GENERALIZED QUERIES AND BAYESIAN STATISTICAL MODEL CHECKING IN
DYNAMIC BAYESIAN NETWORKS: APPLICATION TO PERSONALIZED MEDICINE

Christopher James Langmead

Computer Science Department, and
Lane Center for Computational Biology,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA
Email: c¢jl@cs.cmu.edu

We introduce the concept of generalized probabilistic queries in Dynamic Bayesian Networks (DBN) — computing
P(¢1|¢p2), where ¢; is a formula in temporal logic encoding an equivalence class of trajectories through the variables
of the model. Generalized queries include as special cases traditional query types for DBNs (i.e., filtering, smoothing,
prediction, and classification), but can also be used to express inference problems that are either impossible, or
impractical to answer using traditional algorithms for inference in DBNs. We then discuss the relationship between
answering generalized queries and the Probabilistic Model Checking Problem and introduce two novel algorithms for
efficiently estimating P(¢1|¢2) in a Bayesian fashion. Finally, we demonstrate our method by answering generalized
queries that arise in the context of critical care medicine. Specifically, we show that our approach can be used to make
treatment decisions for a cohort of 1,000 simulated sepsis patients, and that it outperforms Support Vector Machines,
Neural Networks, and Random Forests on the same task.

Keywords: Dynamic Bayesian Networks, Model Checking, Systems Biology, Personalized Medicine, Sepsis

1. INTRODUCTION

The emerging field of Translational Systems Biol-
0gy*8 seeks to optimize clinical practice in the con-
text of personalized medicine by using the principles
and methods of Systems Biology. In this paper, we
consider scenarios where the dynamics of a particular
disease are captured by a given parameterized model,
(M, 7). Here, M is a Dynamic Bayesian Network
(DBN), and 7 = P(©) is a multivariate probabil-
ity distribution over the parameters of M. That is,
7 models our uncertainty with regard to the exact
specification of the DBN, and thus (M,) refers to
a family of DBNs. In a clinical setting, the first goal
is to obtain a patient-specific estimate of the pos-
terior # = P(©|0;) where O; refers to the clinical
observations from patient . The second goal is to
query the resulting family of DBNs, (M, #), to make
patient-specific predictions relevant to selecting an
appropriate medical intervention. In this paper, we
present two algorithms for answering such queries in
a Bayesian fashion, given M and the distribution 7.

A unique feature of our algorithms is that in ad-
dition to being able to compute the probability of
being in a particular state at a particular time (e.g.,
“What is the probability that the patient will be in

renal failure exactly 12 hours from now?”), they can
also be used to compute probabilities over sets of tra-
jectories satisfying a logical constraint (e.g., “What
18 the probability that the amount of tissue damage
never exceeds critical value ¢?”), or a logical order-
ing of events (e.g., “What is the probability that the
patient will enter renal failure before clearing the
primary infection?”). In a clinical setting, the abil-
ity to answer such questions will enable physicians
to make more nuanced decisions regarding treatment
strategies.

Our paper makes several contributions: First,
we introduce the notion of a generalized probabilistic
queries for DBNs. Generalized probabilistic queries
are a strict superset of more traditional probabilistic
queries over DBNSs (i.e., filtering, smoothing, predic-
tion, classification). They have the form P(¢1|¢2),
where ¢; is a formula in temporal logic encoding a
set of trajectories. Second, we reduce the problem of
answering generalized queries over DBNs to an in-
stance of the Probabilistic Model Checking Problem
which is: given a stochastic model, a formula in tem-
poral logic, ¢, and a probability threshold, p € [0, 1],
decide whether the model satisfies p. Third, we intro-
duce two novel algorithms for solving the Probabilis-

tic Model Checking Problem in a Bayesian fashion.
Our algorithms differ from related work, including
our own’, in that they are fully Bayesian. Finally,
we demonstrate our method on a model of the acute
inflammatory response to sepsis'*. We show that our
approach to answering generalized queries is more
accurate than Support Vector Machine, Neural Net-
works, and Random Forests on classification tasks
relevant to making treatment decisions.

This paper is organized as follows: We present
the necessary background on Dynamic Bayesian Net-
works and introduce the notion of generalized queries
in DBNs in Sec. 2. Our algorithms are presented in
Sec. 3. We demonstrate our method on a model
of acute inflammation in Sec. 4. We compare and
contrast our method to related work in Sec. 5. We
conclude and discuss ideas for future work in Sec. 6.

2. BACKGROUND AND NOTATION

In what follows, X = {Xi,..,X,} and Y =
{Y1,...,Y,,} are sets of random variables model-
ing the hidden (aka latent or unobservable) and
observable states of a stochastic process, respec-
tively. The vectors x; = (z1(¢), ..., z,(t)) and y, =
(y1(t), ..., ym(t)) denote the state of X and Y at dis-
crete time t € Z, respectively. A trajectory, or se-
quence of states from time ¢t = 7 to t = 79, such
that 7o > 71 is denoted by x;,.r, = (x(71), ..., x(72)).

2.1. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) comprise a fam-
ily of probabilistic graphical models for modeling
sequential data. Familiar instances of DBNs in-
clude Hidden Markov Models and Kalman Filters,
which have been used in numerous domains, includ-
ing Biology. Informally, a DBN consists of fac-
tored encodings of three probability distributions:
(i) a prior over X, P(Xp); (ii) a state transition
model, P(X;|Xq.t—1); and (iii) an observation model,
P(Y¢|Xo:t, Yo:t—1). The parameters needed to spec-
ify these three distributions will be denoted by the
vector ©.

The exact size and nature of © will vary based
on conditional independence assumptions made by
the model. The parameters for a Hidden Markov
Model, for example, correspond to the elements of

conditional probability tables encoding P(X;|X;_1)
and P(Y:|Xy).

In many settings, a point-estimate for © is
learned from a set of training data. The resulting
DBN is then used to answer probabilistic queries.
In this paper, however, we adopt a Bayesian view
and instead consider the distribution over parame-
ters, P(O©).
uncertainty in the parameters due to, for example,

This distribution models our residual

measurement errors, fixed samples sizes, etc. We
refer to the family of DBNs implied by P(©) as a
Parameterized Dynamic Bayesian Network.

Definition 2.1. Parameterized DBNs: A para-
meterized DBN is a pair, (M,), where M is a Dy-
namic Bayesian Network over state variables X and
Y, and # = P(O) is a probability distribution over
the parameters defining P(Xo), P(X¢|Xo.t-1), and
P(Yy| Xo:t, Yoiu—1)-

2.2. Probabilistic Queries in DBNs

DBNs are traditionally used to answer probabilistic
queries concerning the state of the system at a par-
ticular position in the sequence. Traditional queries
fall into several categories:

Definition 2.2. Traditional DBN Queries

e Filtering: Computing P(x:|yg.,)
Smoothing: Computing P(X,—|yo.,)
Prediction: Computing P(X;+1|¥0.,)
Decoding: Computing arg max, P(Xo.7|¥¢.r)

Classification: Computing P(y.,)
Here, I > 0 and h > 0.

These queries can be answered using one of many
existing algorithms for probabilistic inference. The
reader is directed to [12] for more information on
traditional inference algorithms for DBNs.

Notice that the queries in Def. 2.2 each involve
conditioning the model on a single trajectory (i.e.,
Yo.-), and then computing either the belief state at
a single instant in time (for filtering, smoothing, and
prediction), or the probability of a single trajectory
(for decoding and classification). While useful, there
are limits to the expressive power of these queries.
For example, consider a DBN where the state vari-
ables track the absence or presence of specific somatic

mutations in a tumor. One might be interested in the
likelihood that some particular mutation m; arises
before some other mutation ms at some point within
the next t time units. Unfortunately, such questions
are not easily expressed in terms of the queries in
Def. 2.2. The problem is that such questions refer to
the set of trajectories that satisfy a logical property
(i.e., the set of all trajectories such that m; arises be-
fore ms). This set can be exponentially large in ¢ for
finite-state models, like HMMSs, or infinitely large for
continuous-state models, like Kalman Filters. Thus
it is not possible, in general, to compute the prob-
ability mass of the set through explicit enumeration
of all trajectories.

Our first goal in this paper is to generalize the
notion of a probabilistic query by considering the
problem of conditioning the DBN on a set of tra-
jectories: YV = {yQ.,, .-, ¥t.r, }, and/or performing
inference over a set of hidden trajectories: X =
{Xém,...,x’g:w}. Note that we do not assume that
the trajectories in X (resp.) are of equal length.

Generalized queries give rise to two technical
challenges. The first challenge is to compactly rep-
resent X' and/or). The second challenge is solving
the inference problem without resorting to an explicit
enumeration of all trajectories in X or). We deal
with the first challenge in the next section, and the
second challenge in Section 3.

2.3. Temporal Logic

Temporal logic is a formalism for describing behav-
iors in finite-state systems. It has been used since
1977 to reason about the properties of concurrent

programs?!3.

There are a variety of temporal logics
from which to chose. The interested reader is di-
rected to [5] for more information. The probabilistic
queries we wish to consider can be written as formu-
las in Bounded Linear Temporal Logic (BLTL). The
syntax and semantics of the BLTL are defined below.

Recall that X is a set of random variables. Let
< € {>>,<,<,=}. A Boolean predicate over X
is a constraint of the form X<, where X; € X
and ¢ € R. A BLTL formula is built on a finite set
of Boolean predicates over X using Boolean connec-
tives and temporal operators. The syntax of BLTL
is given by the following grammar:

Definition 2.3. Syntax of BLTL

qﬁE’I‘rue|Xibdc|ﬂ¢|¢1\/¢2|
d1 A\ pa |)
Y=N¢ |1 U

where V, A, and — are the usual logical operators

State formulas:

Path formulas:

and True is the Boolean value for true. The tem-
poral operator N is read “next” and requires that
its argument, ¢, is true in the next time step. The
temporal operator Ut is read “until time ¢’ and re-
quires that its second argument, ¢-, becomes true by
time ¢ and that its first argument, ¢1, is true until
¢2 becomes true.

We can derive additional logical and temporal
operators from the definitions above. For example,
the logical implication operator can be defined as
A = B = -AV B. Derived temporal operators
include:

Ft¢ = True Ut ¢
thb = —\Ft—|¢
01 R ¢o = —(=¢1 U ¢2)

Here F is read “eventually”, G is read “always”, and

R is read “release”. The bounded eventually oper-
ator requires that its argument becomes true within
t units of time. The bounded always operator re-
quires that its argument stays true during at least ¢
units of time. Finally, the bounded release operator
requires that ¢ is true until the first position where
@1 is true, or until time ¢, if ¢; does not become true
within the time bound.

Let Z C {X UY}, and let zg., be a trajectory
through the DBN. The fact that z,., satisfies prop-
erty ¢ is denoted by zp., | ¢. The semantics of
BLTL are defined recursively as follows:

Definition 2.4. Semantics of BLTL

Zo.r E True, always;

Zo.r lZ Z;<iciff Z; € Z and ZZ(O) X z;

Z.r |: ﬁ¢ iff Zy.r l?é ¢

20:r = O1V @2 iff 2o.r = ¢1 OF Zo.r = P2
20.r = 61 A @2 iff 2o.r = @1 and zo.r = ¢d2;
zo.r EN¢ iff z; E ¢.

zo.¢ | 01 U9 iff 30 € N such that (i) i < ¢,
(11) X;): ¢2, and (111) V0< 7 <1, Z; ': ¢1.

Notice that a “traditional” observation sequence,
Yo.r> can be encoded as a formula in temporal logic
by construction:

Yo.r = ¢ = [po AN(d1 AN(pp2 A ... AN(y)...))]

where ¢; is a Boolean predicate that is true if
Njey Yi(t) = y;(t). Of course, the real advantage of
a formula is that it defines a set of trajectories. Re-
turning to our earlier example, suppose X; and Xs
are Boolean random variables indicating the presence
of mutations m; and msy, respectively. That is, X;
is 1 if mutation m; is present, and 0 otherwise. The
formula ¢ = = X,U* X, refers to the set of trajecto-
ries such that mutation m; arises before mutation
meo within the next ¢ time units.

2.4. Generalized Queries in DBNs

Given the definition of BLTL, we can now formally
define generalized queries for DBNs. We note that
the distinction between filtering, smoothing, and pre-
diction goes away in this context, and so we will sim-
ply refer to these tasks as generalized filtering.

Definition 2.5. Generalized DBN Queries

e Generalized Filtering:

Computing P(¢1¢2) = P(é1 A ¢2)/P(¢2)
e Generalized Decoding:

Computing arg max,, P(xo.-|®)
o Generalized Classification:

Computing P(¢)

Here, ¢, ¢1, and ¢o are formulas in BLTL.

This paper focuses on the generalized filtering
and classification problems for parameterized DBNs.
The algorithms presented here can be applied as-
is to traditional (i.e., non-parameterized) DBNs as
well. Developing algorithms for solving the general-
ized decoding problem is part of ongoing research.

2.5. Probabilistic Model Checking and
Generalized Queries in DBNs

In this section, we briefly summarize the relationship
between the task of answering generalized queries in
DBNSs and the Probabilistic Model Checking Problem.
We begin by first defining the Model Checking Prob-
lem. Let M be a (non-stochastic) model over a set of

states, S, let Sg C S be a set of initial states, and let
¢ be a formula in temporal logic. The Model Check-
ing Problem is deciding whether M, Sy |= ¢. That is,
whether, when starting from Sy, M satisfies ¢. His-
torically, Model Checking algorithms were developed
for formally proving properties of non-stochastic con-
current systems, such as circuit designs. The inter-
ested reader is directed to [5] for more information on
traditional algorithms for, and applications of Model
Checking. More recently, there has been consider-
able interest in the development of Model Checking
algorithms for stochastic systems, such as Discrete
and Continuous-Time Markov Chains. For stochas-
tic systems, the Probabilistic Model Checking Prob-
lem (PMCP) is deciding whether the model satis-
fies ¢ with probability greater than or equal to some
given p € [0, 1].

It is easy to see the relationship between solv-
ing the generalized filtering and classification prob-
lems in DBNs, and solving the PMCP. In particular,
any algorithm that can be used to compute (or ap-
proximate) P(¢), can then be used to create a de-
cision procedure to solve the PMCP by comparing
P(¢) to p. Alternatively, any algorithm that solves
the PMCP can be used to compute upper and lower
bounds on P(¢) by performing a binary search over
p. The algorithms in this paper estimate P(¢) for pa-
rameterized DBNs, and therefore can also be used to
solve the PMCP for such models. To the best of our
knowledge, the only previous use of graphical mod-
els to perform Probabilistic Model Checking is [22],
who considered Hidden Markov Models (HMMs). In
contrast, this paper considers parameterized DBNs,
which are a much broader class of graphical models.
Moreover, unlike existing algorithms for solving the
PMCP, ours are fully Bayesian.

3. ALGORITHMS

The inputs to both of our algorithms are a parame-
terized DBN, as defined in Def. 2.1, and a general-
ized probabilistic classification query, as defined in
Def. 2.5.

3.1. Sample-Based Algorithm

The simplest, and most widely applicable algorithm
involves sampling trajectories from the model in an

Algorithm 3.1 Bayesian Statistical Model Checking

Require: (i) A Parameterized DBN (M, 7); (ii) a Probabilistic BLTL formula, ¢; (iii) Beta distribution shape
parameters, « and [, encoding the prior density for unknown parameter p; and (iv) threshold T'.

n:=0
k=0
repeat

{number of trajectories drawn so far}

{number of trajectories satisfying ¢ so far}

0 := draw an i.i.d. sample from 7. {Sample a set of parameters for the DBN}

o := draw an ii.d. sample trajectory from M with parameters 0. {The length of the trajectory is

determined by the temporal operators in ¢.}
n:=n+1
if o=¢ then
k=k+1
end if
p = Estimate(n, k, «, §)
U := Variance(n, k, «,)
until o < T
return p,v

{compute according to Equation (1)}
{compute according to Equation (2)}

i.i.d. fashion. Notice that any trajectory through
the model either satisfies a given BLTL formula, ¢,
or it does not. We can therefore model P(¢) using
a Bernoulli distribution and use the sampled trajec-
tories to statistically estimate the Bernoulli success
parameter, p.

The true value of p can be estimated in a max-
imum likelihood fashion by simply keeping track of
the ratio of the number of satisfying trajectories ver-
sus the total number of trajectories sampled. In con-
trast, the algorithms in this paper estimate p in a
Bayesian fashion. Here, it is necessary to specify a
prior distribution over p. The conjugate prior of a
Bernoulli distribution is the Beta distribution, and
so we define the prior over p as:

1 a—1 -1

PO0) = Sap)? (1-p)°
where B is the Beta function, and « and (3 are the
shape parameters of the Beta distribution. In the
context of critical care medicine, the shape parame-
ters can be obtained from clinical trial data. If de-
sired, an unbiased prior can be specified by using a
Beta distribution with parameters a = § = 1, which
is equivalent to a uniform distribution.

Algorithm 3.1 performs Bayesian Statistical
Model Checking by sampling trajectories. It pro-
ceeds by iteratively sampling initial parameters from
7 (i.e., the prior distribution over the parameters of

the DBN), instantiating a DBN with those parame-
ters, and then generating a trajectory of appropriate
length. Notice that the path formulas use either the
next operator (N¢), or the bounded until operator,
(¢1U"¢py). Thus, the length of the sampled trajec-
tory is 2 if the formula is of the form P(N¢), or t+1
if the formula is of the form P(¢;U"¢y).

Each sampled trajectory is tested to determine
whether it satisfies the formula ¢. The number of
satisfying trajectories is then used to compute the
mean, p, and the variance, 7, of the Bernoulli distri-
bution using the following well-known formulas:

k+«

atiin (1)

pA:

(a+k)(n—k+p)

b= (a+n+pB2(at+ntB+1)

(2)

These equations compute the mean and variance of
the posterior distribution over p, which is a Beta
function with parameters o/ = o + k and 3 =
n — k + 3. The algorithm terminates when o is less
than some user-specified threshold T

3.2. Recursive Algorithm

The second algorithm solves the same problem for
any DBN that can be explicitly converted into

a Discrete-Time Markov Chain (DTMC). This in-
cludes any finite-state DBN, and assumes that the
number of unique states S = (X; x X3 X ... X X, X
Y] x ... x Yy,) can be explicitly enumerated. Conse-
quently, the second algorithm is less widely applica-
ble than the first, but does have the advantage of
being exact.

(Toy DTMC)

Fig. 1. (Top) A toy DBN. X and Y are binary random
variables. (Bottom) The DTMC corresponding to the
DBN. Nodes are labeled by the state of (x,y). Edges are
labeled with transition probabilities.

Let D = (S,P) be a DTMC where P: S x S —
[0, 1] is a stochastic transition matrix where element
P(i,7) is the probability that state s; transitions to
state s; in the next time step. For parameterized
DBNs we assume that each P(i,5) is the mazimum
a posteriori (MAP) transition probability between
states s; and s;. The prior distribution over S will
denoted as By.

FEzample: Figure 1-top depicts a simple DBN over
The DTMC corre-
sponding to the DBN is shown in Fig. 1-bottom.
Here, S = {(0,0),(0,1),(1,0),(1,1)} and

two binary random variables.

0 9010
0.6 0 020.2
P= 0 0 0 1
0 0505 0

Assume that By = (0.1,0.1,0.3,0.5).

Evaluating State Formulas We first consider how
to evaluate state formulas (Def. 2.3). Recall that
we have assumed that it is possible to explicitly enu-
merate each state of the system. Therefore, we can
also assume that it is possible to label each state
as to whether it satisfies a given atomic proposition.
By ‘atomic proposition’, we mean any sub-formula
of the form ¢ = Z;<ic. Assuming a fixed ordering
of the states, we can represent the set of states sat-
isfying an atomic proposition using a bit vector, ®,
of length |S|. We evaluate sub-formulas involving
the logical operators —, A, and V by implementing
set differences, intersections, and unions as bit-vector
operations.

In order to compute the probability of satisfying
a given state formula at time ¢, we need to have the
belief state at that time. Let B; be a vector encoding
the belief state at time ¢. The probability of being
in any state that satisfies a given state formula is ob-
tained by first computing the Hadamard product of
® and B;, and then summing the non-zero elements
of the resulting vector.

Example: Suppose ¢ = X = 1. States s3 and sy
in Fig. 1 satisfy ¢. Therefore, ® = (0,0,1,1). The
prior probability of being in a state that satisfies ¢
is thus P(¢) = >, cgBo(si) o ®(s;) = 0.8.

Evaluating Path Formulas The probability of path
formulas is also computed via matrix operations.
There are two cases to consider: the next operator
(N ¢) and the bounded until operator (¢;U%¢s).
P(N ¢) is computed as follows: Let ® be the bit
vector labeling the states satisfying ¢. We first com-
pute the maxtrix-vector product V' = P x ®&. Note
that the ¢th element of vector V is the probability
that, when starting in state s; € S at time ¢, the
system is in some state satisfying ¢ at time ¢ + 1.
We obtain P(N ¢) by summing the elements of the
Hadamard product of V' and the belief state B;.

Ezample: Returning to our example, V = P x

® = (0.1,0.4,1,0.5), and so starting at time ¢ = 0
P(N ¢) = Zsies Bo(si) o] V(S,) =0.6.

P(¢1U%¢y) is computed as follows: We first par-
tition .S into three disjoint sets Sy, S, and S3. The
elements of S; include those states satisfying ¢o. The
elements of Sy include those states that satisfy nei-
ther ¢1 or ¢o. The remaining states are placed into
set S3. Informally, S; contains the states that triv-
ially satisfy the formula ¢;Ut¢2, So contains those
that trivially do not satisfy the formula, and S5 con-
tains those that may or may not satisfy the formula.
We next define a new transition probability matrix
P’ such that:

1 if state s; € S; and i == j,
P(i,4)

0 otherwise

P'(i,j) = if state s; € Ss,

We use P’ to recursively compute the vector V; =
P’ x V;_1. The base case, Vp, is simply the vector
®,, which is a bit vector labeling the states satisfy-
ing ¢o. The complete calculation requires ¢ matrix-
vector calculations. We obtain P(¢;U%®2) by sum-
ming the elements of the Hadamard product of V;
and the belief state By.

Ezample: Let p1 =Y =0, 9o =X =1, and t = 2.
Therefore, S1 = {s3, 84}, So = {s2}, and S3 = {s1}.
Thus,

0.9010
00 00
00 10
00 01

Hence, V7 = P’ x &3 = (0.1,0,1,1) and Vo =
P’ x Vi = (0.1,0,1,1). So, starting at time ¢t = 0
P(¢1U2¢2) = ZsiES Bo(Si) OVz(Si) = 0.81.

4. APPLICATION TO A MODEL OF
THE DYNAMICS OF ACUTE
INFLAMMATION

We applied our method to a model of the acute in-
flammatory response to infection presented in [14].
The model has 4-equations and 22-parameters.

P R—

Inflammation
(NA)
Initiating Event Damage
(P) (D)
Anti-Inflammation
(Ca)

Cartoon representation of the 4-equation model
Arrows represent up-
Figure is

Fig. 2.
of the acute immune response.
regulation, bars represent down-regulation.
adapted from Figure 1 in [14].

The acute inflammatory response to infection
has evolved to promote healing by ridding the organ-
ism of the pathogen. The actual response is a com-
plex and carefully regulated combination of molecu-
lar and cellular cascades that exhibit both pro and
anti-inflammatory behaviors. The pro-inflammatory
elements are primarily responsible for eliminating the
pathogen, but killing bacteria can cause collateral
tissue damage. Tissue damage, in turn, triggers an
escalation in the pro-inflammatory response creat-
ing a positive feedback cycle (Figure 2). The anti-
inflammatory elements counteract this cycle, thereby
minimizing tissue damage and promoting healing.
However, in cases of extreme infection, the delicate
balance between pro and anti-inflammatory elements
is destroyed, resulting in a potentially lethal amount
of tissue damage.

The 4-equation model is as follows:

dB B kpm SmB
=k, B(1l—-—) - —2""" _ Lk f(N4)B
dt P9 (poo) Mm + kanB P f(A) ’
dNA SnTR
SoA = S N,
dt g+ R OA
dD
ar = k?dnfs(f()) waD,
dCA kcnf(NA + kcmdD)
— = Sc - lfchAa
dt 1+ f(NA + kemaD
where:

.
V) = G5 @njen?
VG

Here, k., ftx, Sx, P« are parameters, as defined in [14].
The state variables B, N4, D, and Cy, correspond
to the amounts of pathogen, pro-inflammatory me-
diators (e.g., activated neutrophils), tissue damage,
and anti-inflammatory mediators (e.g., cortisol and
interleukin-10), respectively. Figure 3 presents sam-
ple trajectories from the model. There are 3 clinically
important outcomes: (i) a return to health, charac-
terized by a drop in the pathogen load (B) to basal
levels with minimal amounts of tissue damage (D),
(ii) aseptic death, where the pathogen is cleared, but
the tissue damage is large enough to cause death, and
(iil) septic death, where the pathogen is not cleared,
and the tissue damage is large enough to cause death.

Converting the ODE model into a DBN

We used the method of [17] to convert the ODE
model into a DBN. That same method can be used
to estimate the distribution over the parameters,
P(©|0), given observations. The unobserved vari-
ables of the DBN correspond to the variables B,
Ng, Cy, and D in the ODE model. That is, X =
{B, N,,C,, D}. The observable variables were taken
to be noisy measurements of N, and C,, as it is
reasonable to assume that these variables can be es-
timated from blood draws. The noisy observations
were generated from the true values by adding a

Gaussian noise.

Experiments

The unknown parameters of our DBN correspond to
mean and the covariance of the four state variables,
B, N,, Cq, and D, and the parameter k,,, which
corresponds to the growth rate of the pathogen. We
generated a simulated cohort of 1,000 patients by
randomly generating a multivariate Gaussian prob-
ability distribution over ©. Thus for the ith pa-
tient, P;(©) = M(u;,3;). These distributions de-
fine a family of DBNs, and represent the uncertainty
of the state of the patient. The means and the co-
variances for each patient were obtained by sampling
from a master distribution consistent with the study
described in [14]. We note that the parameters are
not mutually independent. That is, 3; has non-zero
elements off of the diagonal.

Return to Health

w
O

Time (Hours)

Fig. 3. Example trajectory from the 4-equation model.
These three trajectories correspond to three typical outcomes
(return to health, aseptic death, septic death). Time is mea-
sured in hours.

Generalized Queries

From a clinical perspective, the pathogen load and
the amount of tissue damage are the primary threats
to the patient. Thus, we will consider generalized
queries that compute the likelihood that the pa-
tient reaches one of the three primary outcomes (i.e.,

health, aseptic death, septic death). Additionally,
among the treatment options available to ICU physi-
cians, who are the ones most likely to be treating
patients with sepsis, is an anti-inflammatory ther-
apy. This can be modeled by increasing the amount
of state variable C;. The goal of this therapy is to
de-escalate the pro-inflammatory response, which in-
duces tissue damage. However, it has been shown
that such therapies can also be ineffective or worse,
harmful to patients®. Therefore, we will also consider
queries that compute the likelihood that the use of
anti-inflammatory therapy will achieve the desired
treatment goals.

Estimating the likelihood of the various outcomes:
We define the following formulas in BLTL:

e oy =—(D > k1) U™ (B < kKa),
e p4=True U™? (D > k1) A (B < K2)
o ¢pg = True U™ (D>K11)/\ﬂ(B<KJ2)

¢ defines the set of trajectories where the pathogen
falls below a threshold k9 within the first 72-hours,
post-admission, and where the total amount of tis-
sue damage never exceeds threshold x;. In our ex-
periments, k1 = 10 and ko = 0.5. ¢4 defines the
set of aseptic death trajectories where the pathogen
falls below a threshold ko within the first 72-hours,
but where the total amount of tissue damage ex-
ceeds threshold k1. ¢g defines the set of septic death
trajectories where the pathogen never falls below a
threshold ko within the first 72-hours, and where the
total amount of tissue damage exceeds threshold k.

Table 1. Confusion Matrix For Outcome Classifier:
Our classifier achieves a predictive accuracy of 92.8%.

Predicted Value

Health Aseptic Septic
Death Death
Actual Health 497 37 16
Value Aseptic 12 302 5
Septic 1 1 129

Using our cohort of 1,000 simulated patients, we
estimated P(¢m), P(¢a), and P(¢g). Each patient
was then classified in terms of likely outcome by tak-
ing the maximum of P(¢x), P(¢4), and P(¢g). Our
classifier achieves a predictive accuracy of 92.8% (Ta-
ble 1). In contrast, the predictive accuracy of a Sup-

port Vector Machine, a Neural Network, and Ran-
dom Forest Classifier on the same task achieved ac-
curacies of 80.8%, 78.8%, and 81.1%, respectively.
These classifiers were trained using 10-fold cross val-
idation across a variety of parameter settings. The
best results are reported. The input features were
the same as for our method. In comparison to our
approach, these other algorithms most often misclas-
sified aseptic death as a healthy outcome.

In order to determine the sensitivity of our
method to the distribution P(©), we increased the
covariance by a factor of ten, thus increasing the un-
certainty in the parameters. On this task, our classi-
fier achieves an accuracy of 79.6% (Table 2). In con-
trast, the SVM, Neural Network, and Random Forest
Accuracies drop to 53.8%, 55.4%, and 53.2%, respec-
tively. With the higher uncertainty, these other algo-
rithms often misclassified aseptic death as a healthy
outcome, and visa-versa.

Table 2. Confusion Matrix For Outcome Classifier
with high covariance P(©): Our classifier achieves a
predictive accuracy of 79.6%.

Predicted Value

Health Aseptic Septic

Death Death
Actual Health 401 91 58
Value Aseptic 26 275 18
Septic 4 7 120

Predicting the Benefit of anti-inflammatory ther-
apy: Next, we consider some more complicated gen-
eralized queries and consider the effects of applying
an anti-inflammatory therapy. We define the follow-
ing formulas in BLTL:

Grelp = (PaV ¢s) A (treat = du),
(bHarm = ¢H A (tTBCLt - (¢A vV ¢S))
¢Lives = ¢H A (treat — ¢H)

$pics = (¢4 V ¢s) A(treat = (da V ¢5))

Here, “treat” means we set the value of C, to a ther-
apeutic level. ¢p.jp defines the set of trajectories
where the patient would have died without treat-
ment, but will live with the therapy. ¢pgqrm defines
the set of trajectories where the patient would have
lived without treatment, but will die with the ther-
apy. Prives and @p;es define the set of trajectories

where the patient lives or dies, regardless of the treat-
ment, respectively.

Using our cohort of 1,000 simulated patients,
we estimated P(@weip), P(@Harm), P(&Lives), and
P(¢pies). Each patient was then classified in terms
of likely outcome by taking the maximum of these
values. Our classifier achieves a predictive accuracy
of 96.9% (Table 3). In contrast, the predictive ac-
curacy of a Support Vector Machine, a Neural Net-
work, and Random Forest Classifier on the same task
achieved accuracies of 67.6%, 66.9%, and 64.9%, re-
spectively.
other algorithms most often misclassified helping the

In comparison to our approach, these

patient with lives, and none of them did well at de-
tecting when the treatment actually harms the pa-
tient.

Table 3. Confusion Matrix For Treatment Classifier:
Our classifier achieves a predictive accuracy of 96.9%.

Predicted Value
Help Harm Lives Dies

Help 272 28 0 0
Actual Harm 0 400 0 0
Values Lives 0 0 150 0

Dies 0 0 3 147

Once again, in order to determine the sensitivity
of our method to the distribution P(0), we increased
the covariance by a factor of ten, thus increasing the
On this task, our
classifier achieves an accuracy of 80.6% (Table 4).
In contrast, the SVM, Neural Network, and Random
Forest Accuracies drop to 53.5 %, 43.0%, and 40.0%,
respectively.

uncertainty in the parameters.

Table 4. Confusion Matrix For Treatment Classifier
with high covariance P(©): Our classifier achieves a
predictive accuracy of 80.6%.

Predicted Value
Help Harm Lives Dies

Help 150 150 0 0
Actual Harm 0 400 0 0
Values Lives 0 0 150 0

Dies 0 2 42 106

5. RELATED WORK

There are a number of algorithms for solving the
Probabilistic Model Checking Problem. Methods
for computing the exact value of p been reported

(e.g., [1, 2, 3, 7, 11]) for various classes of mod-
els, although not for DBNs. These methods per-
form an explicit exploration of the state space of the
model, which is generally exponential in the number
of state variables. This suggests that exact Prob-
abilistic Model Checking algorithms may not scale
well to larger systems. Moreover, these methods are
not Bayesian, and instead assume fixed values for
parameters. Simulation-based methods fall into two
broad categories: those that estimate the value of p
(e.g., [8, 15, 16]), and those that treat the PMC prob-
lem as a hypothesis testing problem (e.g., [4, 19, 20,
21]). These methods also assume fixed parameters,
and are thus not Bayesian.

Our method is most closely related to a method
we recently introduced”. There are two key differ-
ences between the present method and the one in
[9]. First, the method in [9] casts the Probabilistic
Model Checking Problem as a compound hypothe-
sis testing problem, while our method is based on
estimation. The potential advantage of a hypoth-
esis testing based approach is that it may require
fewer samples, especially if the exact value of p is not
as important as knowing whether it is above some
threshold. For example, a treatment decision might
be based on whether p is greater than 0.5. Decid-
ing whether p is greater than (or less than) some
threshold is likely to require fewer sampled trajecto-
ries than trying to estimate the true value of p. The
second difference between the present method and
[9] is that while [9] does incorporate a prior on p,
it assumes that the model parameters are fixed and
known. In that sense, it is only partially Bayesian.
In the context of Systems Biology, we feel that it is
more likely that there will be some uncertainty in the
model parameters.

6. DISCUSSION AND CONCLUSION

We have introduced the notion of generalized proba-
bilistic queries for Dynamic Bayesian Networks, and
presented two algorithms for answering such queries.
Generalized queries provide the option of reasoning
about sets of trajectories through the DBN. Our al-
gorithms can also be thought of as Bayesian Statis-
tical Model Checking algorithms. We applied one of
our algorithms on two tasks relevant to personalized
medicine and found that it results in more accuracy

classification than special-purposed classifiers. We
are presently evaluating the method on a wider class
of DBNs and developing algorithms for performing
generalized decoding.

There are a number of potential applications of
our method that we have not considered here. For
example, one might imagine using the method to de-
cide when to terminate treatment by considering the
likelihood that the outcome will remain the same,
whether or not a given intervention is discontinued.
Such information can be used to reduce health care
costs or to minimize adverse side-effects. Another in-
teresting possibility is to use the method to help se-
lect patients for enrollments in a clinical trials. The
use of modeling for selecting clinical trial cohorts was

6

first suggested by Clermont and co-workers®. Here,

a pharmaceutical company might elect to enroll only
those patients who stand a chance of benefiting from
the therapy, thus increasing the odds of being able
to demonstrate the efficacy of the drug to regulatory
agencies, like the FDA.

Acknowledgments

This research was supported by a U.S. Department of
Energy Career Award (DE-FG02-05ER25696), and a
Pittsburgh Life-Sciences Greenhouse Young Pioneer
Award to C.J.L.

References

1. C. Baier, E.M. Clarke, V. Hartonas-Garmhausen,
M.Z. Kwiatkowska, and M. Ryan. Symbolic model
checking for probabilistic processes. In ICALP ’97:
Proceedings of the 24th International Colloguium on
Automata, Languages and Programming, pages 430—
440, London, UK, 1997. Springer-Verlag.

2. C. Baier, B. R. Haverkort, Hermanns H., and J.P.
Katoen. Model-checking algorithms for continuous-
time Markov Chains. IEEE Trans. Software Eng.,
29(6):524-541, 2003.

3. F. Ciesinski and M. Gréfer. On probabilistic compu-
tation tree logic. In Validation of Stochastic Systems,
volume 2925, pages 147—188. Springer, 2004.

4. E.M. Clarke, J. R. Faeder, C.J. Langmead, L. A.
Harris, S.K. Jha, and A. Legay. Statistical model
checking in biolab: Applications to the automated
analysis of t-cell receptor signaling pathway. In
CMSB, pages 231-250, 2008.

5. E.M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, 1999.

6. G. Clermont, J. Bartels, R. Kumar, G. Constantine,
Y. Vodovotz, and C. Chow. In silico design of clini-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

cal trials: A method coming of age. Crit. Care Med.,
32(10):2061-2070, 2004.

C. Courcoubetis and M. Yannakakis. The complex-
ity of probabilistic verification. Journal of the ACM,
42(4):857-907, 1995.

R. Grosu and S.A. Smolka. Monte Carlo Model
Checking. In CAV, pages 271-286, 2005.

S.K. Jha, E.M. Clarke, C.J. Langmead, A. Legay,
A. Platzer, and P. Zuliani. A bayesian approach to
model checking biological systems. Proc. of The 7th
Annual Conference on Computational Methods in
Systems Biology (CMSB), page in press, 2009.

S.J. Julier and J.K. Uhlmann. A new extension of
the kalman filter to nonlinear systems. Int. Symp.
Aerospace/Defense Sensing, Simul. and Controls,
pages 182-193, 1997.

M. Z. Kwiatkowska, G. Norman, and D. Parker.
PRISM 2.0: A tool for probabilistic model checking.
In QEST, pages 322-323. IEEE, 2004.

K. Murphy. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. PhD thesis, Univer-
sity of California, Berkeley; Computer Science Divi-
sion, 2002.

A. Pnueli. The temporal logic of programs. In FOCS,
pages 46-57, 1977.

A. Reynolds, J. Rubin, G. Clermont, J. Day,
Y. Vodovotz, and B. Ermentrout. A reduced math-
ematical model of the acute inflammatory re-
sponse: . derivation of model and analysis of anti-
inflammation. J Theor Biol, 242(1):220-236, 2006.
K. Sen, M. Viswanathan, and G. Agha. Statistical
model checking of black-box probabilistic systems.
In CAV, LNCS 3114, pages 202-215. Springer, 2004.
K. Sen, M. Viswanathan, and G. Agha. On statis-
tical model checking of stochastic systems. In CAV,
LNCS 3576, pages 266-280, 2005.

A. Sitz, U. Schwarz, J. Kurths, and H.U. Voss. Es-
timation of parameters and unobserved components
for nonlinear systems from noisy time series. Phys
Rev E Stat Nonlin Soft Matter Phys., 66(1):016210,
2002.

Y. Vodovotz, M. Csete, J. Bartels, S. Chang, and
G. An. Translational systems biology of inflamma-
tion. PLoS Computational Biology, 4(4), 2008.
H.L.S. Younes, M.Z. Kwiatkowska, G. Norman, and
D. Parker. Numerical vs. statistical probabilistic
model checking. STTT, 8(3):216-228, 2006.

H.L.S. Younes and R.G. Simmons. Probabilistic ver-
ification of discrete event systems using acceptance
sampling. In CAV, LNCS 2404, pages 223-235.
Springer, 2002.

H.L.S. Younes and R.G. Simmons. Statistical prob-
abilistic model checking with a focus on time-
bounded properties. Information and Computation,
204(9):1368-1409, 2006.

L. Zhang, H. Hermanns, and D.N. Jansen. Logic
and model checking for hidden Markov models. For-
mal techniques for networked and distributed systems
(FORTE), pages 98-112, 2005.

