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In this paper we introduce a novel graph classification algorithm and demonstrate its efficacy in drug design. In our
method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to create features capturing
graph local topology. We design a novel graph kernel function to utilize the created feature to build predictive models
for chemicals. We call the new graph kernel a graph wavelet-alignment kernel.

‘We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction
benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and
sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results
also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation

with more than 10 fold speed up.

1. INTRODUCTION

The fast accumulation of data describing chemical
compound structures and biological activity calls for
the development of efficient informatics tools. Chem-
informatics is a rapidly emerging research discipline
that employs a wide array of statistical, data min-
ing, and machine learning techniques with the goal
of establishing robust relationships between chemical
structures and their biological properties. Chemin-
formatics hence is an important component on the
application side of applying informatics approach to
life science problems. It has a broad range of appli-
cations in chemistry and biology; arguably the most
commonly known roles are in the area of drug dis-
covery where cheminformatics tools play a central
role in the analysis and interpretation of structure-
activity data collected by various means of modern
high throughput screening technology. Tradition-
ally the analysis of large chemical structure-activity
databases was done only within pharmaceutical com-
panies and up until recently the academic community
has had only limited access to such databases. This
situation, however, has changed dramatically in very
recent years.

In 2002, the National Cancer Institute created
the Initiative for Chemical Genetics (ICG) with the
goal of offering to the academic research commu-
nity a large database of chemicals with their roles
in cancer research '8. Two years later, the National

Health Institute (NIH) launched a Molecular Li-
braries Initiative (MLI) that included the formation
of the national Molecular Library Screening Centers
Network (MLSCN). MLSCN is a consortium of 10
high-throughput screening centers for screening large
chemical libraries . Collectively, ICG and MLSCN
aim to offer to the academic research community the
results of testing about a million compounds against
hundreds of biological targets. To organize this data
and to provide public access to the results, the Pub-
Chem database and the Chembank database have
been developed as the central repository for chem-
ical structure-activity data. These databases cur-
rently contain more than 18 million chemical com-
pound records, more than 1000 bioassay results, and
links from chemicals to bioassay description, litera-
ture, references, and assay data for each entry.
These publicly-available large-scale chemical
compound databases have offered tremendous oppor-
tunities for designing highly efficient in silico drug
design method. Many machine learning and data
mining algorithms have been applied to study the
structure-activity relationship of chemicals. For ex-
ample, Xue et al. reported promising results of ap-
plying five different machine learning algorithms: lo-
gistic regression, C4.5 decision tree, k-nearest neigh-
bor, probabilistic neural network, and support vec-
tor machines to predicting the toxicity of chemicals

against an organism of Tetrahymena pyriformis 2!.
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Advanced techniques, such as random forest and
MARS (Multivariate Adaptive Regression Splines)
have also been applied to cheminformatics applica-
tions %> 17,

Recently Support Vector Machines (SVM) have
gained popularity in drug design. Support vector
machines work by constructing a hyperplane in a
high dimensional feature space. Two key insights of
SVM are the utilization of kernel functions (i.e. inner
product of two points in a Hilbert Space) to trans-
form a non-linear classification to a linear classifica-
tion and the utilization of a large margin classifier
to separate points with different class labels. Large
margin classifiers have low chance of over fitting and
works efficiently in high dimensional feature spaces.

Support vector machines have been widely uti-
lized in cheminformatics study. Traditional way of
applying SVM to cheminformatics is to first create
a set of features (or descriptors in many quanti-
tative structure-properity relationship studies) and
then use SVM to train a predictive model % 16. Re-
cently using graphs to model chemical structures and
using data mining approach to obtain high quality,
task-relevant features gain popularity in cheminfor-

matics 6.

In this paper, we report a novel appli-
cation graph wavelet analysis in creating high qual-
ity localized structure features for cheminformatics.
Specifically, in our method, we model a chemical
as a graph where a node represents an atom and
an edge represents an chemical bond in the chemi-
cal. We leverage wavelet functions applied to graph-
structured data in order to construct a graph kernel
function. The wavelet functions are used to condense
neighborhood information about an atom into a sin-
gle feature of that atom, rather than features spread
over it’s neighboring atoms. By doing so, we extract
(local) features with various topological scales about
chemical structures and use these wavelet features to
compute an alignment of two chemical graphs.

We have applied our graph kernel methods to
several chemical structure-activity benchmarks. Our
results indicate that our approaches yields perfor-
mance profiles at least competitive with, and some-
times exceeding that of current state-of-the-art ap-
proaches. In addition, the identification of highly
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discriminative patterns for chemical activity classifi-
cation provides evidence that our methods can make
generalizations about chemical function given molec-
ular structure. More over, our results also show that
the use of wavelet functions significantly decreases
the computational costs for graph kernel computa-
tion.

The rest of the paper is organized in the follow-
ing way. Section 2 presents an overview of related
work on quantitative chemical structure-property re-
lationship study. In Section 3, we present back-
ground information about graph representation of
chemical structures, graph database mining, and
graph kernel function. Section 4 discusses the al-
gorithmic details of our work, and in Section 5 we
examine an empirical study of the proposed algo-
rithm using several chemical structure benchmarks.
We conclude with a short discussion of the pros and
cons of our proposed methods.

2. RELATED WORK

A target property of the chemical compound is a
measurable quantity of the compound. There are
two categories of target properties: continuous (e.g.,
binding affinities to a protein) and discrete target
properties (e.g. active compounds vs. inactive com-
pounds).

The relationship between a chemical compound
and its target property is typically investigated
through a quantitative structure-property relation-
ship (QSPR) . Abstractly, any QSPR method may
be generally defined as a function that maps a chem-
ical space to a property space in the form of

P = k(D) (1)

where D is a chemical structure, P is a property,
and the function k is an estimated mapping from a
chemical space to a property space.

Different QSPR methodologies can be under-
stood in terms of the types of target property val-
ues (continuous or discrete), types of features, and
algorithms that map descriptors to target proper-
ties. Many classification methods has been applied
to build QSPR models and recent ones include Deci-

2

sion Trees, Classification based on association ¢, and

aSuch study also known as a quantitative structure-activity relationship (QSAR) but property refers to a broader range of

applications than activity.
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Fig. 1. Left: three sample chemical structures. Right: Graph representations of the three chemical structures.

Random Forest among many others. In our subse-
quent investigation, we focus on graph representation
of chemical structures, graph wavelet analysis, and
graph kernel methods that work well in high and even
infinite dimensional feature space with low chance of
over-fitting.

3. BACKGROUND

Before we proceed to algorithmic details, we present
some general background regarding a computational
analysis of chemical structure-property relationship
which includes (i) a graph representation of chemi-
cal structures, (ii) graph kernel functions, and (iii)
graph wavelet analysis.

3.1. Chemical Structure and Graph
Modeling of Chemical Structures

Chemical compounds are organic molecules that are
easily modeled by a graph representation. In our rep-
resentation, we use nodes in a graph to model atoms
in a chemical structure and edges in the graph to
model chemical bonds in the chemical structure. In
our representation, nodes are labeled with the atom
element type, and edges are labeled with the bond
type (single, double, and aromatic bond). The edges
in the graph are undirected, since there is no di-
rectionality associated with chemical bonds. Figure
1 shows three sample chemical structures and their

graph representation. Since we always use graphs
to model chemical structures, in the following dis-
cussion, we make little distinction about graphs and
chemicals, nodes and atoms, and edges and chemical
bonds.

3.2. Graph Kernel Functions

The term kernel function in our context refers to an
operation of computing the inner product between
two objects (e.g. graphs) in a feature space, thus
avoiding the explicit computation of coordinates in
that feature space. Depends on the dimensionality of
the feature space, we divide the current graph kernel
function into two groups.

The first group works in a finite dimensional fea-
ture space 1. Algorithms in the group first compute
a set of features and performs subsequent classifica-
tion in this feature space. Many existing application
of machine learning algorithms to cheminformatics
problems follow into this category.

The second group works in an infinite dimen-
sional feature space. Example of this group include
kernels that work on paths !2, on cyclic graphs V.
The kernel computation in infinite dimensional fea-
ture space is usually challenging. To ease the pro-
hibitive computational cost, Kashima et al'? devel-
oped a Markov model to randomly generate walks
of a labeled graph. The random walks are created
using a transition probability matrix combined with
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a walk termination probability. These collections of
random walks are then compared and the number
of shared sequences is used to determine the overall
similarity between two molecules. Recently frequent
pattern based kernels are gaining popularity.

In this paper, we investigate a new way to cre-
ate features of chemical graph structures. We also
present an efficient computational way to compute
such kernel called wavelet-alignment graph kernel.
Our experimental study has demonstrated the effi-
ciency and efficacy of our method.

3.3. Graph Wavelets Analysis

Wavelet functions are commonly used as a means for
decomposing and representing a function or signal
as its constituent parts, across various resolutions or
scales. Wavelets are usually applied to numerically
valued data such as communication signals or mathe-
matical functions, as well as to some regularly struc-
tured numeric data such as matrices and images.
Graphs, however, are arbitrarily structured and may
represent innumerable relationships and topologies
between data elements. Recent work has established
the successful application of wavelet functions to
graphs for multi-resolution analysis. Two examples
of wavelet functions, the Haar and the mexican hat,
are depicted in Figure 2.

Crovella et al. * have developed a multi-scale
method for network traffic data analysis. For this ap-
plication, they are attempting to determine the scale
at which certain traffic phenomena occur. They rep-
resent traffic networks as graphs labeled with some
measurement such as bytes carried per unit time. In
their method, they use the hop distance between ver-
tices in a graph, defined as the length of the shortest
path between them, and apply a weighted average
function to compute the difference between the aver-
age of measurements close to a vertex and measure-
ments that are far, up to a certain distance. This pro-
cess produces a new measurement for a specific ver-
tex that captures and condenses information about
the vertex neighborhood. Figure 3 shows a diagram
of wavelet function weights overlayed on a chemical
structure.

Maggioni et al. '3 demonstrate a general-
purpose biorthogonal wavelet for graph analysis. In
their method, they use the dyadic powers of an dif-
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fusion operator to induce a multiresolution analy-
sis. While their method applies to a large class of
spaces, such as manifolds and graphs, the applicabil-
ity of their method to attributed chemical structures
is not clear. The major technical difficulty is how to
incorporate node labels in a multiresolution analysis.

4. ALGORITHM DESIGN

In the following sections we outline the algorithms
that drive our experimental method. In short, we
measure the similarity of graph structures whose
nodes and edges have been labeled with various fea-
tures. These features represent different kinds of
chemical structure information including atoms and
chemical bonds types among others. To compute
the similarity of two graphs, the nodes of one graph
are aligned with the nodes of the second graph, such
that the total overall similarity is maximized with
respect to all possible alignments. Vertex similarity
is measured by comparing vertex descriptors, and is
computed recursively so that when comparing two
nodes, we also compare the immediate neighbors of
those nodes, the neighbors of immediate neighbors,

and so on so forth.

4.1. Graph Alignment Kernel

An alignment of two graphs G and G’ (assuming
|[V[G] < |VI]G"]]) is a 1-1 mapping 7 : V[G] — V[G'].
Given an alignment m, we define the similarity be-
tween two graphs, as measured by a kernel function
k4, below:

ka(G,G') == maxz 3, cy g bn(v, m(v))+ 2
2wy Ke((u, 0), (w(w), 7(v)))
The function k,, is a kernel function to measure
the similarity of nodes and the function k. is a ker-
nel function to measure the similarity of edges. In-
tuitively in Equation 2 we use an additive model to
compute the similarity between two graphs by com-
puting the sum of the similarity of nodes and the
similarity of edges. The maximal similarity among
all possible alignments is defined as the similarity
between two graphs.
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Fig. 2. Two examples of wavelet functions in 3 dimensions, the mexican hat on the left, and the Haar on the right.

4.2. Simplified Graph Alignment Kernel

A direct computation of the graph alignment ker-
nel is computationally intensive and is unlikely scal-
able to large graphs. With no surprise, the graph
alignment kernel computation is no easier than the
subgraph isomorphism problem, a known NP-hard
problem P. To derive efficient algorithm scalable to
large graphs, we simplify the graph kernel function
with the following formula:

ka(G.G) =max Y ka(f(v). f(x(v))  (3)

veVI[G]

Where 7 : V[G] — V[G'] denotes an alignment
of graph G and G’. f(v) is a set of features associ-
ated with a node that not only include node features
but also include information about topology of the
graph where v belongs to.

By equation 3, we are trying to compute a max-
imal weighted bipartite graph, which has an efficient
solution known as the Hungarian algorithm. The
complexities of the algorithm is O(|V[G][?). See 7
for further details.

Below we provide an efficient method, based on
graph wavelet analysis, to crate features to capture
the topological structure of a graph.

4.3. Graph Wavelet Analysis

Originally proposed to analyze time series signals,
wavelet analysis transforms a series of signals to a
set of summaries with different scale. Two of the key
insights of wavelet analysis of signals are (i) using
localized basis functions and (ii) analysis with dif-
ferent scales. Wavelet analysis offers efficient tools
to decompose and represent a function with arbi-
trary shape 5 8. Since invented, wavelet analysis has
quickly gained popularity in a wide range of applica-
tions outside time series data, such as image analysis
and geography data analysis. In all these applica-
tions, the level of detail, or scale is considered as an
important factor in data comparison and compres-
sion. We show two examples of wavelet functions in
a 3D space in Figure 2.

Our Intuition. With wavelet analysis as applied to
graph represented chemical structure, for each atom,
we may collect features about the atom and its local
environment with different scales. For example, we
may collect information about the average charge of
an atom and atoms surrounding the atom and as-
sign the average value as a feature to the atom. We
may also collect information about whether an atom
belongs to a nearby functional group, whether the
surrounding atoms of a particular atom belong to a
nearby functional group, and the local topology of

bFormally, we need to show a reduction from the graph alignment kernel to the subgraph isomorphism problem. The details of
such reduction are omitted due to their loose connection to the main theme of the current paper, which is advanced data mining

approach as applied to cheminformatics applications
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an atom to its nearby functional groups.

In summary, conceptually we may gain the fol-
lowing two types of insights about the chemicals af-
ter applying wavelet analysis to graph represented
chemical structure:

o Analysis with varying levels of scale. In-
tuitively, at the finest level, we compare
two chemical structures by comparing the
atoms and chemical bonds in the two struc-
tures. At the next level, we perform com-
parison of two regions (e.g. chemical func-
tional groups) of two chemicals. At an even
coarser level, small regions may be grouped
into larger ones (e.g. pharmacophore), and
we compare two chemicals by comparing the
large regions and the connections among
large regions.

e Non-local connection. In a chemical struc-
ture, two atoms that are not directly con-
nected by a chemical bond may still have
some kind of interaction. Therefore when
comparing two graphs and their vertices, we
cannot depend only on the local environ-
ment immediately surrounding an atom, but
rather must consider both local and non-
local environment.

Though conceptually appealing, current wavelet
analysis is often limited to numerical data with
regularly structures such as matrices and images.
Graphs, however, are arbitrarily structured and may
represent innumerable relationships and topologies
between data elements. In order to define a reason-
able graph wavelet functions, we have introduced the
following two important concepts:

e h-hop neighborhood
e Discrete wavelet functions

The former, h-hop neighborhood, is essentially used
to project graphs from a high dimensional space with
arbitrary topology into a Euclidean space suitable
for operation with wavelets. The h-hop measure de-
fines a distance metric between vertices that is based
on the shortest path between them. The discrete
wavelet function then operates on a graph projection
in the hA-hop Euclidean space to compactly represent
the information about the local topology of a graph.
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It is the use of this compact wavelet representation
in vertex comparison that underlies the complexity
reduction achieved by our method. Based on the
h-hop neighborhood, we use a discrete wavelet func-
tion to summarize information in a local region of
a graph and create features based on the summa-
rization. These two concepts are discussed in detail
below.

4.3.1. h-Hop Neighborhood

We introduce the following definitions.

Definition 4.1. Given a node v in a graph G the
h-hope neighborhood of v, denoted by Ny (v), is
the set of nodes that are (according to the shortest
path) exactly h hops away from v.

For example if h = 0, we have Ny(v) = v and if
h =1, we have N1(v) = {u|(u,v) € E|G]}.

We use f, denotes the feature vector associated
with a node v in a graph G. |f| is the feature vec-
tor length (number of features in the feature vector).
The average feature measurement, denoted by f;(v)
for nodes in N;(v) is

— 1
fj(”):m Z )fu (4)

ueN; (v

Example 4.1. The left part of the Figure 3 shows a
chemical graph. Given a node v in the graph G, we
label the shortest distance of nodes to v in the G. In
this case Ny(v) = v and Ny(v) = {t,u}. If our fea-
ture vector contains a single feature of atomic num-
ber, f,(v) is the average atomic number of atoms
that are at most 1-hop away from v. In our case,
since Ny (v) = {t,u} and {¢,u} are both carbon with
atomic number equal to eight, then f,(v) is equal to
eight as well.

4.3.2. Discrete Wavelet Functions

In order to adapt a wavelet function to discrete struc-
ture such as graphs, we convert a wavelet function
() to apply to the h-hop neighborhood. Towards
that end, we scale a wavelet function ¢ (x) (such as
the Haar, or Mexican Hat) to have support on the
domain [0, 1), with integral 0, and partition the func-
tion into h + 1 intervals. We then compute the aver-
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Left: chemical graph centered on vertex v, with adjacent vertices ¢ and u. Vertices more than one hop away are labeled

with the hop number, up to hop distance three. Right: Superposition of a wavelet function on the chemical graph. Note here we
can see the intensity of the wavelet function corresponds to the hop distance from the central vertex. Also this represents an ide-
alized case where the hop distance between vertices corresponds roughly to their spatial distance. Unlabeled vertices correspond
to carbon (C); hydrogens are shown without explicit bonds (edges).

age, ¥, 1, as the average of ¢(x) over the jth interval,
0 < j < h as below.

1 (j+1)/(h+1) @) )
Vi = —— / Y(z)dz 5
h+1J5/(ht1)

With neighborhood and discrete wavelet func-
tions, we are ready to apply a wavelet analysis to
graphs. We call our analysis wavelet measurements,
denoted by I'j,(v), for a node v in a graph G at scale
up to h > 0.

h
Tp(w) = Chyp * Z Yjn * ?j(v) (6)

3=0

where C},,, is a normalization factor with C(h,v) =
2

(S0 )

We define I'(v) as the sequence of wavelet mea-
surements as applied to a node v with scale value up
to h. That is T (v) = {T'1(v),[2(v),...,Th(v)}. We
call T"*(v) the wavelet measurement vector of node

v. Finally we plug the wavelet measurement vector
into the alignment kernel with the following formula.

kr(G,G') =max Y ko(I"(v),T"(n(v)) (7)
veV|[G]

where kq (T (v), T (7(v)) is a kernel function defined
on vectors. Two popular choices are linear kernel and
radius based function kernel.

Example 4.2. The right part of Figure 3 shows a
chemical graph overlayed with a wavelet function
centered on a specific vertex. We can see how the
wavelet is most intense at the central vertex, hop
distance of zero, corresponding to a strongly positive
region of the wavelet function. As the hop distance
increases the wavelet function becomes strongly neg-
ative, as we can see roughly at hop distances of one
and two. At hop distance greater than two, the
wavelet function returns to zero intensity, indicating

negligible contribution from vertices at this distance.

5. EXPERIMENTAL STUDY

We have conducted classification experiments on
five different biological activity data sets, and mea-
sured support vector machine (SVM) classifier pre-
diction accuracy for several different feature genera-
tion methods. We describe the data sets and classi-
fication methods in more detail in the following sub-
sections, along with the associated results. Figure 4
gives a graphical overview of the process.

We performed all of our experiments on a desk-
top computer with a 3Ghz Pertium 4 processor and



5.1. Data Sets

We have selected five data sets representing typical
chemical benchmarks in drug design to evaluate our
classifier performance. The Predictive Toxicology
Challenge data set, discussed by Helma et al®, con-
tains a set of chemical compounds classified accord-
ing to their toxicity in male rats (PTC-MR), female
rats (PTC-FR), male mice (PTC-MM), and female
mice (PTC-FM). The Human Intestinal Absorption
(HIA) data set (Wessel et al.l?) contains chemical
compounds classified by intestinal absorption activ-
ity. The remaining data set (MD) is from Patterson
et al'*, and was used to validate certain molecule de-
scriptors. Various statistics for these data sets can
be found in Table 1.

All of these data sets exist natively as binary
classification problems, therefore in the case of the
MD and HIA data sets, some preprocessing is re-
quired to transform them into regression and multi-
class problems. For regression, this is a straightfor-
ward process of using the compound activity directly
as the regression target. In the case of multi-class
problems the transformation is not as direct. We
chose to use a histogram of compound activity val-
ues to visualize which areas of the activity space are
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Fig. 4. Experimental workflow for a single cross-validation trial.
1 GB of RAM. more dense, allowing natural and intuitive placement

of class separation thresholds.

5.2. Methods

We evaluated the performance of the SVM classifier
trained with different methods. The first two meth-
ods (WA-linear, WA-RBF) are both computed using
our wavelet-alignment kernel, but use different func-
tions for computing atom-atom similarity; we tested
both a linear and RBF function here. In our experi-
mental study, we experimentally evaluated different
hop distance threshold and fixed A = 3 in all experi-
mental study.

The method optimal alignment (OA) consists of
the similarity values computed by the optimal assign-
ment kernel, as proposed by Frélich et al”. There are
several reasons that we consider OA as the current-
state-of-the-art graph based chemical structure clas-
sification method. First, the OA method is devel-
oped specifically for chemical graph classification.
Second the OA method contains a large library to
compute different features for chemical structures.
Third, the OA method has developed a sophisticated
kernel function to compute the similarity between
two chemical structures. Our experimental study
shows that with the wavelet analysis we obtain per-
formance profiles comparable to, and sometimes ex-
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Table 1. Data set and class statistics.

Dataset # Graphs Class Labels Count

regression 0 - 100 86

binary 0 39

1 47

HIA 86 multi-class 1 21

2 18

3 21

4 26

regression | 0 - 7000 310

binary 0 162

1 148

MD 310 multi-class 1 46

2 32

3 37

4 35

PTC-MR 344 binary 0 192

1 152

PTC-MM 336 binary 0 207

1 129

PTC-FR 351 binary 0 230

1 121

PTC-FM 349 binary 0 206

1 143

ceeding that of the existing state-of-the-art chemi-
cal classification approaches. In addition, we achieve
a significant computational time reduction by using
the wavelet analysis. The details of the experimental
study are shown below.

In our experiments, we used the support vector
machine (SVM) classifier in order to generate activ-
ity predictions. We used the LibSVM classifier im-
plemented by Chang et al® as included in the Weka
data-mining software package by Witten et al. 20.
The SVM parameters were fixed across all methods,
and we use a linear kernel. For (binary) classification
we used nu-SVC for multi-class classification with nu
= 0.5. We used the Haar wavelet function in our
WA experiments. Classifier performance was aver-
aged over a 10-fold cross-validation set.

We developed and tested most of our algo-
rithms under the MATLAB programming environ-
ment. The OA software was provided by 7 as part
of their JOELib software, a computational chemistry

library implemented in java. !

5.3. Results

Below we report our experimental study of the
wavelet-alignment kernel with two focuses: (i) clas-
sification accuracy and (ii) computational efficiency.

5.3.1. Classification Accuracy

Table 2 reports the average and standard deviation
of the prediction results over 10 trials. For classifi-
cation problems, results are in prediction accuracy,
and for regression problems they are in mean squared
error (MSE) per sample. From the table, we observe
that for the HIA data set, WA-RBF kernel signifi-
cantly outperforms OA for both binary and multi-
class classification. For MD data set, OA does best
for both classification sets, but WA-linear is best for
regression. For the PTC binary data, the WA-linear
method outperforms the others in 3 of the 4 sets.

5.3.2. Computational Efficiency

In Table 3, we document the kernel computation
time for both OA and WA methods using 6 differ-
ent data sets. The runtime advantage of our WA
algorithm over OA is clear, showing improved com-
putation efficiency by factors of over 10 fold for the
WA-linear kernel and over 5 fold for the WA-RBF
kernel.

Figure 5 shows the kernel computation time
across a range of dataset sizes, with chemical com-
pounds sampled from the HIA data set. Using simple
random sampling with replacement, we create data
sets sized from 50 to 500. We did not try to run OA
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Prediction results of cross-validation experiments, averaged 10 ran-
domized trials, with standard deviation in parentheses.
sets labeled with real wvalues,

For regression data
result is mean squared error (lower is bet-

ter); for classification the result is prediction accuracy (higher is better).
The best result for each data and label set is marked with an asterisk.
Dataset Labels OA WA-RBF WA-linear
real 979.82(32.48)* 989.72(33.60) 989.31(24.62)
HIA binary 51.86(3.73) 61.39(2.77)* 57.67(3.54)
multi-class 29.30(2.23) 39.06(0.63)* 29.76(5.73)
real 3436395(1280) | 3436214(1209)* | 3440415(1510)
MD binary 67.16(0.86)* 52.51(3.34) 65.41(0.42)
multi-class 39.54(1.65)* 33.35(3.83) 33.93(1.87)
PTC-FM binary 58.56(1.53)* 51.46(3.45) 55.81(1.31)
PTC-FR binary 58.57(2.11) 52.87(2.65) 59.31(1.95)*
PTC-MM binary 58.23(1.25) 52.36(0.93) 58.91(2.078)*
PTC-MR binary 51.51(1.20) 52.38(3.48) 52.09(2.61)*
Table 3. Running time for the computation of

OA, WA-linear, and WA-RBF) kernels, in sec-

onds.

Speedup is computed as the ratio be-

tween the OA processing time and that of WA.

Dataset Kernel Time | Speedup
OA 75.87 -
HIA WA-RBF 13.76 5.51
WA-linear 4.91 15.45
OA 350.58 -
MD WA-RBF 50.85 6.89
WA-linear 26.82 13.07
OA 633.13 -
PTC-FM WA-RBF 103.95 6.09
‘WA-linear 44.87 14.11
OA 665.95 -
PTC-FR WA-RBF 116.89 5.68
‘WA-linear 54.64 12.17
OA 550.41 -
PTC-MM | WA-RBF 99.39 5.53
WA-linear 47.51 11.57
OA 586.12 -
PTC-MR | WA-RBF 101.68 5.80
WA-linear 45.93 12.73

on even larger data set since the experimental results
clearly demonstrate the efficiency of the WA kernel
already.

What these run time results do not demonstrate
is the even greater computational efficiency afforded
by our WA algorithm when operating on general,
As noted at the end of
section four, chemical graphs have some restrictions

non-chemical graph data.

on their general structure. Specifically, the number
of atom neighbors is bound by a small constant (4 or
$0). Since the OA computation time is much more
dependent on the number of neighbors, we can see
that WA is even more advantageous in these circum-

stances. Unfortunately, since the OA software is de-
signed as part of the JOELib chemoinformatics li-
brary specifically for use with chemical graphs, it will
not accept generalized graphs as input, and hence we
could not empirically demonstrate this aspect of our
algorithm.

6. CONCLUSIONS

Graph structures are a powerful and expressive rep-
resentation for chemical compounds. In this pa-
per we present a new method wavelet-assignment,
for computing the similarity of chemical compounds,

based on the use of an optimal assignment graph
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Fig. 5.

kernel function augmented with pattern and wavelet
based descriptors. Our experimental study demon-
strates that our wavelet-based method deliver an
improved classification model, along with an order
of magnitude speedup in kernel computation time.
For high-volume, real world data sets, this algo-
rithm is able to handle a much greater number of
graph objects, demonstrating it’s potential for pro-
cessing both chemical and non-chemical data in large
amounts. In our present study, we only used limited
number of atom features. In the future, we plan to
involve domain experts to evaluate the performance
of our algorithms, including the prediction accuracy
and the capability for identifying important features
in diverse chemical structure data sets.
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