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With some simplifications, computational protein folding can be understood as an optimization problem of a potential energy function 
on a variable space consisting of all conformation for a given protein molecule. It is well known that realistic energy potentials are very 
"rough" functions, when expressed in the standard variables, and the folding trajectories can be easily trapped in multiple local minima. 
We have integrated our variation of Parallel Tempering optimization into the protein folding program Rosetta in order to improve its 
capability to overcome energy barriers and estimate how such improvement will influence the quality of the folded protein domains. 
Here we report that (1) Parallel Tempering Rosetta (PTR) is significantly better in the exploration of protein structures than previous 
implementations of the program; (2) systematic improvements are observed across a large benchmark set in the parameters that are 
normally followed to estimate robustness of the folding; (3) these improvements are most dramatic in the subset of the shortest domains, 
where high-quality structures have been obtained for >75% of all tested sequences. Further analysis of the results will improve our 
understanding of protein conformational space and lead to new improvements in the protein folding methodology, while the current 
PTR implementation should be very efficient for short (up to ~80 a.a.) protein domains and therefore may find practical application in 
system biology studies. 

                                                           
* Corresponding author. 

1.   INTRODUCTION 

The Rosetta platform1-4 is one of the most successful 
approaches in predicting overall backbone fold for the 
protein domains that lack any detectable structural 
analogs in Protein Data Bank (PDB). It has been ranked  
number one at the last three CASP competitions 
(Critical Assessment of Structure Prediction) among ab 

initio methods5.  Unlike threading methods that rely on a 
known structure template, ab initio programs attempt  
to predict structure by generating polymer chain 
configurations from the whole conformational space and 
use scoring functions to estimate how good these 
conformations are.  

The Rosetta approach combines many innovative 
ideas to overcome the enormous complexity of the 
protein chain conformational space. Two of the most 
important features are: (a) fragment libraries and (b) 
knowledge-based energy potentials derived from the 
statistical analysis of known conformations. The 
fragment libraries contain custom-made lists of 
conformers for 3-mer and 9-mer segments centered on 

each residue of the target chain. This arrangement 
replaces more traditional polymer chain representations 
(e.g. by dihedral angles or Cartesian coordinates of the 
atoms) with a set of discrete variables – numbers of the 
conformers from the fragment library – with each of 
them determining the  structure of the whole short 
segment of the chain. The segment libraries reduce the 
dimensionality of the conformational space by many 
orders of magnitude, however, for a chain of 200 
residues it is still ~200 dimensions to explore. The 
conformations are evaluated based on their backbone 
atoms, as all side groups are replaced with "elastic 
spheres" and not modeled explicitly.   

Rosetta operates by starting 1,000 (in latest 
implementations sometimes 10,000 or even more) 
independent folding trajectories from random extended 
conformations and evolving them with a Monte-Carlo 
procedure, while gradually reducing the temperature. 
For each trajectory, the structure with the lowest 
observed energy is retained as the result of the folding, 
and the corresponding 1,000 (or more) results are 
further analyzed by various methods to determine the 
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native fold. We will not be discussing the computational 
problem of finding the native fold, as our study is 
concerned with the folding trajectories and the quality of 
the ensemble of the resulting backbone conformations.  
We will demonstrate that introducing parallel tempering 
dramatically improves sampling properties of the 
method and leads to better final structures, but the same 
results suggest that there are other problems in the 
procedure preventing more complete success. 

2.   METHOD 

The Parallel Tempering algorithm6-8 (also known as the 
multiple Markov chains or replica-exchange method) 
allows multiple Markov chains to evolve at several 
temperature levels, forming a ladder, while replica 
exchanges are attempted between Markov chains at 
neighboring temperature levels. We have introduced a 
few modifications to the PT algorithm without changing 
its fundamentals9.  

A composite system is constructed with one 
molecule per temperature level and the Rosetta-style 
transitions take place in each Markov chain. However, 
instead of the Simulated Annealing15 scheme used  
in Rosetta, we use an adaptable Metropolis14 scheme  
that maintains a desired acceptance rate. The replica 
exchange transition takes place according to the 
Metropolis-Hastings criterion. The desired acceptance 
rate is decreased gradually to accelerate convergence of 
the composite system10. Moreover, in protein modeling, 
each replica configuration consists of a lot of 
information and thus the exchange of configurations is 
very costly. Alternatively, we exchange the temperatures 
of two neighbor levels instead to achieve a significant 
computational performance improvement11. The topic of 
the conformational sampling in protein folding is 
explored in many excellent stidues16-25, our investigation 
was limited to specific issues of the Rosetta folding 
platform. 

We have followed Rosetta methodology and 
generated an ensemble of 1000 structures for each  
of 50 domains that were included in this study and  
each folding experiment. Several types of folding 
experiments were conducted: the usual Rosetta folding 
(further referred to as a Rosetta run) with 32,000 Monte-
Carlo steps, PTR folding (in the figures referred to as an 
MPI run as the MPI library was used for multiprocessor 
implementation) with the same 32,000 steps during the 
main simulation stage, as well as the PTR runs with 

320,000 steps (LMPI - Long MPI), and the PTR runs 
with 1.5·106 steps (referred to as a VLMPI or Very Long 
MPI). Rosetta was outperformed in MPI runs without 
additional CPU costs, because the final structure was 
collected from each thread in the PTR simulations. Due 
to certain CPU time restrictions only the LMPI protocol 
was done for all 50 tested domains, and these are the 
best results that we currently have. Table 1 and Fig. 1 
are based on the LMPI protocol. 

All modifications made to the original Rosetta 
package were limited to the sampling procedure. Rosetta 
records all parameters of the conformation with the 
lowest energy and (if the native structure is provided) 
the Minimal Root Mean Square Deviation (MRMSD) 
distance to the native structure over all structures 
observed during the simulation. This distance is often 
smaller than the RMSD distance between the final 
lowest energy structure and native model, but it is a 
good measure of how close to the native structure we 
were able to "pass" during the simulation.  

3.   RESULTS 

3.1.   Capability of traversing a "rough" 
energy landscape 

 

 

Fig. 1. Comparison of MRMSD to the fraction of native contacts in 
the final structure (Y-axis) for two ensembles of Rosetta and Parallel 
Tempering Rosetta simulations. All PTR trajectories pass within 4 Å 
RMSD of the native structure. Each point combines information from 
two different conformations, so there is no direct correlation between 
X and Y values. 
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All achieved improvements in the folding performance 
can be traced to the novel feature of Parallel Tempering 
Rosetta: the capability to traverse the rough energy 
landscape and get out from very deep local minima of 
the potential. In Fig. 1 two structure ensembles (each 
~1000 structures) present results obtained for a Rosetta 
run (grey dots, wide area) and an LMPI run (darker dots, 
spread on much smaller area). The Y-axis represents the 
measure of the closest observed approximation to the 
native structure for a given trajectory  Minimal Root 
Mean Square Deviation (MRMSD) in Angstroms (Å).  
The X-axis displays the Fraction of Native residue 
Contacts (Cb-Cb under 8 Å) in the final structure for the 
corresponding trajectory. We know both of those 
quantities because we deal with a benchmark set, where 
the native structures are known. 

There is a remarkable compression along the 
vertical axis. Only ~10% of all original trajectories have 
approached the native structure to the distance of 4 Å 
RMSD, but all 1000 trajectories in the PTR runs have 
passed below this limit. Actually, almost all of them 
have passed below 3 Å, with several trajectories 
reaching toward the 2 Å limit ("crystallographic" 
vicinity of native structure). It is important to note than 
any improvements in MRMSD is exponentially hard, as  

Fig. 2. Energy distribution of the final structures for 3 PTR runs: 
32,000 step (MPI), 320,000 steps (LMPI) and 1.5*106 steps (VLMPI). 
The effect of observing so many new conformations due to longer 
simulations has never been seen before for the Rosetta program. 

 
the conformational volume shrinks very fast when one 
considers smaller and smaller RMSD "volumes". For 
example, in the Cartesian coordinates representation the 
conformational volume of the structures within a 2 Å 
RMSD vicinity of the native one is at least 8 times 

smaller than those in a 4 Å RMSD vicinity.  Table 1 
confirms that the results were typical for almost all 
analyzed domains, as in almost all cases we observed 
dramatic improvements in MRMSD.  

Fig. 2 gives the most direct evidence that Parallel 
Tempering Rosetta reaches into new areas of the 
conformational space that could not be explored with 
standard simulated annealing Monte Carlo. The plot 
presents three energy distributions of the 1,000 final 
structures obtained in MPI, LMPI and VLMPI runs for 
the 1lev domain. The VLMPI run produces a much 
sharper distribution (twice as narrow), and it has little 
overlap with the MPI run. Here the lower energy is our 
"marker" that we indeed observe a novel conformation 
(Rosetta registers the lowest energy conformation seen).  

As the distributions of the lowest energy visited by 
a particular trajectory show, it is clear that almost a half 
of the VLMPI runs have found conformations that were 
almost never visited by any of the MPI runs.   

In the original Rosetta run, 32,000 steps used in the 
standard protocol were selected as the limit, after which 
there were no expectations of any improvements in the 
energy of the model. Here we observe an explosion in 
new conformations after extending the length of the  
run by 10 times (LMPI) and then by 5 times (VLMPI).  
In VLMPI case we even observe a semblance of  
convergence, as the width of the energy distribution 
starts to narrow. Interestingly, dramatic improvements  
in the final energy did not lead to equally dramatic 
improvements in the quality of the folded structures. 

3.2.   Results for the shortest domains  

While improvements in the quality of the predictions 
have been seen across the whole benchmark, the 
simulations have reached a crucial "improvement 
threshold" for the shortest domains. The detailed results 
for the 16 shortest unique domains are presented in 
Table 1. In the original Rosetta run, the folding results 
are also systematically better for the shortest domains. 
With LMPI PTR simulations, several structures have 
been improved further, pushing the rate of good 
predictions to 75% of the total set in this size range (31 
to 78 amino acids).  

For 10 domains, the MRMSD parameter is under 
2.5 Å (lines are shown in bold in Table 1).   This means 
that at least one of the simulated trajectories passed 
within the crystallographic quality vicinity of the native 
structure (the corresponding numbers are underlined in 
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the table).  Excellent final structures were found for all 
of them. Out of the remaining 7, three had MRMSD in 
the range of 3 to 4 Å with relatively good quality final 
structures. 

Only for 4 structures (the whole lines underlined in 
Table 1) did our platform fail to find structures with the 
percent of native contacts much above 40% (MRMSD 
was in the range of 5 to 6 Å). Yet those structures have 
shown some MRMSD improvements with longer 
simulation times.  Between the MPI and LMPI runs the 
MinRMSD parameter has improved by 0.5 - 1 Å for 
four sequences. Actually in this whole set MRMSD did 
not improve for only four structures, which already had 
excellent prediction quality by the original Rosetta 
program. Overall, a higher  rate of success than ours has 
never been reported, to our knowledge, in the literature 
before. Further experiments conducted in our group 
confirm this result on a much larger set of unique 
sequences. Initial results on homologous sequences (the 
idea was to fold with Rosetta homologous domains as 
well) have indicated further improvements in two of the 
four "hard" sequences, pushing the overall success rate 
even higher. 

3.3.   Insights into the protein folding 
process  

The conducted simulations and significantly improved 

ability to search conformational space led to important 
insights into the obstacles that are faced in 
computational protein folding. Fig. 3 plots the 
dependence between the length of the folded domains 
and the maximum fraction of native contacts (100 means 
an ideal native structure) obtained in one of the accepted 
models for this domain. To iron out the structural 
differences, we used "sliding window" averages for both 
coordinates (each point represents averages over 10 
structures close in length). The results for 50 folded 
domains produce 41 "sliding windows", and the 
corresponding 41 points are presented in Fig. 3.   

The dependence is sharp and non-linear — for a 
domain length of around 110 the fraction of native 
contacts is projected to be only around 30%. At this 
level there are probably some correct elements of 
secondary structure, but likely no correct tertiary 
contacts. The good news is that the results are close to 
excellent for the domains <75 residues. Another 
encouraging point is that the problems, which rapidly 
escalate with increasing the length of the polymer 
chains, are probably tractable by applying more 
computer power. Indeed, we have observed the largest 
amplitude of improvements measured by the fraction of 
native contacts in the final structure in the longest 
considered domains (L>90), when we extended 
simulation from MPI to LMPI protocol.  

 

Table 1. The results for 16 domains in range of 31 to 78 amino acids. The domains are shown by 
PDB is and chain identifier. 

 
Structure ID Best final RMSD (A) Best MRMSD observed (A) Best final FNC (%) 

1tgz_B 3.3 1.81 81 

1r0o_B 8.7 6.11 40 

2bf8_B 3.0 1.80 74 

1xt9_B 3.6 2.07 69 

1r0o_A 5.8 5.25 41 

1sv0_A 3.0 2.01 74 

1le8_B 6.1 2.31 87 

1dj7_B 7.9 5.95 40 

1oey_A 5.6 5.29 43 

1cf7_A 2.8 1.87 78 

1bun_B 4.4 3.61 49 

1le8_A 1.4 0.82 96 

4sgb_I 4.5 4.32 41 

1nql_B 4.3 2.60 54 

1j2j_B 1.4 0.61 99 

1mzw_B 2.2 1.06 85 
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Fig. 3. The dependence between the length of the chain and the 
quality of the final structures. Below 75 amino acids the quality is 
very good, but it drops down sharply for longer domains. 

 
The curve in Fig. 3 clearly spells trouble for Rosetta 

simulation of the domains longer than 105 residues. The 
average fraction of native contacts was only around 35% 
for domains in this range, and therefore correct folds can 
be expected only as a result of extraordinary luck.   

4.   DISCUSSION  

In this study MRMSD measuremets have been used to 
access improvements in the capability to explore 
conformational space. Indeed, as the starting 
conformations are random elongated chains, during 
normal Rosetta simulations many of them never will fold 
successfully, and many simulation trajectories will never 
even pass in a close proximity of the native 
conformation. The fraction of the trajectories, which 
have conformation on a certain distance from the native 
conformation, is then an indirect indication of relative 
"freedom to travel" shown by the algorithm. 

There are several important properties of the 
MRMSD that should be mentioned here. First, as we 
already mentioned above, the reduction of the 
"conformational volume" (defined in a reasonable 
metric it is simply a real volume in the space of 
conformational variables) is a power function of the 
reduction of the RMSD value. One can speculate that a 
reduction of the RMSD 2 times translates into 8 (or 16?) 
times reduction in the available conformational volume. 
Second, the MRMSD depends on the size of the protein 

chain in a complex way. For longer chains much smaller 
fraction of all configurations will satisfy the RMSD 
constraint of 2 Å than for shorter ones. Finally, even a 
very good MRMSD value does not guarantee that the 
folding will be successful. The structural trajectory will 
include a conformation with a 2 Å MRMSD value, but 
this conformation may have a high value of potential 
energy (due to some highly unfarobale interactions 
present in the overall correct model). As a result, the 
candidate conformation will not be saved, and in the 
following simulation the final conformation will be very 
different.  

On other hand if a particular folding trajectory does 
not show a good value of the MRMSD than the 
simulation is bound to be unseccesful. Due to the 
definition an MRMSD value of, for example, 8 Å means 
that the best RMSD possible for the final structure will 
be greater or at best equal to 8 Å. This simple point 
explains our efforts to achieve a good MRMSD value 
for all folding trajectories. The trajectories with bad 
MRMSDs are essentially waste of the CPU time.  

To access the quality of the resulting structures we 
have used (in addition to a standard RMSD) another 
measure: Fraction of Native residue Contacts (FNC). 
Two residues were considred to be in contact if the 
distance between their Cb atoms (Ca for the glycin)  
was smaller than 8 Å. The "automatic" contacts (with 
neigbours -2, -1, +1, +2) were excluded. Many possible 
definitions of contacting residues are possible, for 
example, one can define differential contact cutoffs to 
take into account residue size differences.  

By our experience almost all reasonable FNC 
definitions work well, and there is no clear advantages 
to prefer one definition to another. For some types of the 
analysis it seems to be useful to distingvish between 
short-range (local) and long-range contacts. The long-
range contacts provide a more sensitive measure of  
the folding success, but then there is an additional 
uncertenty due to the noise effect, which is stronger on 
smaller sets of contacts. The FNC may provide a 
superior measure for the quality of the folded structures, 
but the questions about relative contributions of local 
and long-range contacts deserve a separate investigation. 
One possible way forward would be to use weights on 
all contacts derived, for example, from the separation 
between contacting residues in the primary sequence.  

In the future we plan to conduct more 
comprehensive analysis of the folding trajectories. 



 208 

Currently for each trajectory only two (most important) 
trajectory points are recorded: the conformation with the 
lowest energy (for this one we have the full set of data) 
and the lowest RMSD distance to the native fold (here 
we are limited to the distance value). Nevertheless 
several interesting and important conclusions both 
practical and theoretical can be drawn from the current 
work. 

First, the Parallel Tempering dramatically improves 
sampling capabilities of the program. All local minima 
can be comprehensively explored. In the longest 
simulations we have observed an emerging Monte-Carlo 
convergence of the trajectories. Here we should note 
that these results obtained on relatively "soft" potentials. 
The real energy potentials (such as electrostatic and Van 
der Waals interactions) usually lead to rougher potential 
energy functions that the knowledge-based derived 
potentials. Yet there is no reason to believe that the 
Parallel Tempering algorithm cannot be adapted to such 
potentials with more temperature energy levels, etc.  

Indeed, the role of the potential energy function 
constitutes a second lesson of our study. In a number of 
situations we observed that the current potential 
functions lead to a large "valley", where the native 
structure is located, but this valley does not have deep 
potential energy minimum located at the native 
conformation. While almost all folding trajectories cross 
the right "valley", only very few of them end up near the 
native conformation. There is no energy gradient leading 
through the remaining 2 Å of RMSD  and this process 
happens almost randomly, increasingly so for longer 
domains. Our approach will be useful for a more 
detailed exploration the conformational space and 
properties of the potentials. For example, we can 
produce structures with very low values of potential 
energy, which are really far from the native model, and 
in such way reveal shortcomings of the existing 
potentials.  

The final (and helpful for applications) conclusion 
from our study is a sharp dependence between the 
probability to have a successful folding result and the 
length of the targeted domain (presented in Fig. 3). For 
short domains (75-90 residues long) the PTR 
implementation provides a significant improvement over 
the standard Rosetta, with high chances to have a 
structure with 80% of native contacts in the final 
ensemble. This improvement is something like making 

of the "last mile" for the folding, because the original 
Rosetta is also pretty good for such short domains.  

On a separate topic we note that the identification 
of the best native candidates (something we do not 
explore in this paper) will be facilitated by the PTR 
property mentioned above. Almost every trajectory will 
be drawn into the "valley" around the native structure, 
so if the near native state tends to be occupied, many 
more near native decoys will be produced with the PTR 
than with usual Monte-Carlo simulated annealing 
Rosetta.References 
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