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Exogenous enzymes, signaling peptides, and other classes of non-human proteins represent a potentially massive

but largely untapped pool of biotherapeutic agents. Adapting a foreign protein for therapeutic use poses numerous
design challenges. We focus here on one significant problem: modifying the protein to mitigate the immune response

mounted against “non-self” proteins, while not adversely affecting the protein’s stability or therapeutic activity. In

order to propose such variants suitable for experimental evaluation, this paper develops a computational method to
select sets of mutations predicted to delete immunogenic T-cell epitopes, as evaluated by a 9-mer potential, while

simultaneously maintaining important residues and residue interactions, as evaluated by one- and two-body potentials.
While this design problem is NP-hard, we develop an integer programming approach that works very well in practice.

We demonstrate the effectiveness of our approach by developing plans for biotherapeutic proteins that, in previous

studies, have been partially deimmunized via extensive experimental characterization and modification of limited
segments. In contrast, our global optimization technique considers an entire protein and accounts for all residues,

residue interactions, and epitopes in proposing candidates worth subjecting to experimental evaluation.

1. Introduction

Efforts to employ exogenous proteins as therapeu-

tic agents pose significant challenges for protein en-

gineering. Many therapeutic proteins, particularly

those derived from non-human sources, are recog-

nized as “non-self” and elicit an immune response in

human patients. For the special case of therapeutic

antibodies generated in animal models, decades of

research and extensive knowledge of their structure

and function has yielded grafting techniques that ef-

fectively reduce immunogenicity11, 6, 8. However, to

effectively leverage other protein classes (enzymes,

signaling peptides, etc.) as next-generation drugs,

more advanced and widely applicable strategies for

functional deimmunization are necessary.

The immune response against a foreign protein

is driven by molecular recognition of immunogenic

peptides, or epitopes, that are found within the pro-

tein’s primary sequence. The recognition process be-

gins with proteolytic processing of the offending pro-

tein and subsequent loading of the peptide fragments

within the groove of type II major histocompatibil-

ity complex (MHC II) proteins in antigen presenting

cells. Surface display of immunogenic peptides then

enables formation of ternary peptide-MHC II-T-cell

receptor complexes via interaction with surface re-

ceptors of cognate white blood cells. The ensuing

signaling cascade ultimately leads to a coordinated

anti-protein immune response.

In the context of biotherapeutic deimmuniza-

tion, the recognition of and response against the for-

eign protein can be averted by identifying immuno-

genic peptide fragments within the protein and mu-

tagenizing key residues so as to disrupt the frag-

ments’ capacity to complex with the MHC II and/or

T-cell receptors. This epitope deletion approach has

been successfully applied to several therapeutic can-

didates including staphylokinase27, erythropoietin21,

and factor VIII7 (all of which serve as case stud-

ies for our results). However, epitope deletion typ-

ically requires extensive experimentation, including

synthesizing and testing the immunogenicity of large

peptide panels taken from the native protein se-

quence, performing alanine scanning mutagenesis on

the most immunogenic fragments to pinpoint critical

MHC II binding residues, incorporating deimmuniz-

ing mutations into the full length protein, and finally

testing the functionality and immunogenicity of the
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engineered protein variants, only a small fraction of

which are likely to retain high activity and/or con-

stitute globally deimmunized candidates.

In order to avoid much of the extensive ex-

perimental effort previously required, we seek to

computationally identify sets of mutations that

are predicted to delete epitopes while maintain-

ing the protein’s stability and therapeutic activity.

For evaluating epitopes, we make use of the bur-

geoning development of sequence-based T-cell epi-

tope predictors20, 17, 13, 3, 26, 2, which employ pro-

files representing amino acid choices favorable for in-

teraction with the MHC II binding groove. These

epitope predictors have been successfully used in the

analysis of biotherapeutic candidates1, 10, as well as

in vaccine development4, 9, 12. For evaluating ef-

fects on stability and activity, we employ a position-

specific statistical model (with terms for single po-

sitions and pairs of positions) learned from a fam-

ily of related proteins, taking advantage of the fact

that constraints on amino acid choices required to

maintain structure and function are likely to be

manifested in the sequence record. The application

of one- and two-body sequence potentials has also

been essential in a number of protein engineering

contexts25, 16, 18.

This paper presents the first method that opti-

mizes variants of a target protein by deleting im-

munogenic epitopes (as evaluated by epitope po-

tentials) while maintaining important residues and

residue interactions (as evaluated by one- and two-

body potentials). It builds upon, but goes signifi-

cantly beyond, our earlier dynamic programming al-

gorithm that identified conservative mutations pre-

dicted to delete T-cell epitopes14. Our previous dy-

namic programming approach evaluated the struc-

tural and functional consequences of each mutation

independently of other mutations. While that is suit-

able for small numbers of relatively well-separated

mutations, it does not account for residue interac-

tions that may underlie stability and activity, and

that are increasingly important with higher muta-

tional loads. Unfortunately, the use of a residue in-

teraction score results in an NP-hard optimization

problem15. However, we develop here an integer

programming approach that concisely represents the

problem constraints and objectives and works quite

well in practice. We demonstrate the effectiveness of

our method in application to redesigning proteins of

therapeutic value, short limited segments of which

have been the target of previous deimmunization ef-

forts.
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Fig. 1. We employ T-cell epitope predictors to score each
9-mer peptide for potential immunogenicity. In this exam-

ple two peptides are deemed immunogenic, as they are pre-

dicted to be recognized by several of the 8 most representative
MHC II alleles. We analyze a family of related proteins for

single-position conservation and pairwise coupling (covaria-

tion) statistics. Our algorithm then selects a specified number
of mutations (here two mutations, underlined in the variant),

to optimize a weighted combination of the resulting epitope

score and a sequence score capturing consistency with the con-
servation and coupling statistics. In the example, the variant

is predicted to be less immunogenic for one peptide (with one

fewer allele recognizing it) and completely deimmunized for
the other. The selected substitutions score well under conser-

vation and coupling; while K/V would score somewhat better
than the selected K/T under conservation, it would score much

worse under coupling and thus is less likely to result in a sta-

ble, active protein.

2. Methods

Given a target protein, our goal is to design a vari-

ant predicted to have fewer epitopes, by making a

fixed number of substitutions that are predicted to

maintain the protein’s stability and activity (Fig. 1).

Problem 2.1 (Deimmunization). Given a pro-

tein sequence S of length n, along with a number

m of mutations to make, determine an m-mutation

variant S′ minimizing

α




n∑

i=1

φi(S
′[i]) +

n∑

i=1

n∑

j=i+1

φi,j(S
′[i], S′[j]




+ (1− α)
n−8∑

i=1

e(S′[i..i+ 8])

where we have the following contributions to the score
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(lower is better for each):

• e : A9 → R gives the epitope score for a peptide

(we assume a 9-mer; see below)

• φi : A → R give the position-specific conservation

score for an amino acid at position i

• φi,j : A × A → R gives the positions-specific cou-

pling score for a pair of amino acids at pair of

positions i, j

Here and throughout, we use A={A,C,. . . ,Y} for the

set of amino acids; sequences are 1-indexed; and the

notation X[i..j] indicates the substring of X from

position i to j, inclusive.

2.1. Epitope scores

T-cell epitope predictors encapsulate the underlying

specific recognition of an epitope by an MHC II pro-

tein. We focus here on the human leukocyte anti-

gen group DR (HLA-DR) of MHC II proteins, since

they are the predominant isotype. HLA-DR proteins

have a recognition groove whose pockets form en-

ergetically favorable interactions with specific side-

chains of peptides approximately 9 residues in length.

Numerous methods are available for epitope predic-

tion, and they have been shown to be predictive

of immunogenicity26. Our current implementation

supports two state-of-the-art tools, ProPred20 and

SMM-align13, but is modular and can readily sup-

port others. For brevity, the results presented in this

manuscript are all based on ProPred, so we briefly

overview it.

Sturniolo et al.20 experimentally measured the

binding affinity between individual residues and in-

dividual pockets of the MHC II binding groove on a

limited set of alleles. They then created binding pro-

files for untested alleles through sequence and struc-

ture alignment with tested alleles. In this “pocket

profile” method, TEPITOPE, the sum of position-

specific weights for each residue in a 9-mer provides

a score that is compared against a threshold to de-

termine whether or not the peptide is in a given

percentile of the best-recognized peptides. The ap-

proach was experimentally validated by comparing

its predictions against HLA-DR selected and nonse-

lected peptide repertoires; up to 80% of the selected

peptides were correctly predicted at a threshold that

yielded < 5% false positives. Singh and Raghava

then built a tool, ProPred, to expand the scope of

TEPITOPE and make it more easily accessible and

applicable17. In a recent independent evaluation26,

ProPred did quite well in epitope prediction, achiev-

ing an average 0.73 area under the curve (AUC)

across 14 different alleles. ProPred has also been suc-

cessfully employed in a number of different studies;

e.g., it has recently helped identify antigenic sites on

a mosquito midgut glycoprotein4, immunoreactive

peptides in prostatic acid phosphatase9, and promis-

cuous T-cell epitopes of three major secreted anti-

gens of Mycobacterium tuberculosis12. In all three of

these examples, ProPred facilitated the rapid iden-

tification of potential vaccine targets that were then

experimentally characterized in detail. In our case

study of Erythropoeitin, we found a quite striking

match between ProPred predictions and published

ELISPOT assay immunogenicity results.

While there are over 50 different HLA-

DR alleles, we have focused on 8 common

alleles (DRB1*0101, DRB1*0301, DRB1*0401,

DRB1*0701, DRB1*0801, DRB1*1101, DRB1*1301,

and DRB1*1501) that represent the majority of hu-

man populations world-wide19. Thus our epitope

score is the fraction of these 8 alleles predicted to

recognize a peptide.

2.2. Sequence scores (conservation and
coupling)

We base the conservation and coupling scores on the

statistical framework from our earlier site-directed

recombination work28, but our planning method can

use any score of the same form. In fact, it could read-

ily employ a ∆∆G◦ predictor5 instead of a sequence-

based score. For consistency with epitope scores, we

establish the sequence score so that it is to be min-

imized. We include both position-dependent residue

conservation and coupling (covariation). If a residue

is highly conserved to a single amino acid type, it

may be important not to mutate it at all; likewise

if a few amino acid types dominate the family for a

particular residue position, perhaps only those amino

acids should be considered for possible substitutions.

Similarly, if two residues are highly correlated, it may

be necessary to ensure that we make compensating

mutations—if we mutate one, we must also mutate

the other in order to maintain the covariation that
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presumably underlies stability or activity. Our se-

quence score quantitatively codifies these intuitive

conservation and coupling constraints.

Let us consider conservation and covariation in a

multiple sequence alignment S for the family related

to our target protein S. For notational convenience,

we define ni(a) as the number of sequences in the

family that contain an amino acid a at position i,

and similarly nij(a, b) as the number of sequences

in the family that contain amino acids a and b at

positions i and j respectively:

ni(a) = |{P ∈ S : P [i] = a}| (1)

ni,j(a, b) = |{P ∈ S : P [i] = a ∧ P [j] = b}| (2)

For the single-position terms, we define φi(a) as the

negative log probability (so that more negative is

better) of amino acid type a at residue position i:

φi(a) = − log
ni(a)

|S| (3)

For the pairwise terms, we define φi,j(a, b) as the neg-

ative log probability of the pair of amino acid types

a and b, vs. what would be expected if they were

independent:

φi,j(a, b) = − log
ni,j(a, b)

|S| − φi(a)− φj(b) (4)

By subtracting the independent terms from the joint

term, φi,j contains only the additional information

regarding the correlation between the two positions.

We can correctly compute a total score by sum-

ming up all the singleton and pairwise terms without

“double-counting” the singleton contributions.

If we include all pairwise terms, we run the risk

of using an overfit model, capturing (and then enforc-

ing) too many and too specific constraints on residue

interactions. One approach to limiting the number

of pairwise terms is to place a contact restriction:

only consider residue pairs that are in contact in a

representative structure for the protein family (as-

sumed common to all, by homology), since such pairs

have the greatest direct impact on establishing the

local environment for a possible mutation. Another

approach is to enforce a statistical significance test,

such as a χ2. For a pair of positions i, j, the χ2 can

be written in terms of our conservation and coupling

scores.

χ2 =
∑

a∈Si

∑

b∈Sj

(
ni,j(a, b)− ni(a)·nj(b)

|S|

)2

ni(a)·nj(b)
|S|

(5)

We compute a p-value according to the χ2 distribu-

tion with (r − 1)(c − 1) degrees of freedom (where

r and c are numbers of different amino acids in the

sequence record for columns i and j, respectively),

giving the probability that the two residues are ac-

tually independent rather than coupled. We employ

a simple Bonferroni correction for multiple hypothe-

sis testing, dividing the desired p-value (0.01 for the

results shown below) by the number of pairs being

tested.

While we have implemented both approaches,

for the results we use the χ2 restriction instead of

the contact restriction, since in previous work22–24

we have found the purely statistical models to out-

perform contact-restricted ones in predictive ability,

particularly in cases where long-range sequence con-

straints capture important covariation that is indica-

tive of function.

2.3. Integer programming approach

Due to the pairwise coupling terms, our optimiza-

tion problem (Problem 2.1) is NP-hard (like other

such protein design problems15). Thus we develop

an integer programming approach that incorporates

the pairwise terms along with the conservation and

epitope terms.

Define singleton binary variable si,a to indicate

whether or not the residue at position i is of amino

acid type a. Define pairwise binary variable pi,j,a,b,

derived from si,a and sj,b to indicate whether or

not the residues at positions i and j are of amino

acid types a and b, respectively. Finally, define win-

dow binary variable wi,X , derived from si,a through

si+9,b, to indicate whether or not the residues in the

9-residue window starting at position i are of the

amino acid types in X ⊂ A9.

We rewrite our objective function in terms of

these binary variables:

Φ = α


∑

i,a

si,a · φi(a) +
∑

i,j,a,b

pi,j,a,b · φi,j(a, b)




+(1− α)
∑

i,X

wi,X · e(X) (6)
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In order to guarantee that the variable assign-

ments yield a valid set of mutations, we impose the

following constraints:

∀i :
∑

a

si,a = 1 (7)

∀i, a, j > i :
∑

b

pi,j,a,b = si,a (8)

∀j, b, i < j :
∑

a

pi,j,a,b = sj,b (9)

∀i, a ∀h ∈ 1..9 :
∑

X:X[h]=a

wi,X = si+h−1,a (10)

∑

i,a:S[i] 6=a

si,a = m (11)

Eq. 7 ensures that only one amino acid is as-

signed to a given position. Eq. 8 and Eq. 9 maintain

consistency between singleton and pairwise variables,

while Eq. 10 maintains consistency between singleton

and window variables. Eq. 11 enforces the desired

mutation load.

We employ several restrictions to limit the num-

ber of variables and make the system amenable to

standard IP solvers. We assume that only a small

set of substitutions should be considered at each po-

sition, namely those that have appeared with fre-

quency greater than 5% at the position in the family.

Let us denote by Ai the set of such allowed amino

acids at position i. Then we only have si,a variables

for a ∈ Ai. We similarly restrict variables pi,j,a,b to

a ∈ Ai and b ∈ Aj , and create wi,X only for X com-

posed from the allowed amino acid types. We further

note that positions P5 and P8 are considered un-

informative in matrix-based epitope predictors such

as ProPred17, thereby further reducing the number

of variables required (X only has 7 positions rather

than 9). Finally, due to the nature of MHC-II bind-

ing, epitopes must have a hydrophobic residue from

the set {F,I,L,M,V,W,Y} in the first position of the

peptide. Thus we only create epitope variable wi,X

for X with X[1] in the hydrophobic set.

We implemented and evaluated a further varia-

tion on the epitope variables, only creating variables

for peptides with non-zero epitope scores (since only

they can affect the objective function). We then re-

lax the epitope constraints (Eq. 10) to account for the

fact that only immunogenic peptide variables need

appear:

∀i,X : 1/8
9∑

h=1

sh+i−1,X[h] − wi,X ≤ 1 (12)

In practice, we found this version to have reduced the

structure of the problem sufficiently that the solver

took much longer to identify the solution; the reduc-

tion in memory usage was not worth the reduction

in constraint.

2.4. Implementation

The integer program is solved by the open source

COIN-OR cbc solver (https://projects.coin-or.

org/Cbc). The code to generate the problem for-

mulation and read the solution is implemented in

Java. We have placed a limited-capability demon-

stration at http://www.cs.dartmouth.edu/~cbk/

deimm/; the full code is available for academic use

by contacting the authors.

3. Results

We illustrate the effectiveness of our approach on

three biotherapuetic proteins, SakSTAR, Epo, and

Factor VIII, previously subjected to expert ratio-

nal design as well as computational studied with our

previous dynamic programming framework14. In all

three cases we performed sequence analysis based

on the appropriate Pfam-curated MSA (SakSTAR:

PF02821; Epo: PF00758; Factor VIII: PF00754), re-

moving sequences with less than 35% identity to the

target and filtering for a maximum of 90% pairwise

identity. We considered a substitution to be accept-

able if it appeared in at least 5% of the remaining

sequences. We then studied the impact of incorpo-

rating a pairwise coupling score along with the single-

position conservation score. We also considered the

impact of the two main parameters to our algorithm:

m, the number of substitutions to make, and α, the

weight applied to the sequence score (with 1-α to

epitope score).

The score range for the epitope potential is from

0, when there are no detectable immunogenic pep-

tides, to (n− 8) · a, when every 9-mer peptide binds

to each MHC-II allele (n is the length of the sequence

and a the number of alleles). The number of coupling
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constraint violations is from 0, when every mutation

is benign, to m · (n − 1), when every mutation vio-

lates a coupling constraint with every other column

(m is the number of mutations). The magnitude of

the sequence score depends on the frequencies of the

chosen substitutions in the MSA as described in the

Methods.

We evaluate here the efficacy of our computa-

tional method for global optimization of protein vari-

ants, using three target proteins which have been

experimentally evaluated under local modifications.

It is not straightforward to compare and contrast

such different methodologies; e.g., since our results

are guaranteed to be optimal under the scoring func-

tions, but must account for more residues and inter-

actions. Therefore, we use the literature exclusively

as a qualitative benchmark, characterizing what was

done and the effects found. For a quantitative bench-

mark, we examine the results of our system under

the different parameters mentioned above. The pri-

mary focus of this work is demonstration of a novel,

provably accurate global optimization algorithm op-

erating with several validated bioinformatics models.

3.1. SakSTAR

Warmerdam et al.27 sought to deimmunize the fibrin-

selective thrombolytic agent staphylokinase, specifi-

cally the SakSTAR wild-type variant derived from a

lysogenic S. aureus strain. They targeted the C3 re-

gion, spanning residues 71–87, which was recognized

by 90% of the T-cells cloned from a set of donors.

Based on results from alanine scanning mutagene-

sis, sets of 2–4 alanine substitutions were selected to

produce new variants designed to reduce immuno-

genicity. T-cell proliferation response to this short

segment was reduced in the variants.

To assess the potential impact of accounting for

coupling in optimizing the SakSTAR C3 region, we

computed the sequence score for all 1209 double-

mutant plans, using the allowable substitutions as

discussed above. See Fig. 2. The mean sequence

score is 291, with a standard deviation of 112; the

best score is about 41. Even with only double mu-

tants in a small peptide, it is easy to violate im-

portant residue interactions; the problem is exac-

erbated with higher mutational loads and more in-

teractions. As a specific example, in our previous

work14, which assumed residue independence, we de-

signed a 6-substitution, conservation-based plan that

included mutations V112K and F125E. Our new cou-

pling analysis shows that these two positions are sig-

nificantly coupled (p-value = 3 · 10−7). In addition,

evaluation of the double mutant with Fold-X5 finds

their ∆∆G◦ contributions to be non-additive by ap-

proximately 1 kcal/mol.
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Fig. 2. Histogram of residue coupling scores for all double

mutants (using substitutions allowed by conservation statis-
tics) of the C3 region of SakSTAR.

We applied our method to optimize the en-

tire SakSTAR protein, addressing a weakness iden-

tified in the published experimental methodology:

the “vast majority of humans recognize additional

immunogenic SakSTAR regions”27. Fig. 3 summa-

rizes the plans and scores. Plans optimized for both

conservation and coupling trend downward exponen-

tially in sequence score as the objective function

is progressively weighted more heavily towards it.

Plans optimized only for conservation trend flat or

erratically as the weight is changed; these plans miss

critical pairwise interactions.

By placing weight on the sequence score we trade

off some minimization of immunogenicity for maxi-

mization of stability preservation. For example, in

Fig. 3 the first marker in the 2-substitution cou-

pling series (a) is a plan with α = 0, which deletes

22 epitopes but incurs a sequence penalty of about

200 (including over 30 pairwise residue interaction

clashes). The fourth marker in that series is a plan

with α = 0.1, which deletes four fewer epitopes, but

with a sequence score an order of magnitude better

at around 30. At this inflection point in the series

most of the pairwise residue interactions have been

eliminated in the sequence score. The remaining part
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of the score is the independent residue conservation

penalty for each substitution. Increasing the weight

on the sequence score in the objective function has

diminishing returns for stability improvement. In-

terestingly, the 2- and 4-substitution coupling series

intersect near this point. As expected, with the pair-

wise constraints satisfied, the 2-substitution series

can finish best by choosing pairs of mutations with

small conservation penalties, but the 4-substitution

series must sum over sets of four.

By examining the contributions to the coupling

score, we can gain insights into the important residue

interactions that might affect the stability and activ-

ity of a variant. For example, 2-substitution plans

with α of 0 (no sequence score) and 0.1 differ by se-

lecting V112K or L127T, respectively. They both

choose M26S. Residue 112 is coupled with over 20

other residues, while position 26 is relatively in-

dependent and position 127 is completely indepen-

dent. This results in more “conflicts” (positive con-

tributions to the coupling score) in the α = 0 plan

(Fig. 4, left). Furthermore, shifting weight from epi-

tope score to a conservation-only (no coupling) score

doesn’t help; a similar property can be observed com-

paring plans using conservation only vs. those with

both conservation and coupling (Fig. 4, right).

Our method enables an engineer to assess the

trade offs between optimizing for deimmunization vs.

for stability. In addition to the trends observable

in Fig. 3, specific plans can be assessed for what is

contributing to the objective function. For example,

Fig. 5 shows a 6-substitution plan at α = 0.1, which

deletes 32 epitopes at a sequence score of 80. This se-

quence score is better than 98% of all 2-substitution

plan scores, shown in Fig. 2, and this epitope score

is only slightly worse (5 epitopes) than that of a

conservation-only plan. Importantly, the plan avoids

the central region of the primary sequence, which is

known to contain segments critical for therapeutic

activity 27. While Warmerdam et al. focus on this

region, our system targets flanking areas of higher

predicted immunogenicity and fewer coupling con-

straints to achieve global optimization.

3.2. Epo

Tangri et al.21 focused on two regions in the pro-

tein therapeutic erythropoietin (Epo), residues 101–

115 and 136–150, which they experimentally deter-

mined to be immunogenic during an intensive anal-

ysis of peptide fragments spanning the entire length

of the protein. They engineered four variants tar-

geting the anchor residues of identified T-cell epi-

topes in these regions: L102P/S146D (named G2),

T107D/S146D (G3), L102G/T107D/S146D (G4),

and L102S/T107D/S146D (G5). Variants G3 and

G4 reduced response in the ELISPOT assay. How-

ever, variants G2 and G5 were not bioactive, possibly

because of non-conservative substitutions at L102.

As with SakSTAR, optimizing for a combination

of epitope and sequence scores allows us to explore

the trade-offs between deimmunizing and maintain-

ing stability (Fig. 6). Again we see that it is neces-

sary to explicitly include a pairwise coupling score in

general, in order to produce variants with predicted

good residue interactions. In this case, though, we

see that the conservation-only and conservation +

coupling plans reunite at both extremes of α, im-

plying that for those values the optimal residues for

sequence score alone and for epitope score alone are

relatively independent. However, in striking a bal-

ance between those two factors, the conservation-

only plans score very poorly in terms of residue in-

teractions.

We considered a number of plans optimized by

our algorithm with varying mutation numbers and

sequence score weights. An 8-substitution, α =

0.1 plan eliminates 50 epitopes with a sequence

score of about 30. Ordinarily an engineer may

cautiously stop at 8 mutations, but because our

method can evaluate pairwise interactions, we can

more confidently increase the mutational load and

adjust the weight to ensure that sufficient atten-

tion is paid to maintaining sequence constraints pre-

dictive of stability and activity. In so doing, we

found a 16-substitution solution that dominates the

8-substitution solution, deleting 50% more epitopes

while still maintaining a low sequence score of about

30 (Fig. 7). This plan reduces epitopes in all immun-

odominant regions of the protein, including those

targeted by Tangri et al., while respecting pairwise

residue interactions. This is one example of how our

algorithm can be employed to maintain predicted

protein stability and function under higher muta-

tional loads, thus permitting more efficient epitope
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Fig. 3. SakSTAR plans optimized for varying tradeoffs between epitope and sequence scores. (left) Scores. The weight α
increases monotonically but not uniformly from left to right. Cyan square solid (a): 2 mutations, conservation and coupling;

Orange circle solid (b): 2 mutations, conservation only; Black square dashed (c): 4 mutations, conservation and coupling; Blue

circle dashed (d): 4 mutations, conservation only. (right) Sequence positions of the substitutions.

Fig. 4. Pairwise conflicts incurred by SakSTAR protein variants. (left) 2 substitutions. Lower triangle: no sequence score

(α = 0); upper triangle: some sequence score (α = 0.1). (right) 4 substitutions. Lower triangle: conservation only; upper

triangle: both conservation and coupling; both have α = 0.1.

deletion.

3.3. Factor VIII

Jones et al.7 sought to remove CD4+ T-cell epi-

topes from the C1 domain of Factor VIII (FVIII).

Frequent administration of replacement FVIII treats

hemophilia successfully, but in 20%-50% of cases, it

leads to the development of neutralizing FVIII anti-

bodies. Jones et al. screened 475 peptides but chose

only one for further study. They made a double mu-

tant, M2104K / L2107N, which mitigated the stim-

ulation of CD4+ T-cells in that peptide only and

maintained protein activity in vitro.

Our method globally searched the entire C1

domain for substitutions that optimally reduced

epitopes and respected the sequence constraints

from conservation and coupling statistics. The 4-

mutation, α = 0.2 plans under conservation only and

with conservation plus coupling both made substitu-

tions in three immunodominant regions and reduced

the total epitope score by about 30%. However, the

conservation-only approach violates 28 coupling con-
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Fig. 5. Optimized 6-substitution, α = 0.1 SakSTAR variant. (left) Epitope profile. x-axis: starting position of each 9-mer;
y-axis: predicted number of alleles recognizing the 9-mer. Thin black bars indicate wild-type scores and thick orange bars in-

dicate variant scores. Note: wild-type epitope scores are always greater than or equal to corresponding variant ones; i.e., we
never introduce new epitopes. Blue ellipses indicate mutated positions. Black ellipses at top indicate Warmerdam et al. mutated

positions. (right) Coupling violations.
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Fig. 6. Epo plans optimized for varying tradeoffs between epitope and sequence scores. (left) Scores. The weight α increases
monotonically but not uniformly from left to right. Cyan square solid (a): 2 mutations, conservation and coupling; Orange circle

solid (b): 2 mutations, conservation only; Black square dashed (c): 4 mutations, conservation and coupling; Blue circle dashed
(d): 4 mutations, conservation only. (right) Sequence positions of the substitutions.

straints, while the conservation plus coupling method

violates only 3. As a result, the sequence score of

the former is an order of magnitude worse: 125 ver-

sus 14, respectively. Similar to Epo and SakSTAR, a

higher mutational load eliminates more epitopes at

the cost of a higher sequence score; and again we ob-

serve that considering coupled residues dramatically

lowers sequence score compared to conservation only

plans at both 2 and 4 mutations (Fig. 8). Our FVIII

results further establish that computational protein

redesign in the context of epitope deletion demands

incorporation of pairwise residue interactions.

FVIII is predicted to be highly immunogenic

relative to SakSTAR or Epo. The sequence of

the C1 domain of FVIII has a greater proportion

of large hydrophobic residues that potentially an-

chor component peptides into the MHC-II binding

groove. Furthermore, the sequence is tightly cou-

pled. High scores in both dimensions present a chal-

lenging global optimization problem. Our method
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scores. Note: wild-type epitope scores are always greater than or equal to corresponding variant ones; i.e., we never introduce

new epitopes. Blue ellipses indicate mutated positions. Black ellipses at top indicate Tangri et al. mutated positions. The line
plot, from Tangri et al., displays wild-type Epo antigenicity using ELISPOT assays, with black squares giving the number of
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one).
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Fig. 8. FVIII plans optimized for varying tradeoffs between epitope and sequence scores. (left) Scores. The weight α increases

monotonically but not uniformly from left to right. Cyan square solid (a): 2 mutations, conservation and coupling; Orange circle
solid (b): 2 mutations, conservation only; Black square dashed (c): 4 mutations, conservation and coupling; Blue circle dashed

(d): 4 mutations, conservation only. (right) Sequence positions of the substitutions.

designed an 8-substitution FVIII plan with α = 0.25

(Fig. 9). The plan eliminates 61 of 162 ProPred pre-

dicted pitopes and 25 of 74 SMM-align predicted epi-

topes while largely respecting pairwise constraints.

Jones et al. focus on positions 63-77. We make one

mutation in that area as well as many more in flank-

ing areas with equivalently high epitope scores but

lower coupling penalties. Our computational method

quickly (< 1 hour) produced a design targeting im-

munodominant regions of a highly immunogenic and

tightly coupled sequence.

As described in Methods, our system optimized

all of the plans in this paper with respect to the

ProPred immunogenicity model. Another, quite dif-

ferent, technique to predict CD4+ T-cell epitopes

works by learning a model from a large database of
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Fig. 9. Optimized 8-substitution, α = 0.25 FVIII variant. (left) Epitope profile. x-axis: starting position of each 9-mer; y-axis:
predicted number of alleles recognizing the 9-mer. Thin black bars indicate wild-type scores and thick orange bars indicate variant

scores. Note: wild-type epitope scores are always greater than or equal to corresponding variant ones; i.e., we never introduce

new epitopes. Blue ellipses indicate mutated positions. Black ellipses at top indicate Jones et al. mutated positions. (right)
Coupling violations.

peptides with known MHC-II allele binding affinities.

One such successful method is called SMM-align13.

Tab. 1 shows the 2-mutation plans utilizing conserva-

tion and coupling from Fig. 8(a). After optimization,

we evaluated these plans with SMM-align. Notice

that the number of epitopes predicted by ProPred

correlates well with the number of epitopes predicted

by SMM-align across the range of α values. We found

similar trends in the other test cases.

Table 1. 2-mutation plans using conserva-

tion and coupling for FVIII; E: total number

of ProPred epitopes; C: conservation penalty
for substitutions based on the frequency of

a residue in the Family sequence record; S:

number of SMM-align epitopes.

α FVIII 1–131 E C S

wild type 162 0.00 74

0.00 L41E,I123E 130 40.75 62

0.25 L41E,Y121A 134 5.79 63
0.85 L41E,M89K 135 4.61 68

0.87 L41Q,M89K 147 2.61 69

0.90 L41Q,L116I 154 1.61 67
1.00 I68V,L116I 162 1.23 74

4. Discussion and Conclusion

We have developed a novel method for the design of

biotherapeutics optimized to delete MHC-II epitopes

while satisfying sequence constraints on individual

residues and pairs of residues. The combined epi-

tope and sequence-constraint potential enhances the

likelihood that designed variants will maintain wild-

type stability and therapeutic activity, while display-

ing reduced immunogenicity. The global optimiza-

tion of these factors enables us to more confidently

pursue plans with higher mutational loads, deleting

more epitopes. While the computational problem is

intractable in general, we have developed an inte-

ger programming approach that is sufficiently fast in

practice (plans shown here took at most a few hours

of wall-clock time), while guaranteeing optimality.

Our computational system comprises an algo-

rithm and models of immunogenicity and stability;

we employ models that have previously been exper-

imentally validated. Significantly, the algorithm is

guaranteed to produce results that are optimal with

respect to the models. Thus if designed variants

prove not to be sufficiently stable, active, or deim-

munized, the fault lies in the models, not in the lack

of search through the design space. This further pro-

vides an opportunity to update and refine the models

accordingly. It also enables our system to take ad-

vantage of other published improvements in models

of immunogenicity and stability.

Previous efforts focused on short fragments of

target proteins. In contrast, for each target our

method globally searched the entire protein and
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chose sets of substitutions spanning several immun-

odominant regions. The selected mutations obtain

the most epitope score reduction for the least se-

quence score penalty. Quantitatively comparing the

results of our computationally determined plans with

those in the literature is not appropriate. On the one

hand, our plans are guaranteed optimal with respect

to the scoring models; the literature plans would have

worse scores. On the other hand, experimentally con-

structing and assaying our plans is beyond the scope

of the present paper, which is about a new computa-

tional method that integrates well-characterized se-

quence potentials to uncover promising candidates

in a large, complex design space. Ultimately, our

method provides the engineer with an effective mech-

anism for exploring the space of good variants, trad-

ing off goals of deimmunization and maintenance of

stability and activity.
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