61.25 |85.54 [69.03 89.01 64.91|87.24
Triple (1,3) 19.79 (1.04)|5.78 (0.61) | 37.85 (2.94)|12.41 (2.75)| 62.15 |87.59 |86.67 97.46 72.39(92.26
Semi-supervised (Swiss-Prot)
Profile(5,7.5) [12.20 (1.49)(4.09 (1.01)]|22.05 (3.92)(9.38 (2.48) [77.95 {90.62 [95.12 98.42 85.68(94.36
Double (1,5) [9.64 (1.61) [4.14(0.86)|15.36 (2.72)|6.53 (1.59) [84.64 |93.48 [89.22 95.10 86.87|94.28
Triple(1,3) 8.60 (1.39) |3.57 (0.56)|15.21 (3.09) |8.48 (1.69) |84.79 (91.52 (94.52 97.71 89.39(94.51
Semi-supervised (Non-redundant data set)
Profile (5,7.5) {9.74 (1.32) [2.72(0.65)|16.72 (2.11)|6.52 (1.98) [82.36 {93.49 [95.79 98.74 88.57(96.04
Double(1,7) [6.61 (0.86) [2.87 (0.80)|10.20 (1.66)[4.07 (1.46) [89.43 {95.93 [92.81 96.69 91.0996.31
Triple (1,3) 5.78 (0.98) |1.76 (0.45)|10.06 (1.84)|3.35(1.19) |89.61 (96.65 |96.29 98.73 92.83197.68
*standard deviation for cross-validation error rates is indicated in parenthesis
Table 5. Multi-class superfamily prediction (10-fold cross-validation)
Top 5
Method Error Top 3 Balanced Ba?anced Recall Top 3 Precision Top.5. F1 Tops
Error Error Recall Precision F1
Error
Supervised
Mismatch(5,1) |21.86 (1.28)[9.42 (1.49)|37.12 (1.70)| 18.77 (2.61) | 62.88 |81.23 [80.24 91.62 70.51|86.11
Double (1,5) {23.04 (1.67)|9.98 (1.81)|35.16 (2.09)|15.07 (2.55) | 64.84 |84.93 [70.43 88.13 67.5286.5
Triple (1,3) 18.09 (1.48)|7.17 (1.12)|31.31 (2.45) [14.01 (2.15)| 68.69 |85.99 |82.21 93.37 74.8489.53
Semi-supervised (Swiss-Prot)
Profile(5,7.5) |8.69 (1.86) [4.12(1.02)|14.67 (3.68)|8.33 (2.51) [85.33 |91.69 [93.15 96.07 89.07(93.82
Double (1,5) [6.03 (1.13) [3.05 (0.60)|8.02 (2.18) |4.04 (1.39) [91.98 |95.95 [93.59 96.48 92.77(96.22
Triple (1,3) 5.43(0.69) |2.25(0.39)|8.31(1.39) |4.03 (1.09) |91.69 [95.97 |95.76 97.97 93.68(96.96
Semi-supervised (Non-redundant dataset)
Profile(5,7.5) |6.20 (1.36) [2.59 (0.51)|10.91 (2.60)|5.27 (1.52) {89.09 {94.73 {94.79 97.63 91.85(96.16
Double (1,5) |3.9(0.95) |1.85(0.37)|5.14 (1.45) |2.38 (0.82) |94.86 [97.62 |95.42 97.93 95.14197.77
Triple(1,3) 3.39 (0.83) |1.39 (0.59)|5.24 (1.55) |2.10 (1.19) |94.76 (97.89 (97.00 98.89 95.86 (98.39

*standard deviation for cross-validation error rates is indicated in parenthesis
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5.1. Complexity and running time
analysis

Table 6 shows the computational complexity of various
string kernels. Both mismatch and profile kernels have
higher complexity compared to the spatial kernels due
to the exponential neighborhood size and high dimen-
sionality of the feature space. The cardinalities of the
mismatch and profile neighborhoods are O (k™ |X|™) and
O(M,), with ™ |2|™ < M, < |Z|*, where k > 5, and
|| = 20, compared to a much smaller feature space size
of d'~1|X|* for the sample kernels, where ¢ is 2 or 3, and
dis 3 or 5, respectively.

Table 6. Complexity of computations

Method Time complexity

Supervised methods

Triple kernel ~ O(d?nN + d2|Z|3N?)
Double kernel ~ O(dnN + d|X|2N?)
Mismatch O(k™tT|™mnN + |Z|*N?)

Semi-supervised methods

Triple kernel O(d?HnN + d2|Z|3N?)
Double kernel ~ O(dHnN + d|Z|2N?)
Mismatch O(k™*1|Z|™ HnN + |2F|N?)
Profile kernel ~ O(kMynN + |Z|*N?)

Notations used in the table:

N -number of sequences, n-sequence length,

H is the sequence neighborhood size, || is the alphabet size
k, m are the mismatch kernel parameters

(k = 5,6 and m = 1, 2 in most cases)

M is the profile neighborhood size,

ETZ|™ < M, < |2F|

d is the distance parameter for the spatial kernel.

This complexity difference leads to order-of-
magnitude improvements in the running times, as shown
in Table 7, of the spatial kernels over the standard string
kernels (mismatch and profile).

The running time measurements are obtained on a
single 2.8GHz CPU machine. The code used for eval-
uation of the competing methods has been highly opti-
mized to perform on par or better than the published spec-
trum/mismatch kernel code. We also used an existing im-
plementation of the profile kernel provided by Kuang et
al.in 16,

The neighborhood mismatch kernel becomes sub-
stantially more expensive to compute for large datasets,
as indicated in 1% !7. Table 8 summarizes the size of the
unlabeled datasets and the mean, median, and maximum
number of neighbors used for kernel smoothing.

Table 7. Comparison of the
running time (kernel matrix
computations)

Method Running time (s)

Supervised (fold data set)

Mismatch 396
Double 22
Triple 52

Semi-supervised (fold data set)

Profile 1633
Double 165
Triple 701
Mismatch -

Table 8. Data set characteristics

Data set # Seq. # Neighbors (mean/median/max)

Superfamily ~ Fold

Swiss-Prot 101602
NR 534936

42/30/244
79/58/356

30/17/174
52/28/360

5.2. Comparison of the features
induced by different string kernels

Compared to mismatch/profile kernels, the feature sets
induced by our kernels cover segments of variable length
(e.g., 2 — 6 residues in the case of the double-(1, 5) ker-
nel), whereas the mismatch and profile kernels cover seg-
ments of the fixed length (e.g., 5 or 6 residues long) as
illustrated in Figure 1. Sampling at different resolutions
also allows to capture similarity in the presence of more
complex substitution, insertion, and deletion processes,
whereas sampling at a fixed resolution, the approach used
in mismatch and spectrum kernels, limits the sensitiv-
ity in the case of multiple insertions/deletions or sub-
stitutions. Increasing the parameter m (number of mis-
matches allowed) to accommodate the multiple substitu-
tions, in the case of mismatch/spectrum kernels, leads to
an exponential growth in the neighborhood size, and re-
sults in high computational complexity.

To further illustrate the differences and the trade-off
between different features, we consider an example of
modeling a slightly diverged region using the mismatch
and spatial kernel similarity measures. We first compare
the spectrum-induced features with our proposed spatial
features, extracted from a string S = "THKYNQLIM’, in
Figure 3(a). The symbol ’x’ in the mismatch-(k, m) fea-



S = HKYNQLIM

spectrum-5 mismatch(5,1) double-(1,5)
HKYNQ XKYNQ | XYNQL | |[HK|H_Y |H__NH__ QH
KYNQL HxYNQ | KxNQL | |KY|K_N|K__QK__ L|K
YNOQLI HKXNQ | KYxQL YNIY Q|Y_ L|jY_ T|Y
NQLIM HKYxQ |KYNxL | [NQ|N_L |N__IIN__ M

HKYNx | YKNQx QL|QO_ T |Q__ M

XNQLT | xQLIM LI|L_M

YxQLTI | NxLIM IM

YNxXLI | NOxIM
YNOxT | NQLxM
YNQLx | NQLIX

(@)
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S = HKYNQLIM S’= HKINQIIM
XKYNQ| xYNQL XKINQ| xINQI
HxYNQ | KxNQL HxINQ| KxNQI
HKxNQ| KYxQL HKxNQ| KIxQT
. HKYxQ| KYNXL HKIxQ|KINXI
mismatch| yryyy | yrnox HKINQ| KINQx
.1 xNoLI|xQLIM XNQII|xQIIM
YxQLI | NXLIM IxQIT|NxIIM
YNxLI | NOxIM INxII|NQXIM
YNOxT | NQLxM INQxT | NQIxM
YNQLx| NQLIx INQIx|NQIIx
HK |[H Y|H_N|H__Q|H__ L|[HK|H I|H_N|H__Q[H T
KY |[K_N|K_Q|K__L|K__ I||KI|KNK_ QK T|K_ T
N |y Q|ly_Lly_ T|Y_  M/|IN|I QI I|I__ TI|I___ M
double- | no | 1|N__I|N_ M NQ [N.I|N_ I|N M
(19 lou o zlo m or o 1|0 M
LI |L_M IT|I_M
hald pald

®)

Fig. 3. (a) Comparison of features extracted by the spectrum-like and spatial kernels. In the mismatch features, each symbol "x’ represent an arbi-
trary symbol in the alphabet set. As a result, each feature basis corresponds to |3| features. (b) Differences in handling substitutions by the mismatch
and spatial features. We represent all common features between the original and the mutated strings, S and S’, with bold fonts.

tures corresponds to an arbitrary symbol in . As a result,
each mismatch feature basis in the figure corresponds to
|| features. With such representation, the number of
neighboring k-mers induced by an observation grows ex-
ponentially with the choice of m, the number of mis-
matches allowed. In contrast, the spatial features scans
the strings at different resolutions and the number of fea-
tures induced is small. Furthermore, as shown in Fig-
ure 3(b), for two slightly diverged strings, S and S’, very
few common features (bold font) are observed in the case
of the mismatch kernel, leading to low similarity scores.
On the other hand, the larger subset of common features
indicates that the spatial kernels are still able to capture
the similarity between the two sequences. For the mis-
match features to handle such a slightly diverged region,
one needs to increase the number of allowed mismatches
m, at the expense of an increase in computational effort.

5.3. Kernel-induced data manifolds

To shed more light on the causes of improved perfor-
mance of SSSK, we compare the data manifolds in-
duced by different kernels in both supervised and semi-
supervised settings?. We show the kernel-induced man-
ifolds for the double-stranded beta-helix (b.82) fold in
Figures 4(a) and 4(b) for the supervised setting and in
Figures 4(c) and 4(d) for the semi-supervised setting.
The fold contains proteins carrying out a diverse range of
functions and participating in many biological processes.
Each node in the graph represents a sequence, with darker
nodes corresponding to the training sequences and lighter
nodes corresponding to the test sequences (superfamily
b.82.3). Each cluster (box) represents a superfamily in

the fold. We normalize the kernel as discussed in Sec-
tion 4.2 to remove the dependencies between kernel val-
ues and sequence length. We draw an edge between two
sequences, X and Y, if K(X,Y) > 4, (0 is chosen so
that the total number of nodes outside the fold having
similarity values above the threshold with nodes inside
the fold is small).

In the supervised setting (Figures 4(a) and 4(b)), we
observe a slightly more connected graph induced by the
triple kernel compared to the mismatch kernel. Similarly,
in the semi-supervised setting (Figures 4(c) and 4(d))
with the non-redundant set, compared to the profile ker-
nel the triple kernel induces a data manifold with stronger
connectivity, suggesting better sensitivity of the spatial
kernels (on this fold, the triple and profile kernels achieve
91.67% and 83.33% recall rate, both with 100% preci-
sion). This, in turn, leads to lower error rates of classifiers
with the SSSK.

6. CONCLUSIONS

We present a new family of sparse spatial sample ker-
nels that demonstrate state-of-the-art performance for
multi-class protein fold and remote homology predic-
tion problems. The key component of the method is the
spatially-constrained sample kernel for efficient sequence
comparison which, combined with kernel smoothing us-
ing unlabeled data, leads to efficient and accurate semi-
supervised protein remote homology detection and re-
mote fold recognition. We show that our methods
can work with large, unlabeled databases of protein se-
quences, taking full advantage of all available data and

dWe use the fdp package in Graphviz http: //graphviz . org for visualization.



142

(c) Triple(1,3) (semi-supervised)

(b) Mismatch(1,5) (supervised)

ve22

(d) Profile(5,7.5) (semi-supervised)

Fig. 4. Kernel-induced data manifold for fold 5.82, with 7 superfamilies, under the supervised and semi-supervised settings. The darker and lighter
nodes are the training and testing sequences, respectively. The numbers in the nodes index the sequences in the database.

substantially improving the classification accuracy. This
opens the possibility for the proposed methodology to be
readily applied to other challenging problems in biologi-
cal sequence analysis.
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