
37

VOTING ALGORITHMS FOR THE MOTIF FINDING PROBLEM
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Finding motifs in many sequences is an important problem in computational biology, especially in identification of
regulatory motifs in DNA sequences. Let c be a motif sequence. Given a set of sequences, each is planted with
a mutated version of c at an unknown position, the motif finding problem is to find these planted motifs and the
original c. In this paper, we study the VM model of the planted motif problem, which is proposed by Pevzner and
Sze 1. We give a simple Selecting One Voting algorithm and a more powerful Selecting k Voting algorithm. When
the length of motif and the number of input sequences are large enough, we prove that the two algorithms can find
the unknown motif consensus with high probability. In the proof, we show why a large number of input sequences is
so important for finding motifs, which is believed by most researchers. Experimental results on simulated data also
support the claim. Selecting k Voting algorithm is powerful, but computational intensive. To speed up the algorithm,
we propose a progressive filtering algorithm, which improves the running time significantly and has good accuracy in
finding motifs. Our experimental results show that Selecting k Voting algorithm with progressive filtering performs
very well in practice and it outperforms some best known algorithms.
Availability: The software is available upon request.

1. INTRODUCTION

The motif finding problem in molecular biology is
to find similar regions common to each sequence in
a given set of DNA, RNA, or protein sequences.
This problem has many applications, such as locat-
ing binding sites and finding conserved regions in un-
aligned sequences, genetic drug target identification
and designing genetic probes.

Since DNA bases and protein residues are sub-
ject to mutations, motifs with similar functions in
different sequences are not identical. From an al-
gorithmic point of view, the motif finding problem
can be considered as the consensus pattern problem.
Different variants of this problem are NP-hard 2, 3

and several polynomial time algorithm schemes have
been proposed 3–5.

In practice, the motif finding problem has been
intensely studied. Many methods and software have
been proposed 6–20. Basically, there are two dif-
ferent approaches for the motif finding problem 21.

The first approach uses the pattern-driven method.
For DNA and RNA sequences, all 4L possible pat-
terns are tried to find the best motif consensus 14, 18,
where L is the length of motif. When the length of
motif is large, the running time of pattern-driven al-
gorithm is formidable. The other approach uses the
sample-driven method. Sample-driven algorithms
use all substrings of length L in input sequences (all
L-mers) as the set of patterns 1, 3, 9. These algo-
rithms start from L-mers in input sequences, then
use heuristic search to find the motif consensus. Due
to mutations, the sample-driven algorithms may miss
some good starting patterns and fail to find the real
motif consensus. Based on this observation, the ex-
tended sample-driven approach is developed. This
approach is a hybrid of the pattern-driven method
and the sample-driven method. Both L-mers in in-
put sequences and close neighbors of the L-mers are
used as the patterns 15, 21.

To test and evaluate different methods, Pevzner
and Sze proposed a planted motif model 1. In the
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planted model, the input is a set of random sam-
ples, each sample is planted with a motif with mu-
tations (errors). The planted motif problem is to
find the planted motifs in the samples and the motif
consensus. If we find the correct motif consensus,
the planted motifs can be found easily. Therefore,
we will focus on finding the motif consensus in this
study. There are two different mutation models. The
first model is the FM model, where each sequence
contains one instance of an (L, D) motif, i.e. each
instance of length L contains D mutated positions,
where the D positions are randomly selected. The
second model is the VM model, where each sequence
contains exactly one instance, and each position of
the instance is mutated independently with proba-
bility p.

This first model has been studied and tested with
many algorithms 21–23. In this paper, we mainly
study the second model. In the experiments, our al-
gorithms are tested on both the FM and VM models.

The main contributions of this paper are the fol-
lowing. First, we give a simple Selecting One Voting
algorithm and a more powerful Selecting k Voting
algorithm. We prove that, when the length of mo-
tif and the number of input sequences are large, the
two algorithms can find the unknown motif consen-
sus with high probability. Second, most researchers
believe that a large number of sequences containing
mutated motifs can help us find motifs. When the
number of input sequences increases, the probabili-
ties that motifs can be found will increase. In the
proof, we show that the number of input sequences
can help our algorithms find motifs. Our experi-
ments on simulated data also support the relation-
ship between the number of input sequences and the
performance of our algorithms. Select k Voting algo-
rithm is powerful, but the time complexity of the al-
gorithm is too high to be practical for real problems.
Finally, we propose a progressive filtering method to
speed up Selecting k Voting algorithm. With the
filtering method, the time complexity of Selecting k

Voting algorithm is improved from O(Lmk+1n) to
O(αLm(k2 +n)), where n is the number of input se-
quences, m is the length of each sequence and α is
an input parameter. Our experimental results show
that Selecting k Voting algorithm with progressive
filtering performs very well in practice and it out-

performs some best known algorithms.

2. PROBABILITY MODELS

In this paper, we consider DNA sequences and use
a fixed alphabet Σ = {A, C, G, T }. For a string
s ∈ Σm, the i-th letter of s is denoted by s[i]. Thus,
s = s[1]s[2] . . . s[m]. A string s is called a uniform
random DNA sequence if for each letter s[i] in s,
Pr(s[i] = A) = Pr(s[i] = C) = Pr(s[i] = G) =
Pr(s[i] = T ) = 1

4 . Let s1 and s2 be two strings of
the same length. The Hamming distance between s1

and s2 is denoted by d(s1, s2). For a string t ∈ ΣL

and a string s ∈ Σm, where L < m, the distance
between t and s is the minimum distance between
t and any L-mer in s, denoted by d(t, s). For a set
of strings S = {s1, s2, . . . , sn} and a string s of the
same length m, if each letter s[i] in s is a majority
letter in {s1[i], s2[i], . . . , sn[i]}, s is called a consensus
string of S.

In the VM probability model, n input strings
with planted motifs are generated as follows. We
first generate n uniform random DNA sequences
s1, s2, . . . , sn, each of length m. Suppose a uni-
form random DNA sequence c ∈ ΣL is the original
motif consensus. Based on c, we generate n mo-
tifs c1, c2, . . . , cn ∈ ΣL with mutations (errors) by
changing each letter in c independently with prob-
ability p = 3

4 − ε. That is, for each letter ci[j] in
ci, Pr(ci[j] = c[j]) = 1

4 + ε, and for u ∈ Σ\{c[j]},
Pr(ci[j] = u) = 1

4 − ε
3 . Then, for each string si, we

randomly select a position h in {1, 2, . . . , m−L + 1}
and replace s[h]s[h+ 1] . . . s[h +L− 1] with ci to get
si. We say that ci is planted to si. In this way, we
get a new set of strings s1, s2, . . . , sn, which is a set
of random strings with planted motifs. From now on,
we will consider the string set S = {s1, s2, . . . , sn} as
the input sequences. For each string si, the set of all
L-mers of si is denoted by Pi.

Since the FM probability model is used in our
experiments, we also give the definition of the FM
model. In the (L, D) FM model, with n uniform ran-
dom DNA sequences and a motif consensus c ∈ ΣL,
the method of generating n mutated motifs is dif-
ferent from the VM model. In motif consensus c,
we randomly select exact D positions and each of
the D letters is changed to any of other three letters
to get a mutated motif ci. For each of the D po-
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sitions, Pr(ci[j] = c[j]) = 0, and for u ∈ Σ\{c[j]},
Pr(ci[j] = u) = 1

3 . Finally, the n mutated motifs are
planted to the n uniform random DNA sequences to
get a set of n input sequences.

With the VM probability model, we give the def-
inition of the planted motif problem.

Definition 2.1. Given a set S = {s1, s2, . . . , sn} of
strings each of length m, generated as described in
the VM probability model, and an integer L, the
planted motif problem is to find the unknown motif
consensus c.

In some cases, we want to find the closest sub-
strings in the input sequences. Then, we have an-
other similar problem.

Definition 2.2. Given a set S = {s1, s2, . . . , sn}
of strings each of length m, generated as described
in the VM probability model and an integer L, the
planted closest substring problem is to find a length
L substring ti for each string si ∈ S and a consensus
string t such that

∑
1≤i≤n d(t, ti) is minimized.

Algorithm 1
Input A sequence set S = {s1, s2, . . . , sn} ⊂

Σm, a starting pattern t ∈ ΣL.
Output A motif consensus with length L.

1. For each sequence si, find an L-mer ti ∈ Pi

such that d(t, ti) = d(t, si).
2. Output a consensus string of {t1, t2, . . . , tn}.

Fig. 1. The voting algorithm.

3. ALGORITHMS

In this section, we give several algorithms for the
planted motif problem.

3.1. Voting Algorithm

For the planted motif problem, our algorithms have
two parts. The first part is to find a starting pat-
tern (L-mer). The second part is to use the starting
pattern to find the motif consensus and planted mo-
tifs. Here, we first give a simple voting algorithm for

finding motif consensus from a given starting pat-
tern t. In details, our algorithm has two steps: (1)
in each sequence si, find an L-mer ti ∈ Pi with the
minimum distance to t; (2) find a consensus string of
t1, t2, . . . , tn (Fig. 1).

In practice, we can use the resulting consensus
string of the voting operation as a new starting pat-
tern, and do voting operation repeatedly until there
is no further improvement. Compared with other
pattern refinement methods, such as Gibbs sam-
pling 7 and EM 8, 9 methods, the voting algorithm
uses a consensus string instead of a profile to repre-
sent the pattern and uses a simple voting operation
to do pattern refinement. The main advantage of
the voting algorithm is its high speed. Since the pat-
tern is represented by a string, the voting algorithm
converges faster than the Gibbs sampling and EM
methods. In addition, the voting algorithm avoids
the time consuming computation of likelihoods in
Gibbs sampling and EM methods. So, the voting al-
gorithm is much faster than the Gibbs sampling and
EM approaches. With the fast speed, we can try
much more starting patterns to find a good motif.
Our experimental results also show that the voting
algorithm is powerful for finding motifs.

Algorithm 2
Input A sequence set S = {s1, s2, . . . , sn} ⊂

Σm and integers L and r.
Output A motif consensus with length L.
1. Repeat Steps 2-5 r times.
2. Randomly select a sequence si ∈ S which

has not been selected in previous rounds.
3. For each L-mer t ∈ Pi, do
4. Use the voting algorithm to find a con-

sensus t∗ from starting pattern t.
5. Add t∗ to candidate motif consensus

set C.
6. Output motif consensus cA such that∑

1≤i≤n d(cA, si) is the minimum in all can-
didates in C.

Fig. 2. Selecting One Voting algorithm.

3.2. Selecting One Voting Algorithm

The performance of the voting algorithm depends on
the qualities of starting patterns. So we need to find



40

good starting patterns for it. Our method follows
the sample-driven approach. We use L-mers in in-
put sequences as the set of patterns. We randomly
select an input sequence si ∈ S and find the planted
motif ci by enumerating all L-mers in si. Then the
motif ci is used as a starting pattern of the voting
algorithm. The above procedure is repeated r times
and the best motif consensus is output, where r is an
input parameter. The algorithm is called Selecting
One Voting algorithm (Fig. 2).

We can prove that, when L and n are large
enough, Algorithm 2 can correctly find the motif con-
sensus with high probability. In the following anal-
ysis, we use an important lemma about Chernoff-
Hoeffding bound 24.

Lemma 3.1. Let X1, X2, . . . , Xn be n independent
random binary (0 or 1) variables, where Xi takes
on the value of 1 with probability pi, 0 < pi < 1.
Let X =

∑n
i=1 Xi and µ = E[X ]. Then for any

0 < λ < 1,

(1) Pr(X ≥ µ + λn) ≤ e−2λ2n,
(2) Pr(X ≤ µ − λn) ≤ e−2λ2n.

From the VM probability model, each planted
motif has (3

4 − ε)L mutations on average. When r

is large, we repeat the voting operation many times.
Then, the probability that we can find a planted mo-
tif with no more than (3

4 − ε)L mutations is high.

Lemma 3.2. The probability that one planted mo-
tif t with d(c, t) ≤ (3

4 − ε)L is selected in Step 3 of
Algorithm 2 is at least 1 − (

3
4

)r.

Proof. Based on the VM probabilistic model, the
distance between c and a mutated motif ci fits the bi-
nomial distribution B(L, 3

4 − ε). Therefore, for each
ci, Pr(d(ci, c) > 3

4 − ε) ≤ 3
4 (The inequality can

be proved by enumerating all possible L’s). In Al-
gorithm 2, we randomly select r planted motifs as
starting patterns. Since the r motifs are indepen-
dently generated, the probability that each selected
motif ci has d(ci, c) > (3

4 − ε)L is no more than
(

3
4

)r.
Therefore, the lemma is proved.

When the length of motif is large enough, with
high probability, two planted motifs have smaller dis-

tance than two random L-mers. Based on this ob-
servation, we have the following lemma.

Lemma 3.3. When d(c, t) ≤ (3
4 − ε)L and L >

9
8ε4 log 3m

ε , for each sequence si ∈ S, the probability
that ci is selected in Step 1 of the voting algorithm is
no less than 1 − 1

3ε.

Proof. First, we consider the planted motif ci in
si. Let X1, X2, . . . , XL be the random variables such
that Xj = 1, if ci[j] = t[j]; Xj = 0, otherwise. From
the assumption, we have d(c, t) ≤ (4

3 −ε)L. From the
generation method, for each letter ci[j], Pr(ci[j] =
c[j]) = 1

4 + ε. Therefore, Pr(Xj = 1) = 1
4 + 4

3ε2 and
Pr(Xj = 0) = 3

4 − 4
3 ε2. Let X =

∑
1≤j≤L Xj . Then

E(X) = (1
4 + 4

3ε2)L. By Lemma 3.1,

Pr

(
X ≤

(
1

4
+

2

3
ε2

)
L

)
≤ Pr

(
X ≤ E(X) − 2

3
ε2L

)

≤ e−
8
9 ε4L.

When L > 9
8ε4 log 3m

ε , the probability is

Pr

(
X ≤

(
1
4

+
2
3
ε2

)
L

)
≤ ε

3m
. (1)

Second, we consider an L-mer t′ ∈ Pi\{ci}.
Let Y1, Y2, . . . , YL be the random variables such that
Yj = 1, if t′[j] = c[j]; Yj = 0, otherwise. For each let-
ter t′[j], Pr(t′[j] = A) = Pr(t′[j] = C) = Pr(t′[j] =
G) = Pr(t′[j] = T ) = 1

4 . Therefore, Pr(Yj = 1) = 1
4

and Pr(Yj = 0) = 3
4 . Let Y =

∑
1≤j≤L Yj . We have

E(Y ) = 1
4L. By Lemma 3.1,

Pr

(
Y ≥

(
1

4
+

2

3
ε2

)
L

)
≤ Pr

(
Y ≥ E(Y ) +

2

3
ε2L

)

≤ e−
8
9 ε4L.

When L > 9
8ε4 log 3m

ε , the probability is

Pr

(
Y ≥

(
1
4

+
2
3
ε2

)
L

)
≤ ε

3m
.

Consider all the L-mers in Pi\{ci}, the proba-
bility that there is an L-mer t′ ∈ Pi\{ci} such that
d(t′, c) ≥ (1

4 + 2
3 ε2)L is no more than m−L

3m ε.
Together with (1), when d(c, t) ≤ (3

4 − ε)L and
L > 9

8ε4 log 3m
ε , the probability that ci is selected in

Step 1 of the voting algorithm is no less than 1− 1
3ε.
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When the planted motifs can be found with high
probability, the voting algorithm can find the motif
consensus with high probability.

Lemma 3.4. Suppose d(c, t) ≤ (3
4 − ε)L and each

planted motif ci is selected in Step 1 of the voting
algorithm with probability no less than 1− 1

3 ε. When
n

log n ≥ 9
2ε2 , the probability that t∗ = c is no less than

1 − 4L
n .

Proof. Consider a position j , 1 ≤ j ≤ L, such
that t[j] �= c[j]. Let X1, X2, . . . , Xn be the random
variables such that Xi = 1, if ti[j] = c[j]; Xi = 0,
otherwise. For all motifs c1, c2, . . . , cn, the expected
number of motifs ci such that ci[j] = c[j] is (1

4 + ε)n.
Let M+ and M− be the sets of planted motifs se-
lected and not selected into {t1, t2, . . . , tn}, respec-
tively. The probability that a planted motif is not
selected in the voting algorithm is no more than 1

3ε.
Therefore, the expectation of |M−| is no more than
1
3εn. In the worse case, each motif in M− has the
same letter with c at position j. Then, the expected
number of ti’s such that ti ∈ M+ and ti[j] = c[j]
is no less than (1

4 + ε)n − ε
3n = (1

4 + 2
3ε)n. Let

X =
∑

1≤i≤n Xi. We have E(X) ≥ (1
4 + 2

3ε)n. By
Lemma 3.1,

Pr

(
X ≤ n

4
+

1

3
ε

)
≤ Pr

(
X ≤ E(X) − 1

3
εn

)

≤ e−
2
9 ε2n.

When n
log n ≥ 9

2ε2 , the probability is

Pr

(
X ≤ n

4
+

1
3
ε

)
≤ 1

n
.

For a letter u ∈ Σ\{c[j]}, let Y1, Y2, . . . , Yn be
the random variables such that Yi = 1, if ti[j] = u;
Yi = 0, otherwise. For all motifs c1, c2, . . . , cn, the
expected number of ci’s with ci[j] = u is (1

4 − 1
3ε)n.

Note that the expected number of ti’s not being a
planted motif is no more than 1

3εn. In the worse
case, each ti not being a planted motif has letter u

at position j. Then, the expected number of ti’s with
ti[j] = u is no more than (1

4 − ε
3 )n + ε

3n = 1
4n. Let

Y =
∑

1≤i≤n Yi. It follows that E(Y ) ≤ 1
4n. By

Lemma 3.1,

Pr

(
Y ≥ n

4
+

1

3
εn

)
≤ Pr

(
Y ≥ E(Y ) +

1

3
εn

)

≤ e−
2
9 ε2n.

When n
log n ≥ 9

2ε2 , the probability that t∗[j] = u

is no more than n−1. There are three possible letters
in Σ\{c[j]}. The probability that none of them has
n
4 + 1

3εn letters in column j is at least 1− 3
n . There-

fore, the probability that c[j] is the majority letter
at column j is at least 1 − 4

n .
Then, we consider a position j′ such that t[j′] =

c[j′]. Similar to the previous case, we can prove that
when n

log n ≥ 9
2ε2 , the probability that t∗[j′] = c[j′]

is at least 1 − 4
n .

Consider all the L positions in c, the probability
that t∗ = c is no less than 1 − 4L

n .

From the Lemmas 3.2, 3.3 and 3.4, we get the
following theorem.

Theorem 3.1. When
∑

1≤i≤n d(c, si) is the min-
imum in all strings in ΣL, L > 9

8ε4 log 3m
ε , and

n
log n ≥ 9

2ε2 , the probability that Algorithm 2 can find
the motif consensus c is no less than 1− (

3
4

)r − 4L
n .

Theorem 3.1 shows that m, L and n are all im-
portant factors of Selecting One Voting algorithm.
The increase of n will increase the probability of find-
ing the motif consensus. Many researchers believe
that a large number of sequences containing mutated
motifs can help us find motifs. This proof shows why
motifs can be found more easily in many similar se-
quences than in a few sequences. That is the reason
why multiple alignment of many similar sequences is
important for finding useful biological information.

Suppose
∑

1≤i≤n d(c, si) is the minimum in all
strings in ΣL. When the length of motif and the
mutation rate can not guarantee that Algorithm 2
outputs the motif consensus with high probability,
we can prove the algorithm is a good approximation
algorithm for the planted closest substring problem.
For output cA of Algorithm 2,

E

⎛
⎝ ∑

1≤i≤n

d(cA, si)

⎞
⎠ ≤ E

⎛
⎝ ∑

1≤i≤n

d(c1, si)

⎞
⎠

=
(

3
4
− 4

3
ε2

)
nL.
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For the optimal solution c,

E

⎛
⎝ ∑

1≤i≤n

d(c, si)

⎞
⎠ =

(
3
4
− ε

)
nL.

Therefore, the expected approximation ratio of
Selecting One Voting algorithm is 1 + 4

3ε.
In Selecting One Voting algorithm, we try r(m−

L + 1) different starting patterns. For each starting
pattern, the voting operation takes O(Lmn) time.
So the time complexity of the whole algorithm is
O(rLm2n).

Algorithm 3
Input A sequence set S = {s1, s2, . . . , sn} ⊂

Σm and integers L, r and k.
Output A motif consensus with length L.
1. Repeat Steps 2-6 r times.
2. Randomly select k sequences sx1 , sx2 ,

. . . , sxk
from S which have not been se-

lected in previous rounds.
3. For each L-mer set {a1, a2, . . . , ak} where

a1 ∈ Px1 , a2 ∈ Px2 , . . . , ak ∈ Pxk
, do

4. Find a consensus string t of a1, a2,

. . . , ak. (If there are several consensus
strings, randomly select one).

5. Use the voting algorithm to find a con-
sensus t∗ from starting pattern t.

6. Add t∗ to candidate motif consensus set
C.

7. Output motif consensus cB such that∑
1≤i≤n d(cB , si) is the minimum in all can-

didates in C.

Fig. 3. Selecting k Voting algorithm.

3.3. Selecting k Voting Algorithm

Selecting One Voting algorithm only uses L-mers in
input strings as starting patterns of voting. When
motifs are short and mutation rate is high, Selecting
One Voting algorithm may miss some good patterns
and fail to find the motif consensus. To get more
good patterns, one simple idea is to use a consensus
string of several planted motifs as a starting pat-
tern of voting. Intuitively, when we know k planted
motifs, the consensus string of the k mutated mo-
tifs will be more similar to the unknown motif con-

sensus than one mutated motif. Based on this ob-
servation, we give a new powerful Selecting k Vot-
ing algorithm. In details, we first randomly select
k sequences sx1 , sx2 , . . . , sxk

from S and select one
L-mer in each of the k sequence to get k L-mers.
By enumerating all L-mers in sx1 , sx2 , . . . , sxk

, the
k planted motifs can be selected. Then, we find a
consensus string of cx1 , cx2 , . . . , cxk

. When there are
several consensus strings, we randomly select one.
In this way, we can get a consensus string of the
k planted motifs and use this consensus string as a
starting pattern of voting. Similar to Algorithm 2,
the above procedure is repeated r times. The algo-
rithm is shown in Fig. 3.

We can show that Selecting k Voting algorithm
is more powerful than the simple Selecting One Vot-
ing algorithm. Suppose k planted motifs are se-
lected as a1, a2, . . . , ak. We consider one column
in the multiple alignment of the k planted mo-
tifs. From the VM probabilistic model, the num-
bers of occurrences of the letters in Σ fit the multi-
nomial distribution. Suppose u ∈ Σ is selected
as the majority letter, the number of occurrences
of u is x1, and the numbers of occurrences of the
other three letters are x2, x3, x4, respectively. Ob-
viously, x1, x2, x3 and x4 are non-negative integers
and

∑4
i=1 xi = k. In addition, x1 is a maximum

number in x1, x2, x3, x4. From the observation, we
define a set Q = {(x1, x2, x3, x4)|x1, x2, x3, x4 ∈
Z∗ &

∑4
i=1 xi = k & x1 = max4

i=1 xi}, where Z∗

is the set of non-negative integers. Set Q contains
all possible values of (x1, x2, x3, x4) such that u can
be selected as the majority letter. Sometimes, more
than one letter has the maximum number of occur-
rences. So, set Q can be divided into four disjoint
subsets Q1, Q2, Q3 and Q4. If (x1, x2, x3, x4) ∈ Qi,
then there are i letters with the maximum number of
occurrences. Based on the property of multinomial
distribution, we have the following observation.

Observation 3.1. When {a1, a2, . . . , ak} ⊆
{c1, c2, . . . , cn}, for each letter t[j] in the consen-
sus string t, the probability that t[j] = c[j] is

q =
4∑

i=1

∑
(x1,x2,x3,x4)∈Qi

1

i

k!

x1!x2!x3!x4!

( 1

4
+ ε

)x1 ( 1

4
−

1

3
ε

)x2+x3+x4
.

Let 1
4 + δ = q. When k ≥ 1, we have δ ≥ ε. For

example, suppose the error rate of the VM model
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is p = 0.27 and ε = 3
4 − p = 0.48. (Notice that

4/15 ≈ 0.27 and the error rate 0.27 is corresponding
to the (15, 4) FM model in the Motif Challenge Prob-
lem.) If k = 3, we have δ = 5

4ε + 2
3ε2 − 4

3ε3 ≈ 0.60.
And the error rate of the consensus string of three
planted motifs is 1− q ≈ 0.15. The change from 0.27
to 0.15 can increase the accuracy of the voting al-
gorithm significantly. Our experimental results also
support this point. In addition, we can use Chernoff-
Hoeffding bound to prove that when k > 9

2ε2, δ > 1
4 .

For Selecting k Voting algorithm, we can show
similar result to Theorem 3.1. That is, when L and
n are large enough, Selecting k Voting algorithm can
find the motif consensus with high probability. The
difference is that the condition L > 9

8ε4 log 3m
ε is

changed to L > 9
8ε2δ2 log 3m

ε , where δ ≥ ε. Similar to
Lemma 3.2, we have

Lemma 3.5. The probability that one consensus
string t with d(c, t) ≤ (3

4 − δ)L is selected in Al-
gorithm 3 is at least 1 − (

3
4

)r.

Suppose we find a consensus string t with
d(c, t) ≤ (3

4 − δ)L. For a letter ci[j] in ci, the proba-
bility that ci[j] = t[j] is no less than 1

4 + 4
3 εδ. Similar

to Lemma 3.3, we have the following lemma.

Lemma 3.6. When d(c, t) ≤ (3
4 − δ)L and L >

9
8ε2δ2 log 3m

ε , for each string si ∈ S, the probability
that ci is selected in Step 1 of the voting algorithm is
no less than 1 − 1

3ε.

When the consensus string of k motifs is used,
the length of L can be reduced from L > 9

8ε4 log 3m
ε

to L > 9
8ε2δ2 log 3m

ε where δ > ε. From this point of
view, Selecting k Voting algorithm is more powerful
than Selecting One Voting algorithm.

From Lemmas 3.4, 3.5 and 3.6, we get the fol-
lowing theorem.

Theorem 3.2. When
∑

1≤i≤n d(c, si) is the mini-
mum in all strings in ΣL, L > 9

8ε2δ2 log 3m
ε and

n
log n ≥ 9

2ε2 , the probability that Selecting k Voting
algorithm can find the motif consensus c is no less
than 1 − (

3
4

)r − 4L
n .

Suppose
∑

1≤i≤n d(c, si) is the minimum in all
strings in ΣL. When the mutate rate is so high that
Selecting k Voting algorithm can not find the mo-
tif consensus, we can prove Selecting k Voting al-

gorithm is a good approximation algorithm for the
planted closest substring problem. For output cB of
Algorithm 3,

E

⎛
⎝ ∑

1≤i≤n

d(cB , si)

⎞
⎠ ≤

(
3
4
− 4

3
εδ

)
nL.

For the optimal solution c,

E

⎛
⎝ ∑

1≤i≤n

d(c, si)

⎞
⎠ =

(
4
3
− ε

)
nL.

Therefore, the expected approximation ratio of
Selecting k Voting algorithm is 1 + (1 − 4

3δ) 4ε
3−4ε .

When k is large enough, δ is approximate to 3
4 , and

the ratio is approximate to 1.
We try r(m−L+1)k different L-mer sets in Step

3 of Algorithm 3. For each consensus string, the
voting operation takes O(Lmn) time. So the time
complexity of the whole algorithm is O(rLmk+1n).

In practice, the length of input sequences is from
several hundred to thousands. The time complex-
ity of Selecting k Voting algorithm is too high to be
practical. Therefore, we will introduce a progressive
method to speed up Selecting k Voting algorithm in
the next subsection.

3.4. Progressive Filtering Algorithm

In Selecting k Voting algorithm, we need to enu-
merate all possible L-mer sets of the selected k se-
quences. Then, we need to do voting operations for
r(m−L + 1)k times. To speed up the algorithm, we
can filter out random L-mers to decrease the num-
ber of voting operations. If the number of voting
operations is decreased, the time complexity of the
algorithm will be improved.

Consider two sequences si and sj ∈ S. From
the VM probabilistic model, d(ci, cj) is a relatively
small value. Intuitively, the distance d(ci, cj) tends
to be less than the distance between two random L-
mers. The property of the pairwise distance gives
us the inspiration of designing a progressive filtering
algorithm.

In the Motif Challenge Problem proposed by
Pevzner and Sze 1, the distance between a pair of
planted motifs is often not the shortest in all L-mer
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pairs, because there are O(m2) random L-mer pairs.
Many real data also has the same property. Although
the distance between a pair of planted motifs may
be not the shortest in all L-mer pairs, the distance is
smaller than the distances of a large portion of two
random L-mers. With the above analysis, we design
a progressive filtering algorithm. In the selected k se-
quences {sx1 , sx2 , . . . , sxk

} ⊂ S in Selecting k Voting
algorithm, we first consider two sequences sx1 and
sx2 . In all pairs of L-mers (t1, t2), where t1 ∈ Px1

and t2 ∈ Px2 , we keep the best α pairs of L-mers
based on d(t1, t2) and delete other pairs, where α

is an input parameter. The set of the α pairs of
L-mers is represented by S2. In practice, we can set
α ≈ m1.5. The reason is that if α ≈ m1.5, the planted
motif cx1 is contained in m0.5 pairs on average. As
a result, the probability that (cx1 , cx2) is not in the
m1.5 pairs is small.

Then, we consider the third sequence sx3 . For
each t3 ∈ Px3 and each pair (t1, t2) ∈ S2, we compute
the sum of pair distance d(t1, t2)+d(t1, t3)+d(t2, t3).
Base on this value, we also keep the best α triples
in set S3. Similarly, we do the same operation for
sx4 , . . . , sxk

. Finally, we get a set Sk containing α k-
tuples and use the k-tuples to get consensus strings
and do voting operations. The algorithm is shown in
Fig. 4.

Algorithm 4
Input A set of k sequences sx1 , sx2 , . . . , sxk

∈
S ⊂ Σm, and integers L and α.

Output A set Sk with α k-tuples.
1. Find set S2 of the best α pairs of L-mers

(t1, t2) ∈ Px1 × Px2 based on d(t1, t2).
2. For i = 3 to k

3. In Si−1 × Pxi , find set Si of the
best α i-tuples (t1, t2, . . . , ti) based on∑

t′,t′′∈{t1,t2,...,ti} d(t′, t′′).
4. Output set Sk.

Fig. 4. Progressive filtering algorithm.

The time complexity of the progressive filtering
algorithm is O(αk2Lm). If we combine the progres-
sive filtering algorithm and Selecting k Voting al-
gorithm, the time complexity of the new algorithm

is O(αrLm(k2 + n)), which is much better than
the original Selecting k Voting algorithm. When
α = m1.5, the time complexity is O(rLm2.5(k2 +n)).

We note that the special case of the progressive
filtering algorithm for k = n can be used directly to
find motifs. When k = n, the progressive filtering
algorithm can output α different n-tuples. Then we
can find a consensus string from the L-mers in each
n-tuple and output the best consensus string.

3.5. Motif Refinement

In practice, we can use some heuristic methods to
improve the accuracy of the voting algorithm. Here
we introduce two methods.

First, after we get a consensus string t∗ from a
voting operation, we do not directly output t∗. We
can use the resulting string t∗ as a new starting pat-
tern and do voting operation repeatedly until there
is no further improvement.

Second, we can do local search based on a can-
didate motif consensus. For a candidate motif con-
sensus t∗, we can change one letter in t∗ to get a new
motif consensus t∗∗. There are totally L(|Σ|−1) ways
to change t∗. From the L(|Σ|−1) ways, we select the
best way to change t∗ based on the score function.
The local search can be repeated until there is no
further improvement.

There are some techniques in speeding up the lo-
cal search in implementation. Let a be the selected
L-mer with the minimum distance to t∗ in si, and b

another L-mer in si. Note that d(t∗∗, b) ≥ d(t∗, b)−1
and d(t∗∗, a) ≤ d(t∗, a) + 1. If d(t∗, b) ≥ d(t∗, a) + 2,
then d(t∗∗, b) ≥ d(t∗, a) + 1 ≥ d(t∗∗, a). Therefore,
when we search an L-mer with the minimum distance
to a new motif consensus t∗∗, it is not necessary to
compare all L-mers in si with t∗∗. We only consider
L-mers with distance no more than d(t∗, si)+1 to t∗.
This technique can increase the speed of local search
dramatically. Another technique is to use the bit
representation of L-mers. In this way, the distance
between L-mers can be computed with bit opera-
tions, which are much faster than counting different
letters. This is also an advantage of the local search
method compared with the EM method, which needs
to compute the likelihood of each L-mer and can not
use bit operation strategy to speed up.
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4. EXPERIMENTS

We implemented the algorithms in Java. The soft-
ware is available upon request. To get more starting
patterns, we used selection with replacement instead
of selection without replacement in Step 2 of Algo-
rithm 2 and Algorithm 3 in the implementation. We
tested the algorithms on a PC with an AMD 2.0G
CPU and 1.0G Memory. In the experiments, we gen-
erated several sets of simulated data. Basically, we
followed the settings of the Motif Challenge Problem
proposed by Pevzner and Sze 1.

First, we tested the algorithms on simulated data
of VM model with a small mutation rate. The pa-
rameters were m = 600, L = 15 and ε = 0.55. That
is, the mutation rate was p = 3

4 − 0.55 = 0.2. To
discover the relationship between n and the accuracy
rates of the algorithms, we set n = 3, 5, 10, 20, 40, 100
and generated six groups of data respectively. In
each group of data, we generated 1000 instances. Se-
lecting One Voting algorithm and Selecting k = 3
Voting algorithm were tested with parameter r = 20.
For an instance with n = 20, the running time of Se-
lecting One Voting algorithm is 20.7 seconds. The
time complexity of Selecting k Voting is too high to
finish the tests in reasonable time. In the tests of
Selecting k Voting algorithm, instead of using all L-
mer sets of selected k sequences, we only used L-mer
sets containing planted motifs to do voting opera-
tions. The performance of this method is similar to
that of Selecting k Voting algorithm. So we use the
results of this method for reference. The results are
reported in Table 1.

Table 1. The percentages of correct outputs of Se-
lecting One Voting algorithm and Selecting k = 3 Vot-
ing algorithm with m = 600, L = 15, ε = 0.55 on the
VM model.

Selecting One Selecting k = 3

n = 3 8.0 23.4
n = 5 34.1 52.7
n = 10 86.3 92.6
n = 20 99.7 99.9
n = 40 100 100

n = 100 100 100

Table 1 shows that when the error rate is not
high, both algorithms can find the planted motifs in

most cases. The results also show that the number
of input sequences is an important factor of the ac-
curacy rates of the algorithms. When n increases,
the accuracy rates of the algorithms increase, which
is consistent with the results in the proof in Sec-
tion 3. This fact explains why motifs can be found
more easily in many similar sequences than in a few
sequences.

Second, we increased the error rate from 0.2 to
0.27 (ε = 0.48). Notice that 4/15 ≈ 0.27 and the er-
ror rate 0.27 is corresponding to the (15, 4) FM model
in the Motif Challenge Problem. Similar to the pre-
vious tests, we set m = 600, L = 15 and ε = 0.48,
and generated six groups of simulated data each con-
taining 1000 instances. The results are reported in
Table 2.

Table 2. The percentages of correct outputs of Select-
ing One Voting algorithm, Selecting k = 3 Voting algo-
rithm and Selecting k = 3 Voting algorithm with pro-
gressive filtering, with m = 600, L = 15, ε = 0.48 on the
VM model.

Selecting Selecting Selecting k = 3 with
One k = 3 Progressive Filtering

n = 3 1.1 8.4 1
n = 5 6.5 21.7 5
n = 10 38.7 59.9 38
n = 20 89.6 94.9 88
n = 40 99.9 100 99
n = 100 100 100 100

When the error rate increases, the accuracy rates
of Selecting One Voting algorithm decrease much
faster than those of Selecting k Voting algorithm.
The tests show that Selecting k Voting algorithm is
more powerful than Selecting One Voting algorithm.

Although Selecting k Voting algorithm is pow-
erful, the time complexity of the algorithm is too
high. To speed up Selecting k Voting algorithm, we
proposed a progressive filtering algorithm. To eval-
uate the progressive filtering algorithm, we selected
100 instances from each group of previous simulated
data with error rate 0.27, and tested Selecting k = 3
Voting algorithm with progressive filtering on the in-
stances. The parameters were set to r = 20 and
α = 20000. For an instance with n = 20, the running
time of Selected k Voting algorithm with progressive
filtering is 725 seconds. The results are also reported
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in Table 2. The experimental results show that Se-
lecting k Voting algorithm with progressive filtering
has good accuracy rates, while the running time is
improved significantly compared with the original Se-
lecting k Voting algorithm.

Since Selecting One Voting and Selecting k = 3
Voting algorithm with progressive filtering have good
performance and short running time, we tested their
performance on difficult cases. We compared the
algorithms with the well known random projection
algorithm 23. We followed the test method of Ta-
ble 1 in Ref. 23 and tested on several difficult FM
models where n = 20, m = 600 and (L, D) =
(12, 3), (14, 4), (16, 5), (18, 6) and (19, 6). For each
model, 100 instances were generated. For Select-
ing One Voting, we selected all 20 sequences to do
voting operations. For Selecting k = 3 Voting algo-
rithm with progressive filtering, we set r = 100 and
α = 20000.

In the difficult FM models, some random L-
mers in input sequences may have small distances
to the motif consensus c and only a part of planted
motifs can be found. We did tests on the diffi-
cult FM models and found that, in some extreme
cases, the motif consensus c does not have the op-
timal score function, and another length L string
c′ with d(c, c′) = 1 has the optimal score function∑

1≤i≤n d(c′, si) <
∑

1≤i≤n d(c, si). In this case,
even if our algorithm can find the motif consensus
c, the motif consensus will not be output as the op-
timal solution.

In the experiments of FM model, we followed
the objective function used in Refs. 1 and 23. We
assumed that D was known and counted the number
of mutated motifs with distance no more than D to
the motif consensus as the score function. Although
it is not practical to use a fixed D in real problems,
the function is used for comparison.

The accuracy rates of the random projection al-
gorithm are from Table 1 in Ref. 23. The details
are listed in Table 3. Since each input instance con-
tains only 20 sequences, Selecting One Voting algo-
rithm can only select 20 planted motifs as the start-
ing patterns. Moreover, the planted motifs have
many errors. Therefore, the accuracy rates of Se-
lecting One Voting algorithm are not good for some
difficult models such as (16, 5) and (18, 6) models.

For Selecting k = 3 Voting algorithm with progres-
sive filtering, there are many possible starting pat-
terns and the consensus strings contain less errors.
Therefore, it performs well on the difficult models
and outperforms the best known random projection
algorithm. From the experimental results, we can
conclude that, although the ideas of our algorithms
are simple, our algorithms are effective and powerful
in finding planted motifs.

Table 3. The percentages of correct outputs of the random
projection algorithm, Selecting One Voting algorithm and Se-
lecting k = 3 Voting algorithm with progressive filtering (The
results of PROJECTION are from Table 1 in Ref. 23).

L D PROJECTION Selecting Selecting k = 3 with
One progressive filtering

12 3 96 97 100
14 4 86 91 100
16 5 77 53 100
18 6 82 36 99
19 6 98 90 100

5. CONCLUSION

In this paper, we studied the planted motif problem.
We proposed Selecting One Voting algorithm and Se-
lecting k Voting algorithm for finding planted motifs.
We formally proved the common belief that a large
number of input sequences can help us find motifs.
To speed up Selecting k Voting algorithm, we also
gave a progressive filtering algorithm. The experi-
mental results validated the relationship between the
number of input sequences and the accuracy rates of
our algorithms, and showed that Selecting k algo-
rithm with progressive filtering is powerful in finding
planted motifs in difficult planted motif models.
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