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We improve on guided genome halving algorithms so that several thousand gene sets, each containing two paralogs
in the descendant T' of the doubling event and their single ortholog from an undoubled reference genome R, can be
analyzed to reconstruct the ancestor A of T at the time of doubling. At the same time, large numbers of defective
gene sets, either missing one paralog from 7 or missing their ortholog in R, may be incorporated into the analysis
in a consistent way. We apply this genomic rearrangement distance-based approach to the recently sequenced poplar
(Populus trichocarpa) and grapevine (Vitis vinifera) genomes, as T and R respectively.

1. INTRODUCTION present-day genome can be largely decomposed into

Following an episode of whole genome doubling, a set of duplicated DNA segments dispersed among

. . the chromosomes, with all the duplicate pairs ex-
intra- and interchromosomal rearrangement pro- o o )
. . - hibiting a similar degree a sequence divergence. A
cesses over evolutionary time redistribute segments

both large and small across the genome. The linear-time “genome halving” algorithm, based only

*Corresponding author.
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on the chromosomal segment order, can find an an-
cestral genome that minimizes the genomic distance

1,2 Unfortunately, the

to the present-day genome
output of the combinatorial optimization method
does not really suffice as a solution to the recon-
struction problem, since there may be a large num-
ber of very different, equally optimal solutions. Our
guided genome halving (GGH) strategy to oversome
this non-uniqueness problem is to guide the recon-
struction of the ancestor by one or more reference,
or outgroup, genomes. This strategy does not imply
sacrificing optimality of the halving solution.

The flowering plants are well-known for nu-
merous historical events of genome doubling?.
The recently sequenced poplar genome (Populus
trichocarpa)*, which shows very clear evidence of re-
cent genome duplication, and the grapevine genome

)5 ¢ whose ancestor diverged before

(Vitis vinifera
the aforementioned duplication, provide a pair of an-
alytical incentives to the GGH strategy. On the one
hand, the poplar data has an order of magnitude
more duplicated elements than has previously been
analyzed, straining computational resources. On the
other hand, the richness of the data allows us to as-
sess the effects on ancestral genome reconstruction
of the apparently massive loss of duplicate genes, as
suggested by the modest proportion of paralogous
pairs we can detect, as the poplar genome discarded
most of its duplications.

This paper thus contributes two advances on the
methodological level: first, the scaling up, by more
than an order of magnitude, of the amount of data
amenable to our analysis, and second, the incorpora-
tion of data from gene duplicate pairs that have lost
one member, making use of chromosomal context in
both the genome that can be traced to the doubling
event and in the outgroup.

1.1. Background

Algorithms for guided genome halving (GGH), or
reconstruction of the pre-doubling genome with the
help of an outgroup, were first used for the ancestral
doubled genome of the maize (Zea mays) genome,
with the rice (Oryza sativa) and sorghum (Sorghum
bicolor) genomes as outgroups’. We generated all
the 1.5 x 106 solutions to the genome halving prob-
lem for the maize genome, and then identified the
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subset, containing only a handful of relatively sim-
ilar solutions that have a minimum rearrangement
distance with the rice (or sorghum) genome.

This approach was feasible with the small num-
ber (34) of doubled blocks identified in maize that
were also present in one copy in each outgroup, but
in a subsequent analysis®, when we attempted to
reconstruct the ancient doubled yeast genome from
which Saccharomyces cerevisiae is descended, guided
simultaneously by both of the undoubled outgroup
genomes Ashbya gossypii and Kluyveromyces waltii,
the number of doubled genes we could use as evi-
dence was an order of magnitude greater than the
number of blocks in the cereals data, and the num-
ber of solutions to the halving problem astronomical.
It was no longer feasible to exhaustively search the
halving solutions to find those that are closest to
the outgroups. Instead we took a random sample of
several thousand solutions in the hope that the best
one might be optimal, or close to it. It was not clear,
however, how large the sample should be, or how to
validate the results, since the local optima found in
that study remained fairly far apart, as measured by
genomic rearrangement distance.

In our current use of GGH, on yeast? and on
the flowering plants studied in the present article,
we seek to replace the brute force approach of gener-
ating all (or a random sample of) halving solutions
first, i.e., before taking into consideration the out-
group genome. Instead, we inject all pertinent infor-
mation derivable from the outgroup into the halving
algorithm, influencing hitherto arbitrary choices in
that algorithm so that the halving solution is guided
towards the outgroup.

1.2. Outline

In the next section, we sketch the necessary back-
ground about genomic rearrangement distance and
the genome halving and GGH algorithms. In Sec-
tion 3, we describe the sources for our data and how
we processed them to obtain the gene sets for the
GGH analysis. In Section 4 we present the GGH al-
gorithm incorporating both full and defective gene
sets. We apply this method to the full gene sets in
combination with one or both of two defective gene
sets from Populus and Vitis in Section 5. We present
the reconstructed undoubled Populus ancestor based
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on over 6000 gene sets and evaluate the evolutionary
signal versus noise (a) in the ancestor- Populus and
ancestor- Vitis comparisons, (b) in the full and defec-
tive gene sets, and (c) in genes with two or three com-
mon adjacencies in the data and those with weaker
positional evidence.

2. FORMAL PRELIMINARIES AND
PREVIOUS WORK

2.1. Genomes, rearrangement
operations and genomic distance

A genome G is represented by a set of strings (called
chromosomes) of form {gi1---gin,, s 9x1 """ Gxny )
where n =ny+---+n, and {|g..|} = {1,--- ,n}; i.e,
each integer ¢ € {1,--- ,n} appears exactly once in
the genome and may have either positive or negative
polarity. The biologically-motivated operations of re-
versal or inversion, reciprocal translocation, chromo-
some fission or fusion, and transposition, can all be
represented by an operation (called double-cut and
join, or DCJ) of cutting the genome twice, each time
between two elements on one of the chromosomes and
rejoining the four resulting cut ends differently'® 1.
Whether the two cuts are on the same chromosome
or not, and how the endpoints are rejoined, deter-
mine which rearrangement operation pertains.

The genome rearrangement distance d(G, H) is
defined to be the minimum number of DCJ opera-
tions required to convert one of the genomes, G, into
the other, H.

Rearrangement algorithms!? 13 10

can be for-
mulated in terms of the bi-coloured “breakpoint
graph”, where each end (either 5" or 3’) of a gene in
genome G is represented by a vertex joined by a black
edge to the vertex for adjoining end of the adjacent
gene, and these same ends, represented by the same
2n vertices in the graph, are joined by gray edges
determined by the adjacencies in genome H. In ad-
dition, each vertex representing a first or last term of
some chromosome in G or in H is connected by a edge
of the appropriate colour to an individual “cap” ver-
tex, and there are specific rules for adding caps to the
genome with fewer chromosomes and for joining the
caps among themselves. if G has y chromosomes and
H has no more than y, there are 2n + 4 vertices in
all. The breakpoint graphs necessarily consist of dis-
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joint alternating colour cycles, and it can be shown
that, in the DCJ formulation, d(G,H) =n + x — ¢,
where ¢ is the number of cycles in the breakpoint
graph. Calculating the distance can be done in time
linear in n.

2.2. Genome halving

Let T be a genome consisting of ¥ chromosomes and

2n genes agl) o , ag), dispersed in any
1)

i

1. (2
-, an ; al R
order on the chromosomes. For each i, we call a

and a§2) “duplicates”, but there is no particular prop-
1)

erty distinguishing all elements of the set of a;,” in

common from all those in the set of al(»Q). A potential
“doubled ancestor” of T is written A’ @ A”, and con-
sists of 2x chromosomes, where some half () of the

chromosomes, symbolized by the A’, contains exactly
(1)
i

ing x chromosomes, symbolized by the A”, are each
)

%

2 . .
one of a; ’ or al( ) for each i = 1,--- ,n. The remain-

identical to one in the first half, in that where a

. 2
appears on a chromosome in the A’ a?

, appears on

(2

%

the corresponding chromosome in A”, and where a
appears in A’ aEl) appears in A”. We define A to
be either of the two halves of A’ @ A”, where the
superscript (1) or (2) is suppressed from each aEl) or
a;”. The genome halving problem for T is to find an
A for which some d(A' @ A", T) is minimal.

In the rearrangement distance algorithm, con-
struction of the breakpoint graph is an easy step.
The genome halving algorithms 2 also make use of
the breakpoint graph, but the problem here is the
more difficult one of building the breakpoint graph
where one of the genomes (the doubled ancestor
A’ @ A”) is unknown. This is done by segregating
the vertices of the graph in a natural way into sub-
sets, such that all the vertices of each cycles must fall
within a single subset, and then constructing these
cycles in an optimal way within each subset so that
the black edges correspond to the structure of the
known genome 7' and the gray edges define the ad-
jacencies of A’ @ A”.

As a first step each gene a in a doubled de-
scendant is replaced by a pair of vertices (at,ap)
or (ap,a;) depending if the DNA is read from left
to right or right to left.
a = (at,ap) is written @ = (a, dy).

The duplicate of gene

Following this, for each pair of neighbouring
genes, say (at, ap) and (b, bt), the two adjacent ver-
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tices ap and by are linked by a black edge, denoted
{an,br} in the notation of Ref. 11. For a vertex
at the end of a chromosome, say b;, it generates a
virtual edge of form {b;,end}. Note that the use
of “end” instead of “cap” reflects a somewhat dif-
ferent bookkeeping for the beginnings and ends of
chromosome in the halving algorithm compared to
the distance algorithm in Section 2.1.

The edges thus constructed are then partitioned
into natural graphs according to the following princi-
ple: If an edge {x, y} belongs to a natural graph, then
so does some edge of form {Z, 2} and some edge of
form {g,w}. If a natural graph has an even number
of edges, it can be shown that in all optimal ances-
tral doubled genomes, the edges coloured gray, say,
representing adjacent vertices in the ancestor, and
incident to one of the vertices in this natural graph,
necessarily have as their other endpoint another ver-
tex within the same natural graph.

For all other natural graphs, there are one or
more ways of grouping them pairwise into supernat-
ural graphs so that an optimal doubled ancestor ex-
ists such that the edges coloured gray incident to any
of the vertices in a supernatural graph have as their
other endpoint another vertex within the same su-
pernatural graph. Thus the supernatural graph may
be completed one at a time.

An important detail in this construction is that
before a gray edge is added during the completion
of a supernatural graph, it must be checked to see
that it would not inadvertently result in a circular
chromosome. Key to the linear worst-case complex-
ity of the halving algorithm is that this check may
be made in constant time.

Along with the multiplicity of solutions caused
by different possible constructions of supernatural
graphs, within such graphs and within the natural
graphs, there may be many ways of drawing the
gray edges. Without repeating here the lengthy de-
tails of the halving algorithm, it suffices to note that
these alternate ways can be generated by choosing
one of the vertices within each supernatural graph
as a starting point.

2.3. Genome halving with outgroups

Let T be a genome consisting of 1 chromosomes and

2n genes agl) e ,aﬁ,”; a?), ‘e 41%2)7 dispersed in any
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order on the chromosomes, where for each i, genes
1) (2)

aE and a;”~ are duplicates. Any genome R is a ref-
erence or outgroup genome for 7T if it contains the n
genes ap, -+ ,Gy.

Let R be a reference genome for T. The GGH
problem with one outgroup is to find a potential an-
cestral genome A such that some d(R,A) + d(A’ &
A" T) is minimal. In practice, A is either one of
the solutions to the unconstrained halving problem,
or it is close to such a solution, so little is lost in
restricting our search to the set of solutions of the
genome halving problem for 7.

One strategy, suitable for small data sets, as in
Ref. 7, is to generate the entire set S of genome halv-
ing solutions of T', then to evaluate each A € S to
find the one that minimizes d(R, A).

When S is so large that it is not feasible to gen-
erate all of S in order to find the best A, we may
resort to sampling S, as in Ref. 8. In defining the
gray edges in the supernatural graphs of Section 2.2,
we generally have several choices at some of the steps.
By randomizing this choice, we are effectively choos-

ing a random sample of X € S.

3. THE POPULUS-VITIS
COMPARISON

Annotations for the Populus and Vitis genomes were
obtained from databases maintained by the U.S. De-
partment of Energy’s Joint Genome Institute* and
the French National Sequencing Center, Genoscope®,
respectively. An all-by-all BLASTP search was run
on a data set including all Populus and Vitis protein
coding genes, and orthoMCL was used to construct
2104 full and 4040 defective gene sets, in the first case
containing two poplar paralogs (genome T') and one
grape ortholog (genome R), and in the second case
missing a copy from either 7" or R. The chromoso-
mal location and orientation of these paralogs and
orthologs was used to construct our database of gene
orders for these genomes, and the input to the GGH
algorithm.

4. THE GGH ALGORITHM

The key idea in our improvement over brute force al-
gorithms is to incorporate information from R during
the halving process. It is important to take advan-
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tage of the common structure in 7' and R as early
as possible, before it can be destroyed in the course
of construction. To this end, we drop the practice
of completing all the gray edges in one supernatural
graph before starting another. We simply look for el-
ements of common structure and add gray edges ac-
cordingly, always making sure that no circular chro-
mosomes are inadvertently created.

Missing homologs The halving algorithm requires
full gene sets at several steps in reconstructing the
ancestor, so we algorithmically restore the missing
homologs to appropriate positions in 7" and R at the
outset.

Paths We define a path to be any connected frag-
ment of a breakpoint graph, namely any connected
fragment of a cycle. We represent each path by an
unordered pair (u,v) = (v,u) consisting of its cur-
rent endpoints, though we keep track of all its ver-
tices and edges. Initially, each black edge in T is a
path, and each black edge in R is a path.

Pathgroups A pathgroup I' is an ordered triple of
paths, two in T and one in R, where one endpoint of
one of the paths in T is the duplicate of one endpoint
of the other path in T" and both are orthologous to
one of the endpoints of the path in R. The other end-
points may be duplicates or orthologs to each other,
or not.

4.1. The algorithms

In adding pairs of gray edges to connect duplicate
pairs of terms in the breakpoint graph of T versus
A’@® A", (which is being constructed), our approach
is basically greedy, but with a sophisticated look-
ahead. We can distinguish five different levels of de-
sirability, or priority, among potential gray edges,
i.e., potential adjacencies in the ancestor.
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Recall that in constructing the ancestor A to be
close to the outgroup R, such that A’ & A” is simul-
taneously close to T, we must create as many cycles
as possible in the breakpoint graphs between A and
R and in the breakpoint graph of A’ @ A” versus T

(1) Adding two gray edges would create two cycles in
the breakpoint graph defined by T and A’ ¢ A",
by closing two paths. When this possibility ex-
ists, it must be realized, since it is an obligatory
choice in any genome halving algorithm. It may
or may not also create cycles in the breakpoint
graph comparison of X with the outgroup, but
this does not affect its priority.

(2) Adding two gray edges would create two cycles,
one for T" and one for the outgroup.

(3) Adding two gray edges would create a cycle in
the T versus A’ @ A” comparison, but none for
the outgroup. It would, however, create a higher
priority pathgroup.

(4) Adding two gray edges would create a cycle in
the T versus A’ @ A” comparison, but none for
the outgroup, nor would it create any higher pri-
ority pathgroup.

(5) Each remaining path terminates in duplicate
terms, which cannot be connected to form a cy-
cle, since in A’ ® A” these must be on different
(and identical) chromosomes. In supernatural
graphs containing such paths, there is always an-
other path and adding two gray edges between
the endpoints of the two paths can create a cycle.

In not completing each supernatural graph before
moving on to another, we lose the advantage in Ref.
2 of a constant time check against creating circular
chromosomes. The worst case becomes a linear time
check. This is a small liability, because the worst case
scenario is seldom realized, the check almost always
requiring only one or two steps.
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Algorithm GGH:
Guided Genome Halving with Full and Defective Gene Sets

Input. Two genomes: duplication descendant T”, outgroup genome R’, where each gene is has three
homologs (full set) or two homologs (defective set), in the patterns TTR, TT or TR.
Output. Augmented genomes T, and R, where all gene sets are full, and
Genome A, a halving solution of 7', minimizing d(A’ ® A”,T) + d(A4, R).
insertMH
Initialize paths (black edges) in T" and R.
Construct supernatural graphs.
Construct two pathgroups for each gene g in R, one based on gy, the other on gj,.
If number of chromosomes in T is odd,
add pathgroup with two paths of form (end, end).
While there remains at least one pathgroup
For each pathgroup ((z,y), (z, 2), (x,m))
classify it by case and priority, and find a pathgroup I' that has the highest priority. To choose among
Priority 2 pathgroups, find one that maximizes the number of “real” black edges, i.e., edges in T’ and R/,
not just edges created by insert MH. Similarly for Priority 3 pathgoups.
Case 1: T # y, and adding xy and Zg would not create a circular chromosome.
Priority 1: z = y.
Priority 2: y = m.
Priority 3: adding zy and Zg would create a pathgroup with priority 2.
Priority 4: None of 1, 2 or 3.
Case 2: T # y, and adding xZ and Zz would not create a circular chromosome.
Priority 2: z = m.
Priority 3: adding xzz and Zz would create a pathgroup with priority 2.
Priority 4: Neither of 2 or 3.
Case 3:T = y.
Priority 5:
If T is Case 1, addGrayEdge(zy, Z7).
If T is Case 2, addGrayEdge(zz, zz).
If T" is Case 3, find some
W = ((w,w), (w,w), (w, s)) in the same supernatural graph and addGrayEdge(zw, Zw).
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Algorithm: addGrayEdge(rt, 7t)

Add gray edges rt, 7t to partially completed genome X” & X”.

Add gray edge rt to partially completed genome X.

Update paths in pathgroups that are affected by the new gray edges.
Remove pathgroups that start with r and t.

Algorithm: insertMH:
Insert Missing Homologs in Chromosomes

Input. Two genomes: duplication descendant T”, outgroup R’, where each gene is has two or three
homologs, in the patterns TTR, TT, TR.

Output. Augmented genomes T and R containing exactly three homologs for each gene, in the pattern TTR,
maximizing the number of common edges of form {a,b1}, {az,b2} in T and {a, b} in R.
(Or {a1,b2}, {az2,b1} in T and {a, b} in R.)

While there are genes that have only two copies, count edgeDiff for each such, which simultaneously finds
the BestPosition.
Insert the gene with the minimum edgeDiff value into the BestPosition of this gene.

Algorithm: count edgeDiff

If a gene ¢ just has one copy (g1) in 7" and one copy (g) in R/, then we must insert another copy (g2) into 7”.
If a gene g just has two copies (g1, g2) in T”, then we must insert g into R’.

(The details are omitted here. This is essentially a greedy heuristic to add adjacencies reflecting, as if possible,
adjacencies already existing in R’ and T".)
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5. RESULTS AND DISCUSSION

Our data consisted of 6144 gene sets, of which only
2104 were full sets. There were only 836 defective
sets by virtue of a missing ortholog in V', while 3204
genes lacked one paralog in T'.

Table 1. Comparisons of the reconstructed immediate pre—
doubling ancestor A with the Vitis genome and of the immedi-
ate doubled ancestor A @ A with Populus. PPV: full gene sets,
PP: defective, missing grape ortholog, PV: defective, missing
one poplar paralog. Projected: genes not in PPV ancestor
deleted from solution A, d: genomic distance, b:;number of
breakpoints, r = 2d/b: the re-use statistic.

genes d(A, Vitis) d(A® A, Populus)
data sets in A d b r d b r
PPV 2104 638 751 1.70 454 690 1.32

PPV,PP 2940 649 757 1.71 737 1090 1.35
projected 2104 649 757 1.71 581 823 1.41
PPV,PV 5308 | 1180 1331 1.77 | 1083 1457 1.49
projected 2104 663 758 1.75 670 833 1.61
PPV.,PP, PV 6144 | 1208 1363 1.77 | 1337 1812 1.48
projected 2104 664 757 1.75 750 926  1.62

without singletons

PPV 2020 560 661 1.69 346 541  1.28
PPV,PP 2729 594 690 1.72 453 714 1.27
projected 2006 571 664 1.72 416 628 1.32
PPV,PV 4203 573 686 1.67 751 1031 1.46
projected 1955 489 580 1.69 490 644  1.52
PPV,PP, PV 4710 675 797 1.69 856 1211 1.41
projected 1986 528 622 1.70 558 744 1.50

Table 1 shows the results of the analysis on the
full gene sets only, on combinations of the full sets
with one kind of defective sets, and all three sets.
For each case we study not only the reconstructed
ancestor but also a “projected” version where genes
from the defective sets are simply erased, in order to
assess the changes in gene order due to the defective
gene sets. Whereas the distance between each T and
its reconstructed ancestor A is given by GGH, the
distance between projected ancestor and 7' required
a heuristic, not detailed here, for attributing each
paralog in T to one of the two copies of the ancestral
genome.

Figure 1 depicts the result of analyzing all the
6144 gene sets with GGH, although the 836 genes

with no grape ortholog are not visible. The large

269

number of singleton genes disrupting otherwise ho-
mogeneous synteny blocks suggests that “noise” due
to uncertainties inherent in homology identification
and especially orthology identification may be arti-
factually inflating genomic distance d and the num-
ber of breakpoints b. Since the rigorous noise elim-
ination techniques of Refs. 15 and 16 have not yet
been extended in the context of genome doubling, we
simply identified singletons as gene sets lacking two
real (i.e., not inferred from insert MH) common ad-
jacencies out of six possible in the original genomes,
and ran all the analyses again without these genes.

In each case, we counted the breakpoints and cal-
culated the appropriate genomic distance d, i.e., from
the doubled ancestor to Populus and from the undou-
bled version of the same ancestor to Vitis. This en-
abled us to calculate the “breakpoint re-use” statis-
tic r = 2d/b, which is a measure of how much signal
about conserved order (among segments, not within
segments) remains in the comparison of two genomes
after a period of evolutionary rearrangements. When
r = 1, we can have high confidence in the rearrange-
ment distance and history. When r approaches two,
the segment order in the two genomes being com-
pared are essentially random with respect to each
other, i.e., calculating r for random genomes gives a
value approaching 2?. In Table 1, we see both from
changes in d and changes in r that

e most of the signal contained in the order among
conserved chromosomal segments has been lost
between the ancestor and Vitis, but is retained
to a great degree between the ancestor and Pop-
ulus, probably reflecting the difference in diver-
gence time but also possible biases towards T' in
the GGH algorithm,

e the addition of the defective PV gene sets de-
grades the analysis, more than the addition of
PP sets, though this may due to the four times
greater number of gene sets in the former,

e the elimination of singletons improves all the
analyses, but where PV is present, this comes
about largely by discarding most of the sets,
which turn out to be singletons.

With the application of our method to the more than

2If breakpoints are frequently re-used during evolution, then r will also be close to 2; unfortunately there is no internal way of

testing the breakpoint re-use hypothesis against the null hypothesis of complete loss of signal about segment order!7.
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6000 gene sets, we have shown that any realistic case
of genome doubling should be amenable, even if all
the gene paralogs remain in the sequenced descen-
dant. The analysis with 6144 gene sets required al-
most 48 hours on a MacBook, but this was anoma-
lously large, since those with 4000 or 5000 required
less than 5 hours and those with 2000 about 1 hour.
Much of the running time is due to the check on
the number of real edges in a pathgroup to choose
among Priority 2 or among Priority 3 options. This
could be reduced by optimizing data structures in
our software.

The inclusion of defective PV gene sets would
appear to add little more than noise to the analy-
sis, but the PP sets would seem to add significant
information, especially to the ancestor- Populus com-
parison.

The elimination of singletons proves to be a
meaningful way of drastically decreasing the num-
ber of segments (as measured by b) and the genomic
distance to credible levels, though this still does not
result in a detectible signal in the ancestor- Vitis com-
parison. The recently sequenced and asembled Car-
ica papaya genome, which is phylogenetically more
closely related to Populus, but like Vitis diverged
before the Populus doubling event, should be better
able play the outgroup role in our analysis, once it
is published and we have been able to identify or-
thologs.
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