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Almost every cellular process requires the interactions of pairs or larger complexes of proteins. High throughput

protein-protein interaction (PPI) data have been generated using techniques such as the yeast two-hybrid systems,

mass spectrometry method, and many more. Such data provide us with a new perspective to predict protein functions
and to generate protein-protein interaction networks, and many recent algorithms have been developed for this purpose.

However, PPI data generated using high throughput techniques contain a large number of false positives. In this paper,

we have proposed a novel method to evaluate the support for PPI data based on gene ontology information. If the
semantic similarity between genes is computed using gene ontology information and using Resnik’s formula, then our

results show that we can model the PPI data as a mixture model predicated on the assumption that true protein-

protein interactions will have higher support than the false positives in the data. Thus semantic similarity between
genes serves as a metric of support for PPI data. Taking it one step further, new function prediction approaches

are also being proposed with the help of the proposed metric of the support for the PPI data. These new function

prediction approaches outperform their conventional counterparts. New evaluation methods are also proposed.

1. INTRODUCTION

Protein-protein interactions (PPI) are essential for
cellular activities considering the fact that almost
every biological function requires the cooperation
of many proteins. Recently, many high-throughput
methods have been developed to detect pairwise
protein-protein interactions. These methods include
the yeast two-hybrid approach, mass spectrometry
techniques, genetic interactions, mRNA coexpres-

sion, and in silico methods1. Among them, the yeast
two-hybrid approach and mass spectrometry tech-
niques aim to detect physical binding between pro-
teins.

The huge amount of protein-protein interac-
tion data provide us with a means to begin elu-
cidating protein function. Functional annotation
of proteins is a fundamental problem in the post-
genomic era. To date, a large fraction of the pro-
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teins have no assigned functions. Even for one of the
most well-studied organisms such as Saccharomyces
cerevisiae, about a quarter of the proteins remain
uncharacterized2.

There are several functional annotation sys-
tems. These annotation systems include COGs
(Clusters of Orthologous Groups)3, Funcat (Func-
tional Catalogue)4 and GO (Gene Ontology)5. GO
is the most comprehensive system and is widely used.
In this paper, we will focus on functional annotations
based on GO terms associated with individual genes
and proteins.

A lot of previous work has been done on protein
function prediction by using the recently available
protein-protein interaction data (see review by Sha-
ran et al.2). The simplest and most direct method for
function prediction determines the function of a pro-
tein based on the known function of proteins lying in
its neighborhood in the PPI network. Schwikowski
et al.6 used the so-called majority-voting technique
to predict up to three functions that are frequently
found among the annotations of its network neigh-
bors. Hishigaki et al.7 approached this problem by
also considering the background level of each func-
tion across the whole genome. The χ2-like score was
computed for every predicted function. Hua et al.8

proposed to improve the prediction accuracy by in-
vestigating the relation between network topology
and functional similarity.

In contrast to the local neighborhood approach,
several methods have been proposed to predict func-
tions using global optimization. Vazquez et al.7 and
Nabieva et al.9 formulated the function prediction
problem as a minimum multiway cut problem and
provided an approximation algorithm to this NP-
hard problem. Vazquez et al.7 used a simulated an-
nealing approach and Nabieva et al.9 applied a in-
teger programming method. Karaoz et al.10 used a
similar approach but handled one annotation label at
a time. Several probabilistic models were also pro-
posed for this task such as the Markov random field
model used by Letovsky et al.11 and Deng et al.12,
and a statistical model used by Wu et al.13.

Despite some successful applications of the afore-
mentioned algorithms in functional annotation of un-
characterized proteins, many challenges still remain.
One of the big challenges is that PPI data has a
high degree of noise1. Most methods that generate

interaction networks or perform functional predic-
tion do not have a preprocessing step to clean the
data or filter out the noise. Although some meth-
ods include the reliability of experimental sources as
suggested by Nabieva et al.14, the reliability estima-
tions are crude and do not consider the variations
in the reliability of instances within the same ex-
perimental source. Some approaches were proposed
to predict protein-protein interaction based on evi-
dence from multi-source data. The evidence score
calculated from multi-source data is a type of reliabil-
ity measure of the protein-protein interaction data.
Such approaches include those developed by Jansen
et al.15, Bader et al.16, Zhang et al.17, Ben-Hur et
al.18, Lee et al.19, Qi et al.20, and many more. Jansen
et al.15 combined multiple sources of data using a
Bayes classifier. Bader et al.16 developed statistical
methods that assign a confidence score to every inter-
action. Zhang et al.17 predicted co-complexed pro-
tein pairs by constructing a decision tree. Ben-Hur
et al.18 used kernel methods for predicting protein-
protein interactions. Lee et al.19 developed a proba-
bilistic framework to derive numerical likelihoods for
interacting protein pairs. Qi et al.20 used a Mixture-
of-Experts method to predict the set of interacting
proteins. The challenges of integrating multi-source
data are manily due to the heterogeneity of the data
and the effect of a functionally-biased reference set.
Another problem is that most multi-source data are
unstructured but often correlated.

Another important shortcoming of most function
prediction methods is that they do not take all an-
notations and their relationships into account. In-
stead, they have either used arbitrarily chosen func-
tional categories from one level of annotation hierar-
chy or some arbitrarily chosen so-called informative
functional categories based on some ad hoc thresh-
olds. Such arbitrarily chosen functional categories
only cover a small portions of the whole annotation
hierarchy, making the predictions less comprehensive
and hard to compare. Predicting functions using the
entire annotation system hierarchy is necessary and
is a main focus of this paper.

In this paper, we propose a method to address
the above two problems. We hypothesize that the
distribution of similarity values of pairs of proteins
can be modeled as a sum of two log-normal distribu-
tions (i.e., a mixture model) representing two popu-
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lations – one representing pairs of proteins that in-
teract with high support (high confidence), and the
other representing pairs that interact with low sup-
port (low confidence) (section 2.2). The parameters
of the mixture model were then estimated from a
large database. This mixture model was then used to
differentiate interactions with high confidence from
the ones that have low confidence, and was integrated
into the function prediction methods. A new evalu-
ation method was also proposed to evaluate the pre-
dictions (section 2.4). The new evaluation method
captures the similarity between GO terms and re-
flects the relative hierarchical positions of predicted
and true function assignments.

Note that while PPI data involves proteins, GO
terms are associated with genes and their products.
For the rest of this paper, we will use the terms genes
and their associated proteins interchangeably.

Fig. 1. An example showing the hierarchy of sample GO

terms.

2. METHODS

In this section, we first introduce the concepts of
similarity between genes calculated based on gene
ontology. Next, we investigate inherent properties
of some previously known methods used to calculate
such similarity. Then a mixture model is introduced
to model the distribution of the similarity values be-
tween pairs of genes. Next, we present the new func-
tion prediction methods using this mixture model.
Finally, we present improved evaluation methods for
function prediction.

2.1. Similarity between Genes Based on

Gene Ontology Data

Suppose that a gene A is associated with the fol-
lowing GO terms {ta1, ..., tai}, and that a gene B is

associated with the following GO terms {tb1, ..., tbj},
The similarity between genes A and B based on gene
ontology is defined as

simX(A,B) = max
i,j

{simX(tai, tbj)}. (1)

where simX(tai, tbj) is the similarity between the GO
terms tai and tbj using method X.

Thus, in order to calculate the similarity between
genes, we need to calculate the similarity between
individual GO terms, for which many methods have
been proposed. Below we discuss the methods pro-
posed by Resnik21, Jiang and Conrath22, Lin23, and
Schlicker et al.24. The methods proposed by Resnik,
Jiang and Conrath, and Lin have been used in other
domain and was introduced to this area by Lord et
al.25.
Resnik:

simR(t1, t2) = max
t∈S(t1,t2)

{IC(t)} (2)

Jiang-Conrath:

distJC(t1, t2) = min
t∈S(t1,t2)

{IC(t1) + IC(t2)− 2IC(t)}

(3)
Lin:

simL(t1, t2) = max
t∈S(t1,t2)

{
2IC(t)

IC(t1) + IC(t2)

}
(4)

Schlicker:

simS(t1, t2) = max
t∈S(t1,t2)

{
2IC(t)

IC(t1) + IC(t2)
(1 + IC(t))

}
.

(5)
Here IC(t) is the information content of term t:

IC(t) = − log (p(t)), (6)

where p(t) is defined as freq(t)/N , freq(t) is the
number of genes associated with term t or with any
child term of t in the data set, N is total number
of genes in the genome that have at least one GO
term associated with them, and S(t1, t2) is the set of
common subsumers of the terms t1 and t2. Note that
the Jiang-Conrath proposal uses the complementary
concept of distance instead of similarity.

The basic objective of these methods is to cap-
ture the specificity of each GO term and to calcu-
late the similarity between GO terms in a way that
reflects their positions in the GO hierarchy. How-
ever, as discussed below, we argue that the meth-
ods of Lin and Jiang-Conrath are not best suited
for this purpose. For example, consider the non-root
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terms t2 (GO:0010468) and t3 (GO:0065007) in Fig-
ure 1. Then distJC(t2, t2) = distJC(t3, t3) = 0, and
simL(t2, t2) = simL(t3, t3) = 1. In other words,
the methods of Lin and Jiang-Conrath cannot dif-
ferentiate between two pairs of genes, one of which
is associated with the term t2 (GO:0010468), and
the other with t3 (GO:0065007) because it ignores
the fact that t2 (GO:0010468, regulation of gene
expression) is more specific than t3 (GO:0065007,
biological regulation). In contrast, simR(t2, t2) =
− log p(t2) > simR(t3, t3) = − log p(t3), if t2 is
more specific than t3, thus reflecting the relative
positions (and the specificities) of t2 and t3 in
the GO hierarchy. For example, in Saccharomyces
cerevisiae, genes YCR042C and YMR227C encode
TFIID subunits. Both are annotated with GO terms
GO:0000114 (G1-specific transcription in mitotic cell
cycle) and GO:0006367 (transcription initiation from
RNA polymerase II promoter). According to the
definition, simL(YCR042C,YMR227C) = 1 and
distJC(YCR042C,YMR227C) = 0. Now consider
another pair of genes YCR046C and YOR063W,
both of which encode components of the ribosomal
large subunits, however, one is mitochondrial and the
other cytosolic. Both are annotated with the GO
term GO:0006412 (translation). Again, according to
the definition, simL(YCR046C,YOR063W) = 1 and
distJC(YCR046C,YOR063W) = 0. Thus, we have

simL(YCR042C,YMR227C)

= simL(YCR046C,YOR063W) = 1,

and

distJC(YCR042C,YMR227C)

= distJC(YCR046C,YOR063W) = 0.

But clearly, the annotations of genes YCR042C and
YMR227C are much more specific than the anno-
tations of genes YCR046C and YOR063W. So the
similarity between genes YCR042C and YMR227C
should be greater than the similarity between genes
YCR046C and YOR063W. The similarity between
genes calculated by the method of Resnik reflects
this fact, since

simR(YCR042C,YMR227C)

= − log p(GO : 0000114) = 9.69

> simR(YCR046C,YOR063W)

= − log p(GO : 0006412) = 4.02.

2.2. Mixture Model and Parameter

Estimation

The contents of this entire subsection are among the
novel contributions of this paper.

As mentioned earlier, PPI data generated using
high throughput techniques contain a large number
of false positives1. Thus the PPI data set contains
two groups, one representing true positives and the
other representing false positives. However, differen-
tiating the true and false positives in a large PPI data
set is a big challenge due to the lack of good quan-
titative measures. An ad hoc threshold can be used
for such measures. Our proposed method avoids such
choices. Instead, we propose a mixture model to dif-
ferentiate the two groups in a large PPI data set. One
group contains pairs of interacting proteins that have
strong support, the other of pairs of interacting pro-
teins that have weak or unknown support. Here we
hypothesize that the similarity between genes based
on Gene Ontology using the method of Resnik (see
Eq.(2)) helps to differentiate between the two groups
in the PPI data. We conjecture that the true posi-
tives will have higher gene similarity values than the
false positives. A mixture model is used to model
the distribution of the similarity values (using the
Resnik method for similarity of Biological Process
GO terms). In particular,

p(x) = w1p1(x) + w2p2(x), (7)

where p1(x) is the probability density function for
the similarity of pairs of genes for pairs of genes with
true interactions in the PPI data, and p2(x) is the
probability density function for the similarity of pairs
of genes in the false positives; w1 and w2 are the
weights for p1 and p2, respectively. Given a large
data set, p1, p2, w1, and w2 can be inferred by the
maximum likelihood estimation (MLE) method. For
our case, we conclude that the similarity of pairs of
genes can be modeled as a mixture of two log-normal
distributions with probability density functions

p1(x) =
1√

2πσ1x
exp

(
− (log x− µ1)

2

2σ2
1

)
(8)

and

p2(x) =
1√

2πσ2x
exp

(
− (log x− µ2)

2

2σ2
2

)
. (9)

After parameter estimation, we can calculate a value
s such that for any x > s, p(x ∈ Group 2) > p(x ∈
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Group 1). This value s is the threshold meant to dif-
ferentiate the PPI data with high support (Group 2)
from those with low support (Group 1). The further
away the point is from s, the greater is the confi-
dence. Furthermore, the confidence can be measured
by computing the p-value since the parameters of dis-
tribution are known.

Thus our mixture model suggests a way of differ-
entiating the true positives from the false positives by
only looking at the similarity value of pairs of genes
(using the method of Resnik in Eq.(2) for similar-
ity of Biological Process GO terms), and by using a
threshold value specified by the model (Group 1 con-
tains false positives and Group 2 contains the true
positives). Note that no ad hoc decision are involved.

2.3. Function Prediction

The major advantage of the method presented above
is that the p-values obtained from the mixture model
provide us with a metric of support of a reliability
measure for the PPI data set. However, the limi-
tation of our technique is that it can only be ap-
plied to pairs of genes with annotations. In order
to overcome this limitation, it has been suggested
that function prediction should be performed first
to predict the functional annotation of unannotated
genes. As mentioned earlier, many computational
approaches have been developed for this task2. How-
ever, the prediction methods are prone to high false
positives. Schwikowski et al.6 proposed the Majority-
Voting (MV) algorithm for predicting the functions
of an unannotated gene u by the following objective
function,

αu = arg max
α

∑
v∈N(u),αv∈A(v)

δ(αv, α), (10)

where N(u) is the set of neighbors of u, A(v) is the
set of annotations associated with gene v, αi is the
annotation for gene i, δ(x, y) is a function that equals
1 if x = y, and 0 otherwise. In other words, gene u

is annotated with the term α associated with the
largest number of its neighbors. The main weakness
of this conventional majority voting algorithm is that
it weights all its neighbors equally, and is prone to
errors because of the high degree of false positives
in the PPI data set. Using the metric of support
proposed in section 2.2, we propose a modified “Re-
liable” Majority-Voting (RMV) algorithm which as-

signs a functional annotation to an unannotated gene
u based on the following objective function

αu = arg max
α

∑
v∈N(u),αv∈A(v)

wv,uδ(αv, α), (11)

where wv,u is the reliability of the interaction be-
tween genes v and u, that is, wv,u = sim(A(v), {α}).

Another weakness of the conventional MV algo-
rithm is that it only allows exact matches of anno-
tations and will reject even approximate matches of
annotations. Here we propose the Weighted Reliable
Majority-Voting (WRMV) method, a modification of
RMV, with the following objective function

αu = arg max
α

∑
v∈N(u)

wv,u

(
max

αv∈A(v)
sim(αv, α)

)
,

(12)
where sim(x, y) is a function that calculates the sim-
ilarity between the GO terms x and y.

Fig. 2. An example showing the hierarchy of GO terms as-
sociated with a set of genes. GO term t2 is associated with

genes v1 and v2; GO term t4 is associated with genes v3 and

v4; GO term t5 is associated with genes v5 and v6.

Note that the aforementioned algorithms only
predict one functional annotation term for an un-
characterized gene. But they can be adapted to pre-
dict k functional annotation terms for any uncharac-
terized gene by picking the k best values of α in each
case.

The example in Figure 2 illustrates the neces-
sity of considering both the metric of support for the
PPI data and the relationships between GO terms
during function prediction. Assume we need to pre-
dict functions for a protein u, whose neighbors in
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the interaction network include proteins v1, v2, v3,
v4, v5, and v6. As shown in Figure 2, suppose pro-
teins v1 and v2 are annotated with GO term t2, v3

and v4 with GO term t4, and v5 and v6 with GO
term t5. According to the MV algorithm, protein
u will be assigned all the GO terms t2, t4, and t5,
since each of the three terms has equal votes (2 in
this case). However, as can be seen from Figure 2,
GO term t5 is more specific than GO terms t2 and
t4. So GO term t5 should be the most favored as
an annotation for protein u, assuming that all the
PPI data are equally reliable. On the other hand,
if the interactions between proteins u and v5 and v6

are less reliable (or false positives), then there is less
support for associating protein u with term t5.

Note that the metric of support can also be used
to improve other approaches besides the MV algo-
rithm. In this paper, we have employed only local ap-
proaches, because as argued by Murali et al.26 meth-
ods based on global optimization do not perform bet-
ter than local approaches based on majority-voting
algorithm.

2.4. Evaluating the Function Prediction

Several measures are possible in order to evaluate the
function prediction methods proposed in section 2.3.
For the traditional cross-validation technique, the
simplest method to perform an evaluation is to use
precision and recall, defined as follows:

Precision =
∑

i ki∑
i mi

, Recall =
∑

i ki∑
i ni

, (13)

where ni is the number of known functions for the
protein i, mi is the number of predicted functions
for the protein i when hiding its known annotations,
and ki is the number of matches between known
and predicted functions for protein i. The conven-
tional method to count the number of matches be-
tween the annotated and predicted functions only
considers the exact overlap between predicted and
known functions, ignoring the structure and rela-
tionship between functional attributes. Using again
the simple example illustrated in Figure 2, assume
that the correct function annotation of a protein u is
GO term t4, while term t1 is the only function pre-
dicted for it. Then both recall and precision would
be reported to be 0 according to the conventional
method. However, it overlooks the fact that GO

term t4 is quite close to the term t1. Here we in-
troduce a new definition for precision and recall. For
a known protein, suppose the known annotated func-
tional terms are {to1, to2, ..., ton}, and the predicted
terms are {tp1, tp2, ..., tpm}. We define the success of
the prediction for function toi as

RecallSucess(toi) = max
j

sim(toi, tpj),

and the success of the predicted function tpj as

PrecisionSuccess(tpj) = max
i

sim(toi, tpj).

We define the new precision and recall measures as
follows:

Precision =

∑
j PrecisionSuccess(tpj)∑

j sim(tpj , tpj)
, (14)

Recall =
∑

i RecallSucess(toi
)∑

i sim(toi , toi)
. (15)

3. EXPERIMENTAL RESULTS

3.1. Data Sets

Function prediction methods based on a protein-
protein interaction network can make use of two data
sources - the PPI data set and a database of avail-
able functional annotations. In this section, we will
introduce the two data sources we used in our exper-
iments.

3.1.1. Gene Ontology

We used the available functional annotations from
the Gene Ontology (GO) database5. GO consists of
sets of structured vocabularies each organized as a
rooted directed acyclic graph (DAG), where every
node is associated with a GO term and edges repre-
sent either a “IS-A” or a “PART-OF” relationship.
Three independent sets of vocabularies are provided:
cellular component, molecular function and biologi-
cal process. Generally, a gene is annotated by one
or more GO terms. The terms at the lower levels
correspond to more specific function descriptions. If
a gene is annotated with a GO term, it is also an-
notated with the ancestors of that GO term. Thus,
the terms at the higher levels have more associated
genes. The GO database is constantly being up-
dated; we used version 5.403, and the gene-term as-
sociations for Saccharomyces cerevisiae from version
1.1344 from SGD.
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3.1.2. Protein-Protein Interaction Data

Several PPI data sets were used in this paper for our
experiments. The first PPI data set was downloaded
from the BioGRID database27. Henceforth, we will
refer to this data set as the BioGRID data set. The
confirmation number for a given pair of proteins is
defined as the number of independent confirmations
that support that interaction. A pseudo-negative
data set was also generated by picking pairs of pro-
teins that were not present in the PPI data set. Thus
each pair of proteins in the pseudo-negative data set
has a confirmation number of 0. There were 87920
unique interacting pairs in total with confirmation
numbers ranging from 0 to 40. This data set is used
to estimate the metric of support for pairs of pro-
teins.

Two so-called gold-standard data sets (gold-
standard positive and gold-standard negative) were
used to test the performance of our method. These
two gold-standard data sets were hand-crafted by
Jansen et al.15. The gold-standard positives came
from the MIPS (Munich Information Center for Pro-
tein Sequence) complexes catalog28 since the proteins
in a complex are guaranteed to bind to each other.
The number of gold-standard positive pairs used in
our experiments was 7727. A gold-standard negative
data set is harder to define. Jansen et al. created
such a list by picking pairs of proteins known to be
localized in separate subcellular compartments15, re-
sulting in a total of 1838501 pairs.

3.2. Results on Using the Mixture Model

The similarity between genes based on the Biologi-
cal Process categorization of the GO hierarchy was
calculated using Eq.(1) and Eq.(2). The method was
separately applied to the BioGRID data set, in which
PPI data have non-negative, integral confirmation
numbers k. Interacting pairs of proteins from Bi-
oGRID data set were grouped based on their confir-
mation number. It is clear that the PPI data set may
include a large number of false positives. Thus, the
challenge is to differentiate the true interactions from
the false ones. We hypothesize that each of these
groups generated above contains two subgroups, one
representing pairs of proteins that interact with high
support, and the other representing pairs that inter-
act with low support. Data sets with larger confir-

mation numbers are expected to have less noise.
As shown in Figure 3, a histogram of the (log-

arithm of) similarity measure (using the Resnik
method for similarity of GO terms) was plotted for
pairs of genes within each group (i.e., same degree
of confirmation from the PPI data set). In order
to visualize the whole histogram, we have arbitrar-
ily chosen log(0) = log(0.01) ≈ −4.61. Based on
our earlier assumptions, we conjectured that each of
these histograms can be modeled as a mixture of two
normal distributions (since the original is a mixture
two log-normal distribution), one for the Group 1,
and the other for the Group 2.

Fig. 3. Distribution of similarity of genes based on the
Resnik method using: (a) the entire PPI data set, (b) 1 or

more independent confirmations, (c) 2 or more independent

confirmations, (d) 3 or more independent confirmations, (e) 4
or more independent confirmations, (f) 5 or more independent

confirmations.

All the plots in Figure 3 have three well-
separated subgroups. Note that the leftmost sub-
group corresponds to those pairs of genes for which at
least one has the GO terms associated with the root
of the GO hierarchy; the subgroup in the middle cor-
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responds to those pairs of genes at least one of which
is associated with a node close to the root of the GO
hierarchy. The reason for the existence of these two
subgroups is that there are some PPI data sets con-
taining genes with very non-specific functional anno-
tations. As we can see from Figure 3, the larger the
confirmation number, the less pronounced are these
two groups. Thus, for the two leftmost subgroups,
similarity of genes based on GO annotation cannot
be used to differentiate signal from noise (Thus func-
tion prediction for these genes are necessary and is
an important focus of this paper). However, for PPI
data containing genes with specific functions (i.e.,
the rightmost group in the plots of Figure 3), simi-
larity of genes in this group was fitted to a mixture
model as described in section 2.2. In fact, a fit of
the rightmost group with two normal distributions
is also shown in the plots of Figure 3. The fit is
excellent (with R-squared value more than 98 per-
cent for the data set with confirmation number 1
or more). The details are shown in Figure 4. We
are particularly interested in the fit of the data set
with confirmation 1 and above. The estimated pa-
rameters are µ1 = 0.3815, σ1 = 0.4011, µ2 = 1.552,
σ2 = 0.4541, w1 = 0.23, and w2 = 0.77. From the fit,
we can calculate a value s = 0.9498 such that for any
x > s, p(x ∈ Group 2) > p(x ∈ Group 1). This is
the threshold meant to differentiate the two groups.
The further away the point is from s, the greater
the confidence. Furthermore, the confidence can be
measured by computing the p-value since the param-
eters of the distribution are known. Further investi-
gation of these two groups reveal that proteins pairs
in Group 2 contain proteins that have been well an-
notated (associating with GO terms that have levels
larger or equal to 3). The components of Group 1 are
more complicated. It consists of the interactions be-
tween two poorly annotated genes, the interactions
between a well annotated gene and a poorly anno-
tated gene, and the interactions between two well
annotated genes.

The results of further experiments performed on
the PPI data sets from the human proteome27 also
displayed similar results (data not shown).

To test the power of our estimation, we applied it
to the gold-standard data set. In particular, for each
pair of genes in the gold-standard data set, we cal-
culated the similarity between the genes in that pair

and compared it to the threshold value s = 0.9498.
If the similarity was larger than s, we labeled it as
Group 2, otherwise, as Group 1. We then calculated
the percentage of pairs of proteins in Group 2 and
Group 1 in the gold-standard positive and negative
data sets.

Fig. 4. Parameters for the density function, fitting p(x) =

w1p1(x) + w2p2(x) for the metric of support for PPI data
with different confirmation numbers. Group 1 corresponds to

noise, and Group 2 to signal.

As shown in Table 1, majority of the pairs in the
gold-standard positive data (GSPD) set were labeled
correctly as Group 2 (99.61%), and most of the pairs
in the gold-standard negative data set (GSND) were
correctly labeled as Group 1 (83.03%). These high
percentage values provide further support for our
mixture-model based technique. It is worth point-
ing out that the GSPD set is clearly more reliable
than the GSND set as described in section 3.1.2.

Table 1. Mixture model on gold-standard data set.

total PPI pairs subgroup PPI pairs percentage

GSPDa 7727 76961 99.61

GSNDb 1838501 15264672 83.03

a Golden Standard Positive Data set.
b Golden Standard Negative Data set.
1 Number of PPI pairs in Group 2.
2 Number of PPI pairs in Group 1.

One possible objection to the application in this
paper is that the results of the mixture model is an
artifact of functional bias in the PPI data set. To ad-
dress this objection, we applied the mixture model
to PPI data after separating out the data from the
three main different high-throughput methods, i.e.,
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yeast two-hybrid systems, mass spectrometry, and
synthetic lethality experiments. As reported by Mer-
ing et al.1, the overlap of PPI data detected by the
different methods is small, and each technique pro-
duces a unique distribution of interactions with re-
spect to functional categories of interacting proteins.
In other words, each method tends to discover dif-
ferent types of interactions. For example, the yeast
two-hybrid system largely fails to discover interac-
tions between proteins involved in translation; mass
spectrometry method predicts relatively few interac-
tions for proteins involved in transport and sensing.

Fig. 5. Distribution of similarity of pairs of genes based

on the method by Resnik for PPI data generated by high-
throughput methods yeast two-hybrid systems (top), mass
spectrometry (middle), and Synthetic Lethality (bottom).

In summary, if the PPI data set has a func-
tional bias, then the PPI data produced by individ-
ual methods should have an even greater functional
bias, with each one biased toward different functional
categories.

Despite the unique functional bias of each
method, the mixture model when applied to the PPI
data from the individual methods showed the same
bimodal mixture distribution (Figure 5), indicating
that the mixture model is tolerant to severe func-
tional bias and is therefore very likely to be a the
reflection of inherent features of the PPI data.

Fig. 6. Distribution of similarity of genes based on method
Lin, Jiang-Conrath, and Schlicker for PPI data with confir-

mation number of 1 and more (Confirmation # 1).

In order to justify our choice of the Resnik sim-
ilarity measure, we also applied the Lin (Eq.(4)),
Jiang-Conrath (Eq.(3)), and Schlicker (Eq.(5))
methods to the PPI data set with confirmation num-
ber 1 or more. The results shown in Figure 6 con-
firms our analysis that the Lin and Jiang-Conrath
methods are inappropriate for similarity computa-
tion. As shown in Figure 6, the histogram of simi-
larity values between genes calculated by Lin’s for-
mula has a peak at the rightmost end. Addition-
ally, the rest of the histogram fails to display a
bimodal distribution, which is necessary to flush
out the false positives. Furthermore, the peak in-
creases with increasing confirmation number (data
not shown). In contrast, the histograms of distance
measures between genes calculated by the Jiang-
Conrath’s method (middle in Figures 6) produces a
peak at its leftmost end with a unimodal distribu-
tion for the remaining, thus showing that the mix-
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ture model is unlikely to produce meaningful results.
Schlicker’s method was devised to combine Lin’s and
Resnik’s methods. However, its performance was
similar to that of Lin’s method (see in Figure 6).
We also applied these methods to the same PPI data
set, but with higher confirmation numbers (data not
shown). Since those data sets are likely to have fewer
false positives, it is no surprise that the histograms
were even less useful for discriminatory purpose.

Finally, we tried our methods on the other
two GO categorizations, i.e., cellular component and
molecular function. Since those categorizations are
less comprehensive with a large number of unan-
notated genes, similarity calculations based on the
them did not adequately reflect the reliability of PPI
data (results not shown).

Fig. 7. Precision-recall analysis of five function prediction
methods using the conventional evaluation metric as described

in Eq.(13) for 1) Chi-Square method (CS), 2) Majority-Voting

method (MV), 3) Reliable Majority-Voting method (RMV),
4) Weighted Reliable Majority-Voting (WRMV), and 5) FS-

Weighted Averaging method (WA).

3.3. Function Prediction

Five different function prediction approaches based
on neighborhood-counting – three introduced in sec-
tion 2.3, one introduced in section 1, and the last one
called FS-Weighted Averaging method (WA) devel-
oped by Hua et al.8 – were compared. We note that
in our implementation of the WA method, we use the
similarity measure given in Eq.(2) from Hua et al.8

to compute the reliability measure, wv,u, in Eq.(11)
of this paper. The precision and recall for each ap-
proach was calculated on the BioGRID PPI data
set using 5-fold cross validation. First, a conven-
tional evaluation method was employed, which con-
sisted of computing precision and recall as a simple
count of the predictions for the gold-standard posi-

tive and negative sets. As shown in Figure 7, when
conventional evaluation methods were applied to cal-
culate the precision and recall, the FS-Weighted Av-
eraging (WA) method performed the best, and there
was no significant difference among the other three
methods (MV, RMV, and WRMV). However, when
the new evaluation method (as described in Eq.(14)
and Eq.(15)) was applied, both WA and WRMV
performed well (see Figure 8). Among the three
versions of Majority-Voting methods (MV, RMV,
and WRMV), Weighted Reliable Majority-Voting
method performed the best, and the conventional
Majority-Voting method performed the worst.

Fig. 8. Precision-recall analysis of five function predic-

tion methods using new evaluation metric as described

in Eq.(14) and Eq.(15) for 1) Chi-Square method (CS),
2) Majority-Voting method (MV), 3) Reliable Majority-

Voting method (RMV), 4) Weighted Reliable Majority-Voting

method (WRMV), and 5) FS-Weighted Averaging method
(WA).

In order to see the effectiveness of the new eval-
uation metric, the precision-recall curves of the three
function prediction methods (RMV, WRMV and
WA) using new and conventional evaluation met-
rics are compared by combining the related curves
in Figure 7 and Figure 8. As shown in Figure 9, the
proposed new evaluation method has two advantages
over the conventional one. First, the new evaluation
method provides wider precision and recall coverage,
that is, at the same precision (recall) value, the recall
(precision) calculated by the new method is larger
than that calculated by the old one. This is due to
the strict definition of conventional precision and re-
call, while ignoring the fact that some pairs of true
and predicted annotations are very similar to each
other. Second, the new evaluation method has more
power to measure the performance of function pre-
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diction methods. For example, the precision-recall
curves of the function prediction methods RMV and
WRMV diverge based on the new evaluation met-
ric, but are roughly indistinguishable based on the
conventional metric (Figure 9).

Fig. 9. Comparison of precision-recall analysis of three

Majority-Voting function prediction methods using new eval-

uation metric as described in Eq.(14) and Eq.(15) for 1)
Weighted Reliable Majority-Voting method (WRMV new), 2)

FS-Weighted Averaging method, (WA new), and 3) Reliable
Majority-Voting method (RMV new), and conventional met-

ric as described in Eq.(13) for 4) Weighted Reliable Majority-

Voting method (WRMV), 5) FS-Weighted Averaging method,
(WA), and 6) Reliable Majority-Voting method (RMV).

4. DISCUSSION AND CONCLUSIONS

Function predictions based on PPI data were per-
formed using two sources of data: GO annotation
data and BioGRID PPI data. Previous research
on this topic focused on the interaction network in-
ferred from PPI data, while ignoring the topology of
the hierarchy representing the annotations. In some
cases, only a fraction of the terms were used. Thus
the resulting predictions were not comparable. For
PPI data, quantitatively assessment of confidence for
pairs of proteins becomes a pressing need.

The research described in this paper addresses
the above shortcomings. Our significant contribu-
tions are:

(1) A mixture model was introduced to model PPI
data. The parameters of the model were esti-
mated from the similarity of genes in the PPI
data set. This mixture model was used to de-
vise a metric of support for protein-protein in-
teraction data. It is based on the assumption
that proteins having similar functional annota-
tions are more likely to interact.

(2) New function prediction methods were proposed
to predict the function of proteins in a consis-

tent way based on the entire hierarchical annota-
tion system. Results show that the performance
of the predictions was improved significantly by
integrating the mixture model described above
into the function prediction methods.

(3) A newly proposed evaluation method provides
the means by which systematic, consistent, and
comprehensive comparison of different function
prediction methods is possible.

In this paper, we have mainly focused on intro-
ducing a metric of support for the PPI data using GO
information, and the application of such a metric in
function prediction for uncharacterized proteins. Al-
though the fact that proteins having similar func-
tion annotations are more likely to have interactions
has been confirmed in the literature, we provide a
quantitative measure to estimate the similarity, and
to uncover the relationship between the metric and
the support of PPI data. GO annotations are gener-
ated by integrating information from multiple data
sources, many of which have been manually curated
by human experts. Thus assessing PPI data using
the GO hierarchy is a way in which multiple data
sources are integrated. The comprehensive compari-
son of the method to assess PPI data using GO infor-
mation and other counterparts as described in sec-
tion 1 is necessary and will be addressed elsewhere.
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