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High-throughput structure determination based on solution Nuclear Magnetic Resonance (NMR) spectroscopy plays
an important role in structural genomics. One of the main bottlenecks in NMR structure determination is the inter-
pretation of NMR data to obtain a sufficient number of accurate distance restraints by assigning nuclear Overhauser
effect (NOE) spectral peaks to pairs of protons. The difficulty in automated NOE assignment mainly lies in the am-
biguities arising both from the resonance degeneracy of chemical shifts and from the uncertainty due to experimental
errors in NOE peak positions. In this paper we present a novel NOE assignment algorithm, called HAusdorff-based
NOE Assignment (hana), that starts with a high-resolution protein backbone computed using only two residual
dipolar couplings (RDCs) per residue37, 39, employs a Hausdorff-based pattern matching technique to deduce similar-
ity between experimental and back-computed NOE spectra for each rotamer from a statistically diverse library, and
drives the selection of optimal position-specific rotamers for filtering ambiguous NOE assignments. Our algorithm
runs in time O(tn3 + tn log t), where t is the maximum number of rotamers per residue and n is the size of the protein.

Application of our algorithm on biological NMR data for three proteins, namely, human ubiquitin, the zinc finger
domain of the human DNA Y-polymerase Eta (pol η) and the human Set2-Rpb1 interacting domain (hSRI) demon-
strates that our algorithm overcomes spectral noise to achieve more than 90% assignment accuracy. Additionally, the
final structures calculated using our automated NOE assignments have backbone RMSD < 1.7 Å and all-heavy-atom
RMSD < 2.5 Å from reference structures that were determined either by X-ray crystallography or traditional NMR
approaches. These results show that our NOE assignment algorithm can be successfully applied to protein NMR
spectra to obtain high-quality structures.

1. INTRODUCTION

High-throughput structure determination based on

X-ray crystallography and Nuclear Magnetic Reso-

nance (NMRa) spectroscopy are key steps towards

the era of structural genomics. Unfortunately, struc-

ture determination by either approach is generally

time-consuming. In X-ray crystallography, growing

a good quality crystal is in general a difficult task,

while in NMR structure determination, the bottle-

neck lies in the processing and analysis of NMR data,

and in interpreting a sufficient number of accurate

distance restraints from experimental Nuclear Over-

hauser Enhancement Spectroscopy (NOESY) spec-

tra, which exploit the dipolar interaction of nuclear

spins, called nuclear Overhauser effect (NOE), for

through-space correlation of protons. The intensity

(or volume) of an NOE peak in a NOESY spectrum is

converted into a distance restraint by calibrating the
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intensity (or volume) vs. distance curve or classifying

all NOESY peaks into different bins.12, 16, 38 Tra-

ditional NMR structure determination approaches

use NOE distance restraints as the main source of

information to compute the structure of a protein,

a problem known to be strongly NP-hard,30 essen-

tially due to the local nature of the restraints. Rig-

orous approaches to solve this problem using NOE

data, such as the distance geometry method,10 re-

quire exponential time in the worst-case (see discus-

sion in Ref. 39). While substantial progress has been

made to design practical algorithms for structure

determination,3, 12–14, 24, 28, 31 most algorithms still

rely on heuristic techniques such as molecular dy-

namics (MD) and simulated annealing (SA), which

use NOE data plus other NMR data to compute

a protein structure. The NOE distances used by

these distance-based structure determination proto-

cols must be obtained by assigning NOE data, i.e.,

for every NOE, we must determine the associated

pair of interacting protons in the primary sequence.

This is called the NOE assignment problem.

While much progress has been made in auto-

mated NOE assignment,12, 14, 16, 21, 24, 27, 28 most

NOE assignment algorithms have a SA/MD-based or

a distance geometry-based structure determination

protocol sitting in a tight inner loop, which is invoked

many times to filter ambiguous assignments. Since

distance geometry methods have exponential worst-

case time complexity, and SA/MD-based structure

determination protocols lack combinatorial precision

and have no guarantees on solution quality or run-

ning time, these NOE assignment algorithms suffer

from the same drawbacks, in addition to the inher-

ent difficulties in the interpretation of NOESY spec-

tra. Therefore, it is natural to ask if there exists

a provably polynomial-time algorithm for the NOE

assignment problem, which can guarantee solution

quality—this will pave new ways for better under-

standing and interpretation of experimental data,

and for developing robust protocols with both the-

oretical guarantees and good practical performance.

In Ref. 39, a new linear time algorithm was de-

veloped, based on Refs. 37 and 36, to determine

protein backbone structure accurately using a min-

imum amount of residual dipolar coupling (RDC)

data. RDCs provide global orientational restraints

on internuclear vectors, for example, backbone NH

and CH bond vectors with respect to a global frame

of reference. The algorithm in Refs. 37, 36, and 39

computes the backbone conformation by solving, in

closed form, systems of low-degree polynomial equa-

tions formulated using the RDC restraints. The

algorithm is combinatorially-precise and employs a

systematic search strategy to compute the back-

bone structure in polynomial time. The accurately-

computed backbone conformations enable us to pro-

pose a new strategy for NOE assignment. In Ref. 38,

for example, an NOE assignment algorithm was pro-

posed to filter ambiguous NOE assignments based

on an ensemble of distance intervals computed using

intra-residue vectors mined from a rotamer database,

and inter-residue vectors from the backbone struc-

ture determined from Refs. 37, 36, and 39. The

algorithm in Ref. 38 uses a triangle-like inequality

between the intra-residue and inter-residue vectors

to prune incorrect assignment for side-chain NOEs.

However, the algorithm in Ref. 38 has the follow-

ing deficiencies: (a) it does not exploit the diver-

sity of the rotamers in the library, (b) uncertainty in

NOE peak position, and other inherent difficulties in

interpreting NOESY spectra suggest a probabilistic

model with provable properties which Ref. 38 does

not capture, and (c) it does not exploit rotamer pat-

tern structure in NOESY spectra.

To address the shortcomings in Ref. 38 and

other previous work, our algorithm, HAusdorff-based

NOE Assignment (hana), uses a novel pattern-

directed framework for NOE assignment, that com-

bines a combinatorially-precise, algebraic geometry-

based approach for computing high-resolution pro-

tein backbones from residual dipolar coupling data,

with a framework that uses a statistically diverse

library of rotamers and the Hausdorff distance to

measure similarity between experimental and back-

computed NOE spectra, and drives the selection

of optimal position-specific rotamers to prune am-

biguous NOE assignments. Our Hausdorff-based

framework views the NOE assignment problem as

a pattern-recognition problem, where the objective

is to establish a match by choosing the correct ro-

tamers between the experimental NOESY spectrum

and the back-computed NOE pattern. By explic-

itly modeling the uncertainty in NOE peak positions
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and the probability of mismatches between NOE pat-

terns, we provide a rigorous means of analyzing and

evaluating the algorithmic benefits and the quality

of assignments.

We first compute a high-resolution protein back-

bone from RDC data using the algorithms in

Refs. 37, 36, and 39. Using this backbone struc-

ture, an assigned resonance list, and a library of

rotamers25, the NOE pattern for each rotamer can

be back-computed (Figure 1B). By measuring the

match of the back-computed NOE patterns with ex-

perimental NOESY spectrum, we choose an ensem-

ble of top rotamers according to the match scores

for each residue. Then, we construct an initial low-

resolution protein structure by combining the high-

resolution backbone and the chosen approximate ro-

tamers together. The low-resolution structure is then

used to filter ambiguous NOE assignments. Finally,

our NOE assignments are fed to a structure calcula-

tion program, e.g., xplor/cns 3 which outputs the

final ensemble of structures. The experimental re-

sults, based on our NMR data for three proteins,

viz., human ubiquitin, the zinc finger domain of the

human DNA Y-polymerase Eta (pol η) and the hu-

man Set2-Rpb1 interacting domain (hSRI) show that

hana achieves an assignment accuracy of more than

90%. In summary, our main contributions in this

paper are:

(1) Development of a novel framework that combines

a combinatorially-precise, algebraic geometry-

based linear time algorithm for high-resolution

backbone structure determination with the

Hausdorff distance measure, and exploits the sta-

tistical diversity of a rotamer library to infer ac-

curate NOE assignments for both backbone and

side-chain NOEs from 2D and 3D NOESY spec-

tra.

(2) Introduction of Hausdorff distance-based pattern

matching technique to measure the similarity

between experimental NOE spectra and back-

computed NOE spectra, and modeling uncer-

tainties arising both from false random matches

and from experimental deviations in NOE peak

positions.

(3) A fully-automated O(tn3 + tn log t) time NOE

assignment algorithm, where t is the maximum

number of rotamers in a residue and n is the

number of residues in the protein.

(4) Derivation of provable properties, viz. soundness

in rotamer selection.

(5) Application of our algorithm on three real bio-

logical NMR data sets to demonstrate high as-

signment accuracy (> 90%), and fast running

times (< 2 minutes).

2. PRELIMINARIES AND PROBLEM

DEFINITION

In NMR spectra, each proton or atom is identified by

its chemical shift (or resonance), which is obtained

by mapping atom names in the known primary se-

quence of the protein to the corresponding frequen-

cies from triple-resonance or other NMR spectra; this

process is referred to as resonance assignment. Sub-

stantial progress has been made in designing effi-

cient algorithms1, 20, 22, 26 for automatic resonance

assignment. Given the chemical shift of each proton,

the NOE assignment problem in two dimensionsb is

to assign each NOESY peak to each pair of protons

that are correlated through a dipole-dipole NOE in-

teraction.

Formally, let {a1, . . . , aq} denote the set of pro-

ton names (e.g., Hα of Arg56), where q = Θ(n)

is the total number of protons and n is the num-

ber of residues in a protein. Let ω(ai) denote the

chemical shift for proton ai determined from reso-

nance assignment, 1 ≤ i ≤ q. An NOE peak (a.k.a.

cross-peak) with respective frequencies x and y for

a pair of protons, is denoted by the point (x, y) on

the plane of NOESY spectrum. Given a set of known

chemical shifts L = {ω(ai), . . . , ω(aq)} for all protons

{a1, . . . , aq} and a list of NOESY peaks (i.e., a set of

points on the plane of NOESY spectrum), the NOE

assignment problem is to map each NOE cross-peak

(x, y) to an interacting proton pair (ai, aj) such that

‖ω(ai)−x‖ ≤ δx and ‖ω(aj)−y‖ ≤ δy, where δx and

δy encode the uncertainty in the peak position due

to experimental errors.

bThe problem for 3D and 4D cases can be defined in an analogous manner. Here the 2D case is explained for clarity. Our NOE
assignment algorithm has been tested on both 2D and 3D spectra, and extends easily to handle 4D NOESY spectra.
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In a hypothetical ideal case without any experi-

mental error and noise, this would be an easy prob-

lem. However, for most proteins, two pairs of inter-

acting protons can produce overlapping NOE peaks

in a NOESY spectrum. The chemical shift differ-

ences of different protons are often too small to re-

solve experimentally, a phenomenon often referred

to as chemical shift degeneracy. Also, due to exper-

imental noise, artifact NOE peaks might occur from

either manual or automated peak picking. These fac-

tors lead to more than one possible NOE assignment

for a 2D NOESY spectrum which are called ambigu-

ous NOE assignments.12, 21 Hence, one or more ad-

ditional dimensions are generally introduced to re-

lieve the congestion of NOE peaks. In a 3D NMR

experiment, for example, each NOE peak is labeled

with chemical shifts of a triple of atoms, viz., dipole-

dipole interacting protons plus the heavy atom nu-

cleus such as 15N or 13C bonded to the second proton.

Even for 3D spectra, the interpretation and assign-

ment of NOESY cross-peaks still remains hard, and

poses a difficult computational challenge to obtain

a unique NOE assignment. Manual assignment of

NOESY peaks take months of time on average, re-

quires significant expertise, and is prone to human er-

rors. In structure determination, even a few incorrect

NOE assignments can result in incorrect structures.5

Hence, it is critical to develop highly efficient and

fully automated NOE assignment algorithms to aid

high-throughput NMR structure determination.

3. PREVIOUS WORK

Protein structure determination using NOE distance

restraints is strongly NP-hard,30 essentially due to

sparsity of the experimental data and local nature

of the constraints. While rigorous approaches to

solve this problem using distance intervals from NOE

data, such as the distance geometry method,10 re-

quire exponential time in the worst-case; heuristic

approaches such as SA/MD, while providing prac-

tical ways of solving this problem, lack combinato-

rial precision, and have no guarantees on running

time or solution quality. Previous approaches for

NOE assignment12, 14, 16, 21, 24, 27, 28 follow an iter-

ative strategy, in which an initial set of relatively un-

ambiguous NOEs is used to generate an ensemble of

structures, which are then used to filter ambiguous

and inconsistent NOE assignments. This iterative

assignment process is repeated until no further im-

provements in NOE assignments or structures can be

obtained. What makes such approaches loose guar-

antees on the running time and assignment accuracy

is their tight coupling with a heuristic structure de-

termination protocol, which sits in a tight inner-loop

of the assignment algorithm.

noah,27, 12 for example, uses the structure de-

termination package dyana,14 and follows the pre-

viously mentioned iterative strategy starting with

an initial set of NOE assignments with supposedly

one or two possible assignments. aria 28, 24 and

candid14 improved on noah by incorporating bet-

ter modeling of ambiguous distance constraints. In

auto-structure16 more experimental data such as

dihedral angle restraints from talos 8 and slow H-D

exchange data are used to improve assignment ac-

curacy. In pasd 21 several strategies were proposed

to reduce the chance of invoking the structure cal-

culation into a biased path due to the incorrect ini-

tial global fold. Since all these iterative NOE as-

signment programs invoke SA/MD-based structure

determination protocols such as xplor/cns3, they

may converge to a local, but not a global minimum

to obtain a best-fit of the data; therefore, the NOE

assignments might not be correct.

An alternative approach for automated NOE as-

signment proposed by Wang and Donald in Ref. 38,

based on Refs. 37, 36, and 39, uses a rotamer ensem-

ble and residual dipolar couplings, and is the first

polynomial-time algorithm for automated NOE as-

signment. However, Ref. 38 does not exploit the pat-

tern structure of NOESY spectrum to model the un-

certainty in peak positions probabilistically using a

library of rotamers; therefore, assignment accuracy is

reduced while processing NOESY spectra with many

noisy peaks.

Our algorithm hana retains the paradigm of

Ref. 38, and develops a novel framework using the

algebraic geometry-based linear time algorithm de-

veloped in Ref. 39 to compute high-resolution pro-

tein backbones from residual dipolar couplings, and

then uses this backbone and a library of rotamers

to do NOE assignments. Viewing the NOE as-

signment problem as a pattern-recognition problem,

our algorithm uses an extended Hausdorff distance-
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Experimental
NOESY spectrum

Hausdorff match score

B.

Backbone

Fig. 1. Schematic illustration of the NOE assignment approach.

based probabilistic framework to model the uncer-

tainties in NOE peak positions and the probability

of mismatches between NOE patterns. In contrast

to previous heuristic algorithms12, 14, 16, 21, 24, 27, 28

for NOE assignment, hana has the advantages of

being combinatorially precise with a running time of

O(tn3 + tn log t), where t is the maximum number

of rotamers per residue and n is the size of the pro-

tein, and runs extremely fast in practice to compute

high quality NOE assignments (> 90% assignment

accuracy).

4. NOE ASSIGNMENT BASED ON

ROTAMER PATTERNS

4.1. Overview of our approach

Our goal is to assign pairs of proton namesc to cross-

peaks in NOESY data. Figure 1 illustrates the basic

idea of our algorithm. The NOE assignment process

can be divided into three phases, viz. initial NOE as-

signment (phase 1), rotamer selection (phase 2), and

filtration of ambiguous NOE assignments (phase 3).

The initial NOE assignment (phase 1) is done by con-

sidering all pairs of ambiguous NOEs assigned to a

NOESY cross peak if the resonances of correspond-

ing atoms fall within a tolerance window around

the NOE peak. In the rotamer selection phase, we

first compute the backbone structure from RDCs

(see Section 4.2), and then place all the rotamers

at each residue into backbone and compute all ex-

pected NOEs within the upper-bound limit of NOE

distance (Figure 1A). Based on the set of all expected

NOEs and the resonance assignment list, we back-

compute the expected NOE peak pattern for each ro-

tamer (Figure 1B). By matching the back-computed

NOE pattern with the experimental NOESY spec-

trum using an extended model of the Hausdorff

distance,17, 19 we measure how well a rotamer fits

the real side-chain conformation when interpreted in

terms of the NOESY data. We then select the top k

rotamers with highest fitness scores at each residue,

and obtain a “low-resolution” structure,d by combin-

ing the high-resolution backbone structure and the

approximate ensemble of side-chain conformations at

each residue. The low-resolution structure is then

used (in phase 3) to filter ambiguous NOE assign-

ments. The details of filtering ambiguous NOE as-

signments using the low-resolution structure are pro-

vided in Supplementary Material (SM) Section 4

available online in Ref. 40.

4.2. Protein backbone structure

determination from residual dipolar

couplings

Residual dipolar coupling33, 34 data provide global

orientational restraints on the internuclear bond vec-

tors, such as, backbone NH and CH bond vectors

with respect to a global coordinate frame. In solution

NMR, RDCs can be recorded with high precision,

and assigned much faster than NOEs. In Refs. 39

and 37, the authors proposed the first polynomial-

cWe will use terms proton name and proton interchangeably in this paper.
dThe “low resolution” structure generally has approximately 2.0−3.0 Å (all heavy atom) RMSD from the reference structures
solved by X-ray or traditional NMR approaches.



July 8, 2008 10:9 WSPC/Trim Size: 11in x 8.5in for Proceedings 82Donald

174

time de novo algorithm, which we henceforth refer to

as rdc-exact, to compute high-resolution protein

backbone structures from RDC data. rdc-exact

takes as input (a) two RDCs per residue (e.g., as-

signed NH RDCs in two media or NH and CH RDCs

in a single medium), (b) delimited α-helices and β-

sheets with known hydrogen bond information be-

tween paired strands, and a few unambiguous NOEs

(used to pack the helices and strands). Note that,

these sparse set of NOEs used by rdc-exact can

usually be assigned using chemical shift information

alone37, 39 without requiring any sophisticated NOE

assignment algorithm. Our algorithm hana uses the

high-resolution backbones computed by rdc-exact.

Loops with missing RDCs are computed using an

enhanced version of robotics-based cyclic coordinate

descent (CCD) algorithm.4, 32 The details of rdc-

exact and modeling of loops (in case of missing

RDCs) are provided in SM40 Section 1.

4.3. NOE pattern matching based on

the Hausdorff distance measure

Given two finite sets of points B = {b1, . . . , bm}
and Y = {y1, . . . , yn} in Euclidean space, the

Hausdorff distance between B and Y is de-

fined as H(B, Y ) = max{h(B, Y ), h(Y, B)}, where

h(B, Y ) = maxb∈B miny∈Y ‖b−y‖, and ‖b−y‖ mea-

sures the normed distance (e.g., L2-norm) between

points b and y. Intuitively, the Hausdorff distance

H(B, Y ) finds the point in one set that is farthest

from any point in the other set, and thus mea-

sures the degree of mismatch between the two point

sets B and Y . The Hausdorff distance has been

widely used in the image processing and computer

vision problems, such as visual correspondence,17

pattern recognition,19 and shape matching,18 etc.

Unlike many other pattern-recognition algorithms,

Hausdorff-based algorithms are combinatorially pre-

cise, and provide a robust method for measur-

ing the similarity between two point sets or image

patterns18, 19 in the presence of noise and positional

uncertainties.

In the NOE assignment problem, let B de-

note a back-computed NOE pattern, i.e., the set

of back-computed NOE peaks, and let Y denote

the set of experimental NOESY peaks. Gener-

ally, the size of a back-computed NOE pattern is

much smaller than the total number of experimen-

tal NOESY peaks. Therefore, we only consider the

directed Hausdorff distance from B to Y , namely,

h(B, Y ) = maxb∈B miny∈Y ‖b− y‖. We apply an ex-

tended model of Hausdorff distance18, 19, 17 to mea-

sure the match between the back-computed NOE

pattern and experimental NOESY spectrum. Below,

we assume 3D NOESY spectra without loss of gen-

erality.

Given the back-computed NOE pattern B with

m peaks, and the set of NOESY peaks Y with w

peaks, the τ -th Hausdorff distance from B to Y is

defined as

hτ (B, Y ) = τth
b∈B

min
y∈Y

‖b− y‖,

where τth is the τ -th largest of m values. We call f =

τ/m the similarity score between the back-computed

NOE pattern B and the experimental peak set Y , af-

ter fixing the Hausdorff distance hτ (B, Y ) = δ, which

is the error tolerance in the NOESY spectra. The

similarity score for a rotamer given δ can be com-

puted using a scheme similar to Ref. 17:

s =
|B ∩ Yδ|

|B| , (1)

where Yδ denotes the union of all balls obtained by

replacing each point in Y with a ball of radius δ,

B∩Yδ denotes the intersection of sets B and Yδ , and

| · | denotes the size of a set.

We incorporate two types of uncertainty in the

calculation of the similarity score in Equation (1) for

the match between the back-computed NOE pattern

and experimental NOESY spectrum: (a) possibility

of a false random match17 in the NOESY spectra;

(b) uncertainty of NOE peak positions due to exper-

imental noise.

(a) Possibility of a false random match.17 A

false random match between the back-computed

NOE pattern and the experimental NOESY spec-

trum is defined as a match when hτ (B, Y ) ≤ δ oc-

curs at random. We calculate the probability of a

false random match and use it as a weighting factor

for the similarity score in Equation (1). Let p be the

probability for a back-computed NOE peak to ran-

domly match to an experimental peak in Yδ . Let θ

be the probability of a false random match, which

can be estimated using the following asymptotic ap-

proximation from Ref. 17:

θ ≈ 1

2

(

Φ(
(1 − p)m

ρ
) − Φ(

(s − p)m

ρ
)
)

,
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where ρ =
√

2mp(1− p), and Φ(·) is the Gauss error

function.

(b) Uncertainty from the NOE peak posi-

tions. Let bi = (ω(a1), ω(a2), ω(a3)) denote the

back-computed NOE peak for an NOE (a1, a2, a3)

in a 3D NOESY spectrum. The likelihood for

a back-computed peak bi = (ω(a1), ω(a2), ω(a3))

in the NOE pattern B to match an experimental

NOESY peak within the distance δ in Yδ can be

defined as

Ni(bi) =

3
∏

j=1

N
(

|ω(aj) − pj |, σj

)

,

where (p1, p2, p3) is the experimental NOESY peak

matched to (ω(a1), ω(a2), ω(a3)) according to the

Hausdorff distance measure, and N (|x−µ|, σ) is the

probability of observing the difference |x − µ| in a

normal distribution with mean µ and standard devi-

ation σ. Here we assume that the noise distribution

of peak positions at each dimension is independent of

each other. We note that the normal distribution and

other similar distribution families have been widely

and efficiently used to approximate the noise in the

NMR data, e.g., see Refs. 29 and 22.

Then the expected number of peaks in B ∩ Yδ

can be bounded by |B ∩ Yδ | =
∑m

i=1
Ni(bi). Thus,

we have the following equation for the similarity

score:

s =
1

m

m
∑

i=1

Ni(bi). (2)

After considering both possibility from a false

random match and uncertainty from the NOE peak

positions, we obtain the following fitness score for a

rotamer

s′ = (1 − θ)s =
1 − θ

m

m
∑

i=1

Ni(bi). (3)

For each rotamer, the computation of its similar-

ity score s′ can be computed in O(mw) time, where

m is the number of back-computed NOE peaks, and

w is the total number of cross peaks in the ex-

perimental NOESY spectrum. The detailed pseu-

docodes for computing the similarity score and for

hana are provided in SM Sections 3-4 available in

Ref. 40.

5. ANALYSIS

5.1. Analysis of rotamer selection based

on NOE patterns

Given a back-computed NOE peak bi =

(ωi1, ωi2, ωi3) in the NOE pattern of a rotamer, sup-

pose that it finds a matched experimental peak in Y δ

with probability g(ωi1, ωi2, ωi3, Y
δ). Finding such a

matched experimental NOESY peak for bi can be

regarded as a Poisson trial with success probability

g(ωi1, ωi2, ωi3, Y
δ). We present the following result

about the expected number of matched peaks for the

back-computed NOE pattern of a rotamer.

Lemma 5.1. Let Xi be an indicator random vari-

able which is equal to 1 if the back-computed NOE

peak bi of a rotamer r finds a matched experimental

peak; 0 otherwise. Let X =
∑m

i=1
Xi, where m is the

total number of back-computed NOE cross-peaks for

the rotamer r. Then the expected number of back-

computed NOE peaks that find matched experimental

peaks is given by

E(X) =

m
∑

i=1

E(Xi) =

m
∑

i=1

g(ωi1, ωi2, ωi3, Y
δ).

Let rt denote the rotamer closest to the real

side-chain conformation for a residue, and let rf de-

note another rotamer in the library for the same

residue. We call rt the true rotamer, and rf the

false rotamer. Let Xi and Yi be indicator random

variables as defined in Lemma 5.1 for each back-

computed NOE peak in the true rotamer rt and the

false configuration rf respectively. Let mt and mf

denote the numbers of back-computed NOE peaks

for the true rotamer rt and the false rotamer rf . Let

X =
∑mt

i=1
Xi and Y =

∑mf

i=1
Yi denote the number

of back-computed NOE peaks that find matched ex-

periment peaks for rotamers rt and rf respectively.

Let µt = E(X) and µf = E(Y ) denote the expecta-

tions of X and Y . For simplicity of our theoretical

analysis, we use Equation (1) to measure the fitness

between the back-computed NOE pattern of a ro-

tamer and the experimental spectrum in our theo-

retical model.

To measure the accuracy of the rotamer chosen

based on our scoring function, we calculate the prob-

ability that the algorithm chooses the wrong rotamer

rf rather than the true rotamer rt, and show how it

is bounded by certain threshold. The following the-



July 8, 2008 10:9 WSPC/Trim Size: 11in x 8.5in for Proceedings 82Donald

176

orem formally states this result. The proof of this

theorem can be found in SM40 Section 5.

Theorem 5.1. Suppose that mfµt − mtµf ≥
max(mf ,

√
mfmt) · 4

√
µt ln mt. Then with probabil-

ity at least 1 − m−1

t , our algorithm chooses the true

rotamer rt rather than the false rotamer rf .

Theorem 5.1 indicates that if the difference be-

tween the expected numbers of matched NOE peaks

for two roatmers is larger than certain threshold, we

are able to distinguish these two roamters based on

the Hausdorff distance measure with certain proba-

bility bound. By Theorem 5.1, we have the following

result on the bound of the probability of picking the

correct rotamer from the library based on the Haus-

dorff distance measure, if we select top k rotamers

with highest similarity scores.

Theorem 5.2. Let t denote the maximum number of

rotamers for a residue. Suppose that mfµt−mtµf ≥
4 max(mf ,

√
mfmt) ·

√
µt ln mt and mt > t − k hold

for the true rotamer rt and every false rotamer rf .

Then with probability at least 1− t−k
mt

, our algorithm

chooses the correct rotamer.

Proof. Since the total number of rotamers in a

residue is t, by Theorem 5.1 the probability that the

similarity score of the true rotamer is larger than that

of at least t − k rotamers is at least (1− 1

mt
)t−k. Ac-

cording to the fact (1 + x)a ≥ 1 + ax for x > −1

and a ≥ 1, we have (1 − 1

mt
)t−k ≥ 1 − t−k

mt
. Thus,

the probability for the algorithm to choose the right

rotamer is at least 1 − t−k
mt

. �

Theorem 5.2 shows that if the discrepancy of the

expected number of matched NOE peaks between

the true rotamer and every other rotamer, and the

number of back-computed NOE peaks are sufficiently

large, the ensemble of top k rotamers with highest

similarity scores will contain the true rotamer.

5.2. Time complexity analysis

The following theorem states that hana runs in poly-

nomial time.

Theorem 5.3. hana runs in O(tn3 + tn log t) time,

where t is the maximum number of rotamers at a

residue and n is the total number of residues in the

protein sequence.

The detailed derivation of the time complexity

can be found in SM40 Section 6. We note that in

practice, our NOE assignment algorithm hana runs

in 1-2 minutes on a 3 GHz single-processor Linux

workstation.

6. RESULTS

hana takes as input (a) protein sequence, (b) 3D

NOESY-HSQC or 2D NOESY peak list, (c) as-

signed resonance list, (d) backbone computed by

using the rdc-exact algorithm37, 39 (Section 4.2),

and (e) Xtalview rotamer library.25 hana was tested

on experimental NMR data for human ubiquitin,35, 9

zinc finger domain of the human DNA Y-polymerase

Eta (pol η)2 and human Set2-Rpb1 interacting do-

main (hSRI).23 The high-resolution structures of

these three proteins have been solved either by X-

ray crystallography35 or by traditional NMR ap-

proaches using both distance restraints from NOE

data and orientational restraints from scalar and

dipolar couplings.9, 2, 23 We used these solved struc-

tures, which are also in the Protein Data Bank

(PDB), as the reference structures to compare and

check the quality of NMR structures determined

from our NOE assignment tables. The NMR data for

hSRI and pol η were recorded using Varian 600 and

800 MHz spectrometers at Duke University. Ubiqui-

tin NMR data was obtained from Ref. 15 and from

the PDB (ID: 1D3Z).

6.1. Robustness of Hausdorff distance

and NOE assignment accuracy

To check the robustness of the Hausdorff dis-

tance measure for NOE pattern matching, we

first computed a low-resolution structure of ubiq-

uitin by combining the backbone determined from

rdc-exact,37, 36, 39 and rotamers selected based

on the Hausdorff distance measure using patterns

for backbone-sidechain NOEs. This low-resolution

NMR structure is not the final structure, but is

used to filter ambiguous NOE assignments (in-

cluding backbone-backbone, backbone-sidechain and

sidechain-sidechain NOE assignments). Our result

shows that the low-resolution structure of ubiquitin

obtained from our algorithm has a backbone RMSD

1.58 Å and an all-heavy-atom RMSD 2.85 Å from the

corresponding X-ray structure (PDB ID: 1UBQ). Us-

ing this low-resolution structure, hana was able to
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Table 1. NOE assignment results for ubiquitin, pol η and hSRI.

Proteins # of # of # of # of Assignment
residues NOESY peaks§ compatible assignments† incompatible assignments† accuracy

ubiquitin* 76 1580 901 93 90.6%

pol η** 39 1386 590 65 90.1%

hSRI∗∗∗ 112 5916 1429 119 92.3%

* The ubiquitin backbone calculated from the RDC data using rdc-exact has RMSD 1.58 Å from the X-ray reference
structure (PDB ID: 1UBQ) (residues 2-71).
∗∗ The pol η backbone calculated from the RDC data using rdc-exact has RMSD 1.28 Å for the secondary structure
regions and RMSD 2.71 Å for both secondary structure and loop regions (residues 8-36) from the NMR reference
structure (PDB ID: 2I5O).
∗∗∗ The hSRI backbone calculated from the RDC data using rdc-exact has RMSD 1.62 Å from the NMR reference
structure (PDB ID: 2A7O) for the secondary structure regions (residues 15-34, 51-72, 82-97).
§ The NOESY peak list contains diagonal and symmetric cross peaks.
† Redundant symmetric NOE restraints have been removed from the final NOE assignment table.

resolve the NOE assignment ambiguity caused from

the chemical shift degeneracy, and prune a sufficient

number of ambiguous NOE assignments, as we will

discuss next.

To measure the assignment accuracy of hana,

we define a compatible NOE assignment as one in

which the distance between the assigned pair of NOE

protons in the reference structure is within NOE dis-

tance bound of 6.0 Å. Otherwise, we call it an incom-

patible NOE assignment. The number of compatible

NOE assignments can be larger than the number of

total NOESY peaks, since it is possible that mul-

tiple compatible NOEs can be assigned to a single

NOESY cross peak. Next, the assignment accuracy

is defined as the fraction of compatible assignments

in the final assignment table output by hana.

As summarized in Table 1, our NOE assignment

algorithm achieved above 90% assignment accuracy

for all three proteins. We note that the fraction of

assigned peaks of hSRI is less than the other two pro-

teins. This is because we only used backbones in the

secondary structure regions (residues 15-34, 51-72,

82-97) for pruning ambiguous NOE assignments for

hSRI. Presently we are developing new algorithms

to solve long loops. We believe that with more ac-

curate loop backbone structures, we will be able to

improve the accuracy of our NOE assignment algo-

rithm, while assigning more NOE peaks. We note

that the ubiquitin 13C NOESY data from Ref. 15 are

quite degenerate, thus we carefully picked a subset of

NOESY peaks for assigning NOEs. Presently we are

re-collecting a completely new set of ubiquitin NMR

data including four-dimensional NOESY spectra for

further testing of our algorithm.

Since the long-range NOEs, in which the spin-

interacting protons are at least four residues away,

play an important role in the structure determina-

tion, we also checked the fraction of incompatible

long-range NOE assignments from our algorithm.

We found that less than 3% of total assignments

were from incompatible long-range NOEs in our com-

puted assignments. As we will discuss next, such a

small fraction of incompatible long-range NOE as-

signments can be easily resolved after one iteration

of structure calculation.

6.2. Evaluation of structures from our

NOE assignment tables

To test the quality of our NOE assignment results

for structure determination, we fed the NOE assign-

ment tables into the standard structure calculation

program xplor.3 The input files for the structure

calculation include protein sequence, NOE assign-

ment table, and dihedral restraints. Compared with

Refs. 2 and 23, in which RDCs are incorporated along

with NOE restraints into the final structure calcula-

tion, here we only used RDCs to compute the initial

backbone fold. From an algorithmic point of view,

our structure determination using only NOEs can be

considered as a good “control” test of the quality

of our NOE assignment. The structure calculation

was performed in two rounds. After the first round

of structure calculation, the NOE violations larger

than 0.5 Å among top 10 structures with lowest en-

ergies were removed from the NOE assignment table.

Then the refined NOE table was fed into the xplor

program for the second-round structure calculation.
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E. F. G.

A. B. C. D.
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Fig. 2. The NMR structures of ubiquitin, pol η and hSRI computed from our automatically-assigned NOEs. Panels
A, B, C and D in first row show the structures of ubiquitin, Panels E, F and G in the middle row show the structures
of pol η, and Panels H, I and J in the bottom row show the structures of hSRI. Panels A, E and H show the ensemble
of 10 best NMR structures with minimum energies. The backbones are shown in red while the side-chains are shown
in blue. Panels B, F and I show the ribbon view of the ensemble of structures. Panel D shows the backbone overlay of
the mean structures (in blue color) of ubiquitin with its X-ray reference structures35 (in magenta color). The RMSD
between the mean structure and the x-ray structure of ubiquitin is 1.23 Å for backbone atoms and 2.01 Å for all heavy
atoms. Panels C, G and J show the backbone overlay of the mean structures (in blue color) with corresponding NMR
reference structures (in green color) that have been deposited into the Protein Data Bank (PDB ID of ubiquitin9:
1D3Z; PDB ID of pol η

2: 2I5O; PDB ID of hSRI23: 2A7O). The backbone RMSDs between the mean structures and
the reference structures are 1.20 Å for ubiquitin, 1.38 Å for pol η, and 1.71 Å for hSRI. The all-heavy-atom RMSDs
between the mean structures and the reference structures are 1.92 Å for ubiquitin, 2.39 Å for pol η, and 2.43 Å for
hSRI.

Figure 2 illustrates final NMR structures of ubiq-

uitin, pol η and hSRI calculated from xplor using

our NOE restraint tables. For all three proteins, only

a small number 18−60 (which is 1 − 4% of the to-

tal number of NOE assignments) of NOE violations

larger than 0.5 Å occurred after the first round of

structure calculation. All final structures converged

to an ensemble of low-energy structures with small

RMSDs from the reference structure solved either

by the X-ray crystallography or by traditional NMR

approaches. For all three test cases, the mean struc-

ture of final top 10 structures with lowest energies

had a backbone RMSD less than 1.7 Å and an all-

heavy-atom RMSD less than 2.5 Å from the refer-

ence structure. This implies that our NOE assign-

ment algorithm has provided a sufficient number of

accurate distance restraints for protein structure de-

termination. In particular, we examined the struc-

ture quality in secondary structure and loop regions.

We found that the secondary structure regions have

better RMSD from the reference structure than the

loop regions. After the final structure calculated by

xplor using our NOE assignment table output by

hana, the RMSD of secondary structure regions in

pol η is 0.81 Å for backbone atoms and 1.74 Å for all

heavy atoms, and the RMSD of secondary structure

regions in ubiquitin is 0.93 Å for backbone atoms and

1.59 Å for all heavy atoms. These results show that
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the initial fold of secondary structure regions solved

using the rdc-exact algorithm is accurate enough

to combine with chosen rotamers from NOE patterns

to resolve the NOE assignment ambiguities. In ad-

dition, we also found that the short loop regions of

final structures can achieve about the same RMSD

from the reference structure as the secondary struc-

ture regions. This indicates that the CCD algorithm

with filtering of loops based on RDC fit can provide

accurate short loops for our NOE assignment algo-

rithm.

Our structure calculation protocol only requires

one iteration, while other traditional NMR ap-

proaches in general take 7−10 iterations between

NOE assignment and structure calculation. In ad-

dition, our NOE assignment algorithm only takes

1−2 minutes, versus hours to weeks for other meth-

ods. This efficiency is consistent with the proofs of

correctness and time complexity of our algorithm.

Therefore, the structure calculation framework based

on our NOE assignment algorithm is more efficient

than all other previous approaches in both theory

and practice.

7. CONCLUSION

We have described a novel automated NOE assign-

ment algorithm, hana, that is combinatorially pre-

cise, and runs in polynomial time. To our knowl-

edge, hana is the first NOE assignment algorithm

that simultaneously exploits the accurate algebraic

geometry-based high-resolution backbone computa-

tion from RDC data,37, 39 the statistical diversity

of rotamers from a rotamer library,25 and the ro-

bust Hausdorff measure17, 19 for comparing the back-

computed NOE patterns with the experimental NOE

spectra and choosing accurate rotamers, to finally

compute the NOE assignments with high accuracy.

Owing to its simplicity, hana runs extremely fast

in practice. Furthermore, when applied to real bi-

ological NMR spectra for three proteins, our algo-

rithm yields high assignment accuracy (> 90%) in

each case suggesting its ability to play a role in high-

throughput structure determination.

Although our current implementation of hana

uses 2D and 3D NOESY spectra, hana is general

and can be easily extended to use higher-dimensional

(e.g., 4D) NOESY data.6, 7 In addition, it would be

interesting to extend the current version of hana for

NOE assignment with missing resonances. In gen-

eral, acquisition of complete resonance assignment

can require selective labeling of proteins, and is time-

consuming. On the other hand, selection of correct

rotamers can help the resonance assignment for side-

chains. In principle, hana can be extended to ac-

commodate the NOE assignment with a partially as-

signed resonance list, as long as the back-computed

NOE patterns with missing peaks are sufficient to

identify accurate rotamers. Finally, it would be in-

teresting to explore the use of side-chain rotamer

packing algorithms11 to choose rotamers that fit the

data.
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