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Functional classification of genes using diverse bio-molecular data obtained from high-throughput technologies

is a fundamental problem in bioinformatics and functional genomics. Genes are organized and classified according
to a hierarchical classification scheme and each gene will participate in multiple activities. Flat classifiers, that work

on non-hierarchical classification problems independently, do not take into account the hierarchical structure of the

functional class taxonomies. Therefore, they are not able to utilize the information inherent in the class hierarchy.
Moreover, independent classifiers, where each classifier predicts the gene membership to a particular class, may lead to

an inconsistent set of predictions for a hierarchically structured classification scheme. In this paper, we propose HML-

Boosting algorithm for the problem of hierarchical multi-label classification in the context of gene function prediction.
HML-Boosting exploits the hierarchical dependencies among the classes. Extensive experiments on four bio-molecular

datasets using two approaches for class-membership inconsistency correction during the testing phase, the top-down

approach and the bottom-up approach, show that HML-Boosting algorithm outperforms flat classifiers using different
evaluation metrics. In addition, we carry out a detailed comparison of the two approaches for class-membership

inconsistency correction during the testing phase.

1. INTRODUCTION

The functional classification of genes is an impor-

tant and challenging problem in the field of func-

tional genomics. First, there are many functional

classes which may be related to each other in a tree or

a graph structure (Funcat or Gene Ontology(GO)).

Usually, the goal is to discover the specific unknown

functions for a gene rather than general functions.

Second, a gene may have multiple class labels. Bio-

logically, a gene may be involved in more than one

biological activity. Therefore, there is a need for a

prediction algorithm that is able to identify all the

possible functions of a particular gene.

In the context of gene function prediction, with

the availability of data from different biological

sources, assigning biological functions to genes is a

challenging task in functional genomics. This is of-

ten achieved by automated prediction process that

interacts with laboratory experiments 2. Several ap-

proaches to apply machine learning techniques to

predict gene functions from a predefined set of func-

tions have been proposed in the literature 2–4. Pre-

dictions with the highest confidence are taken to the

lab for testing 5. In gene function prediction setting,

a gene may be associated with multiple biological

functions.

Hierarchical multi-label classification problem is

an extension of the binary classification problem

where an instance can be associated with multiple

classes that are related through a hierarchical cate-

gorization scheme. In other words, when an instance

is labeled with a certain class, it should also be la-

beled with all of its superclasses. Multi-label classifi-

cation problems arise in several application domains

such as text classification, image classification, and

gene function prediction 1. In hierarchical multi-

label classification, the training set consists of in-

stances, each of which is associated with a set of

labels that are organized according to a predefined

hierarchy (For example, GO or FunCat in the func-

tional genomics setting). The goal is to predict the

label sets of unseen instances by analyzing the train-

ing instances with known label sets.

Several types of data sources can be used for

the prediction task. The recent advances in high-

throughput technologies, such as the DNA microar-

ray data, has enabled measuring the expression

level of thousands of genes simultaneously. Protein-

protein interaction (PPI) is another important data

source. In this paper, various kinds of datasets will

be used in evaluating the task of hierarchical gene

function prediction.
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1.1. Hierarchical Taxonomies of Gene
Functions

Gene functional classes such as MIPS’s (The Munich

Information Center for Protein Sequences) FunCat

(Functional Catalogue tree structure), are controlled

vocabularies which are structured hierarchically as a

rooted tree with general functions appear at the top

levels of the hierarchy and more specific functions

appear at the lower levels. As an example, Figure 1
6 shows a small portion of the FunCat taxonomy. In

this Figure, Metabolism, Energy and Cell Cycle and

DNA Processing are considered as general functional

classes, while conjugational DNA transfer is a more

specific class.

Fig. 1. A small sample of FunCat, the hierarchical classifi-

cation scheme.

Gene Ontology (GO) 7 is another hierarchical

gene classification scheme, where the gene func-

tion categories are organized according to a directed

acyclic graph (DAG) 8. In the context of FunCat,

where the existence of a hierarchical structure of

classes is expressed as a tree, each class is subdi-

vided into more specific classes, and these, in turn,

are subdivided again and again until the most spe-

cific functions are reached 9. According to the “true

path rule” 8, 10 that governs the annotation of both

GO and FunCat taxonomies, annotating a gene to a

given class is automatically transferred to all of its

ancestors to maintain the hierarchy constraint. In

this paper, we focus on FunCat as the hierarchical

scheme used for gene function prediction.

Table 1. An example of a synthetically gen-

erated dataset. Each example belongs to one
or more of the hierarchically structured classes.

Classes

Examples

A B C D E F G H

e1 1 1 1 0 0 1 0 1

e2 1 0 1 0 0 0 0 0

e3 1 1 0 1 1 0 0 0

e4 1 1 1 1 0 0 0 0

e5 1 0 1 0 0 0 0 0

e6 1 1 1 0 1 0 0 0

e7 1 1 0 0 0 0 0 0

e8 1 0 0 1 0 0 0 0

e9 1 1 0 1 1 1 1 0

e10 1 0 1 1 0 0 0 0

1.2. Hierarchical Classification vs. Flat
Classification

Table 1 shows a set of classes in the columns and a set

of examples in the rows. An example is considered to

be associated with a certain class if the correspond-

ing value is 1. In this example, we assume that the

classes are related in a hierarchical manner as shown

in Figure 2(a). In this case, class A is considered to

be the most general class which all the examples be-

long to. Going down the tree, more specific functions

are reached. Hence, less number of examples are la-

beled with those specific functions. In other words,

for a non-root node in the tree, the set of examples

that belongs to this node is a subset of the set of

examples that belongs to the parent of that node.

Hierarchical classification integrates the hierarchical

information for the purpose of labeling unseen ex-

amples. Furthermore, the hierarchical information

helps in training and testing the classifiers by iden-

tifying the relevant positive and negative examples
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Fig. 2. (a) A tree structure representation for the classes in Table 1, (b) A flat representation for the same set of classes.

for each class, according to its location in the hierar-

chy, which will be discussed later in the next section.

However, the flat classification does not capture such

relationship between classes.

As shown in Figure 2(b), flat classifiers work

independently of each other. Although class A is

shown to be the root class for all of the other classes,

it is considered as “any class”. Since the flat clas-

sifiers do not capture the dependencies among the

classes, all the classifiers are considered to be at the

same level. The set of positive (and negative) exam-

ples used to train each classifier does not follow any

constraint. As a result, an example may be classified

to belong to a given class while it is not classified

as belonging to the parent of that class. Such viola-

tion should be avoided when the domain knowledge

about the examples is available. One of the primary

goals of this work is to compare the performance of

hierarchical classification against flat classification.

In this paper, the hierarchical structure of gene

functions in FunCat taxonomy is integrated into

the multi-label classification problem. As a result,

the performance of the proposed method that incor-

porates both the hierarchical and multi-label con-

cepts is significantly better compared to the standard

classification approach. In this work, we develop

the HML-Boosting algorithm and apply it to bio-

molecular data for predicting gene functions. Boost-

ing algorithms are well-known machine learning al-

gorithms with rigorous theoretical properties and are

usually competitive to any other classification meth-

ods 11. HML-Boosting algorithm relies on the hi-

erarchical information and utilizes the hierarchy to

improve the prediction accuracy. To test the HML-

Boosting framework in the functional genomics con-

text, each classifier is evaluated in a leave-one-out

scheme in which FunCat annotations of the test

genes are hidden. We describe the evaluation met-

rics that we used and show extensive experiments us-

ing HML-Boosting algorithm on four bio-molecular

datasets using two approaches for class-membership

inconsistency correction during the testing phase,

the top-down approach and the bottom-up approach.

Furthermore, HML-Boosting is compared with flat

classifiers and the results are analyzed. Our results

demonstrate that utilizing the hierarchical scheme in

the prediction process yields improved performance

over flat classifiers, when both are applied on the

same datasets.

The rest of the paper is organized as follows: In

section 2, the formal definition of hierarchical multi-

label classification is given and related work in this

area is discussed. In section 3, the proposed HML-

Boosting is described. In section 4, extensive exper-

imental evaluation on four bio-molecular datasets is

reported. Finally, section 5 concludes the paper with

future directions.

2. Related Work

Several methods have been proposed to han-

dle the hierarchical multi-label classification task

for gene/protein function prediction application
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2–5, 8, 10, 12. The majority of hierarchical multi-label

classification works have been motivated by the text

classification problem. Many proposed methods in

that domain use either Bayesian or kernel-based clas-

sifiers 3.

Different approaches have been proposed to

tackle the hierarchical multi-label classification prob-

lem. Generally, these approaches can be grouped

into two groups: the local classifier approach and the

global classifier approach. Methods that adopted the

local classifier approach use local information to train

the classifiers. Based on whether the hierarchy con-

straint is taken into account or not, this approach can

be further sub-grouped into two main approaches. In

one approach, a separate binary classier is generated

for each class in the hierarchy. The learning for each

classifier is performed on a strongly skewed class dis-

tribution 4. This is because few instances belong to

classes at lower levels of the hierarchy, while more

instances are positive examples of classes at higher

levels of the hierarchy as shown in Table 1. Moreover,

this approach does not take the hierarchy constraint

into consideration and hence, can produce a hier-

archically inconsistent set of predictions. In other

words, a class may predict a test instance to be pos-

itive while its parent class (or any of its ancestor

classes) predicts it as negative.

To overcome the hierarchy constraint problem

of the first approach, the second approach mainly

focuses on taking the class hierarchy constraint into

account. More specifically, the separate class-wise

models are hierarchically combined in the prediction

stage, so that a classifier generated for a class c, will

predict positive only if the classifier for the parent

class of c is also predicted to be positive 4, 2. In

essence, there are three main approaches for using

the local information to build the classifiers, a local

classifier per every node, a local classifier per parent

node and a local classifier per level 13. For example,

in the work of Barutcuoglu et al. 2, a Bayesian frame-

work is developed for correcting class-membership

inconsistency for the separate class-wise models ap-

proach. Their method starts by training independent

Support Vector Machine (SVM) classifiers for each

class with no regard to the hierarchy. Bayesian com-

bination of the output of the base binary classifiers

is applied next. Thus, the hierarchical structure of

the classes is captured through the use of a Bayesian

network.

On the other hand, in the global classifier ap-

proach, a single global model is developed from the

training set that takes the class hierarchy as a whole

into account during a single run of the algorithm.

The single global classifier is able to predict all the

classes of an example at once. CLUS-HMC algo-

rithm, proposed by Ven et al. 4, is an example of the

global classifier approach. Their algorithm is based

on the predictive clustering trees, in which a single

tree is trained to make prediction for all classes at

once. In order to do that, the classification output is

transformed into a vector with boolean components

corresponding to the possible classes. Weighted Eu-

clidean distance is used to calculate the degree of

similarity between the training examples in the clas-

sification tree.

For the testing phase, there are two main strate-

gies for class predictions, namely, the top-down ap-

proach and the bottom-up approach. Most of the ex-

isting methods use a top-down class prediction strat-

egy in the testing phase 2, 3, 13. Valentini 16 fol-

lowed a bottom-up approach in correcting the class-

membership inconsistency in the testing phase. Ba-

sically, after evaluating all the classifier nodes’ out-

puts, a “consensus” probability is computed in a

bottom-up fashion to obtain consistent predictions.

Our proposed approach falls into the local clas-

sifier approach. More specifically, for each parent

node in the class hierarchy a multi-class multi-label

classifier is built using AdaBoost.MH. Moreover, we

evaluated the performance of the HML-Boosting al-

gorithm using the two different policies for the test-

ing phase, the top-down class prediction approach

and the bottom-up class prediction approach.

The hierarchical multi-label classification prob-

lem can be defined as follows 4: Let G be the example

space, and let C be the set of classes. The hierarchi-

cal relationships among classes in C are defined as

follows:

Given c1, c2 ∈ C, c1 is the ancestor of c2, denoted by

(↑ c2) = c1, if and only if c1 is a superclass of c2.

Let T = < g1,S1 >, ..., < gn,Sn > where gi ∈ G and

Si ⊆ C such that ci ∈ Si ⇒ c′i ∈ Si,∀(↑ ci) = c′i.
Having q as the quality criterion for evaluating the

model based on the prediction accuracy, the objec-
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tive function is defined as follows:

A function f : T → 2c. Here, 2c is the power set

of C such that q is maximized, and c ∈ f(g) ⇒ c′ ∈
f,∀(↑ c) = c′. In this paper, the function f is learned

using the proposed HML-Boosting algorithm.

3. HML-Boosting Algorithm

HML-Boosting is a hierarchical multi-label gene

functional classification algorithm that is inspired by

TREEBOOST.MH 11, a multi-label hierarchical text

classification algorithm. HML-Boosting uses AD-

ABOOST.MH as its base step and recurs over the

class tree structure. HML-Boosting exploits the hi-

erarchical taxonomy of the classes to improve predic-

tion performance.

3.1. ADABOOST.MH

ADABOOST.MH 14 is a popular multi-class vari-

ant of the Adaboost algorithm and works well in

practice 15. It handles multi-class and multi-label

problems. ADABOOST.MH (see Algorithm 3.1)

works by transferring a multi-class problem into a

binary classification problem by replicating positive

instances for the given class labels 15. More de-

tails of the ADABOOST.MH algorithm are given

in 14. The input to the algorithm is a training set

T = < g1,S1 >, ..., < gn,Sn >, where Si ⊆ C is the

set of classes to which gene/gene-product gi belongs

to.

ADABOOST.MH maintains a distribution D,

that is updated in each iteration. The initial dis-

tribution D1 is uniform. At each iteration, s, a weak

learner is built to form a weak hypothesis φ̂s. The

weak hypothesis is generally a decision stump. Next,

all the weights Ds(gi, cj) are updated to Ds+1(gi, cj)

using the following rule:

Ds+1(gi, cj) =
Ds(gi, cj) exp(−φ(gi, cj)φ̂s(gi, cj))

Zs
(1)

Here, the target function φ(gi, cj) is defined as

follows:

φ(gi, cj) =

{
1, gi ∈ cj
−1, Otherwise

and

Zs =
n∑

i=1

m∑

j=1

Ds(gi, cj) exp(−φ(gi, cj)φ̂s(gi, cj)) (2)

is a normalization factor chosen to make∑n
i=1

∑m
j=1Ds+1(gi, cj) = 1.

The sign of the weak hypothesis is used to decide

upon the prediction made by the weak learner, while

the absolute value can be interpreted as the strength

of the belief. In other words, if φs(gi, cj) > 0, then

gi is predicted to belong to cj , while if φs(gi, cj) < 0,

then gi is predicted as a negative example of cj . Af-

ter finishing all the iterations, the final hypothesis is

generated by summing up all of the weak hypothesis,

φ̂(g, c) =
∑S
s=1 φ̂s(g, c) for c ∈ C = c1, ..., cm.

Algorithm 3.1 ADABOOST.MH

Input:

A training set T = < g1,S1 >, ..., < gn,Sn >
where Si ⊆ C = {c1, ..., cm} for all i = 1, ..., n.

Output: A final hypothesis

φ̂(g, c) =
∑S
s=1 φ̂s(g, c) for c ∈ C = c1, ..., cm.

Algorithm:

Set D1(gi, cj) = 1
mn for all i = 1, ..., n and for all

j = 1, ...,m

for s = 1, ..., S do

Pass distribution Ds(gi, cj) to the weak learner

Get the weak hypothesis φ̂s from the weak

learner

Set Ds+1(gi, cj) =
Ds(gi,cj) exp(−φ(gi,cj)φ̂s(gi,cj))

Zs

Where Zs =∑n
i=1

∑m
j=1Ds(gi, cj) exp(−φ(gi, cj)φ̂s(gi, cj))

end for

3.2. HML-Boosting

We focus our discussion on FunCat taxonomy. Ac-

cording to the True Path Rule (TPR), that governs

both FunCat and GO taxonomies annotations, the

TPR indicates a two-way asymmetric flow of infor-

mation. A gene g that is annotated with a particular

functional class, cj , is also annotated with the parent

class and with all of the ancestor classes of cj in a

recursive way 16. In this scenario, gene g is called

as “bubbled-up” positive example in the sense that

it has been bubbled up to cj from somewhere down

below 11. On the other hand, if a gene is not anno-
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tated with a class cj , that gene cannot be annotated

with any of the descendant classes of cj . In that case,

gene g is called an “own” positive example of cj
11.

At each classifier, we need to carefully choose the

set of positive and negative examples. We followed

the same approach discussed in Ref. 11, in which the

positive training examples of a non-leaf category, cj ,

is a superset of the union of sets of positive training

examples of all of its descendent (leaf) classes 11.

HML-Boosting algorithm is explained in Algo-

rithm 3.2. Each non-root class, cj , has a binary clas-

sifier, φ̂j , that is associated with it. The classifier

should act as a “filter” to prevent unsuitable exam-

ples from spreading out to the lower levels in the

hierarchy. Hence, only the test genes that a classifier

φ̂j decides as belonging to cj are passed to all the bi-

nary classifiers corresponding to the children classes

of cj . While the genes that classifier φ̂j marks as not

belonging to cj are “blocked” and no further analysis

is carried out on them.

Algorithm 3.2 HML−Boosting
Input: A pair < C,L > where C is a tree-

structured set of classes and L is the total number

of classes of C.

Output: For each non-leaf class ct ∈ C, a fi-

nal hypothesis φ̂(g, c) =
∑S
s=1 φ̂s(g, c) for c ∈

children(ct).

Algorithm:

for i = 1, ..., L do

if class i is a leaf class then

Do nothing

else

Let children(i) = c1i, ..., cki be the k children

classes of i

Run ADABOOST.MH on children(i)

end if

end for

Relying on the hierarchical topology of the clas-

sification scheme, the training of each of the binary

classifiers, φ̂j , is performed locally using the siblings

policy. During classification, the classifier φ̂j at class

cj will only be presented with examples that are pos-

itive at the parent class of cj . Hence, the reached

examples at φ̂j are positive examples to cj and/or

to the siblings of cj . In other words, the training

for classifier φ̂j is performed by feeding as negative

training examples, the positive examples at the par-

ent of cj that are not positive examples at cj .

It should be noted that the selected negative

training examples at φ̂j are the most informative neg-

ative examples for training 11. Moreover, since as we

go down in the hierarchy, fewer training examples are

survived, this will be reflected in the efficiency of the

algorithm, for both training and classification time.

HML-Boosting converts the hierarchical multi-

label classification problem to multiple flat multi-

label classification problems, in which one classifier

is built for every internal node in the tree 11. HML-

Boosting iteratively calls ADABOOST.MH to gen-

erate a multi-label flat classifier for the children of

every internal node. In other words, a binary classi-

fier, φ̂, for each non-root class cj ∈ C is generated so

that the hierarchical classification can be performed.

The algorithm first checks whether the reached class

is a leaf node or not. The classifiers are built for

internal nodes only and hence, no work needs to be

done if a leaf function class has been reached.

If an internal class, cj , has been reached, we

identify the set of children classes of cj . Next, AD-

ABOOST.MH is called for a multi-label flat clas-

sification for the children classes of cj . Note that

the negative examples of a class cj are the set of

positive examples at the parent class but are not

positive examples at class cj . Next, for each class

cq ∈ children(cj), where children(cj) refers to the

set of children of class cj , HML-Boosting is called it-

eratively on the children of a particular class. HML-

Boosting results in a tree of binary classifiers, one for

each non-root node, where each one consisting of the

combination of decision stumps.

We evaluated the performance of the HML-

Boosting algorithm using two different policies for

the testing phase, the top-down class prediction ap-

proach and the bottom-up class prediction approach.

In the top-down class prediction approach, the neg-

ative predictions are propagated from top to bottom

along the hierarchy. In other words, for an unseen

example, the positive predictions of the higher-levels

(most generic) classes are propagated from top to

bottom nodes along the hierarchy.

On the other hand, in the bottom-up class pre-

diction strategy, the propagation of positive decisions
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are carried out from bottom to top nodes along the

hierarchy. In other words, positive decisions of de-

scendant nodes contribute to the decision of their

ancestors. More specifically, the prediction of a

node/class is dependent on the local prediction of

that node/class and on the prediction of the descen-

dant nodes of that node according to the following
16:

P (x) =
Plocal(x) +

∑
Pchild(x)

1 + |children(x)| (3)

where Plocal(x) is the local prediction at the node

x and
∑

Pchild(x) is the summation of the prediction

of the descendant nodes of x.

4. Experiments

For our experiments, we used the functional classi-

fication of yeast genes at genome-wide level, where

the classes are structured according to FunCat tax-

onomy. Each dataset provides a different descrip-

tion of a specific gene aspect. For each dataset,

we report the evaluation of the performance of the

flat ADABOOST.MH multi-label classifiers and the

HML-Boosting algorithm using precision, recall and

F1 evaluation metrics that are described below.

The flat multi-label classifier does not incorpo-

rate the hierarchical structure of the classes as dis-

cussed earlier. Each base classifier in the flat multi-

label classification framework, is separately trained

to identify the set of genes belonging to a specific

functional class without considering the hierarchical

relationship between the classes.

4.1. Datasets

We chose to demonstrate the performance of our al-

gorithm for the prediction of gene functions in yeast

using four bio-molecular datasets that were used in

Ref. 16. Valentini 16 pre-processed the datasets so

that for each dataset, only genes that are anno-

tated with FunCat taxonomy are selected. To make

this paper self-contained, we briefly explain the data

collection process and the pre-processing steps per-

formed on the data. Uninformed features that have

the same value for all of the examples are removed.

Class “99” in FunCat corresponds to an “unclassi-

fied protein”. Therefore, genes that are annotated

only with that class are excluded. Finally, in order

to have a good size of positive training examples for

each class, selection has been performed to classes

with at least 20 positive examples. Dataset charac-

teristics are summarized in Table 2.

The gene expression dataset, Gene-Expr, is ob-

tained by merging the results of two studies, gene

expression measures relative to 77 conditions 17 and

transcriptional responses of yeast to environmental

stress measured on 173 conditions 18. For each gene

product in the protein-protein interaction dataset,

PPI-BG, a binary vector is generated that implies

the presence or absence of protein-protein interac-

tion. Protein-protein interaction data have been

downloaded from BioGRID database 19, 16.

In Pfam-1 dataset, a binary vector is generated

for every gene product that reflects the presence

or absence of 4950 protein domains obtained from

Pfam (Protein families) database 20, 16. For PPI-VM

dataset, Von Mering experiments produced protein-

protein data from yeast two-hybrid assay, mass spec-

trometry of purified complexes, correlated mRNA

expression and genetic interactions 21.

4.2. Evaluation metrics

We have used F1 measure to jointly consider the con-

tribution of both precision (P) and recall (R). Preci-

sion and Recall are defined as follows:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

While F1 measure is defined as follows:

F1 =
2PR

P +R
=

2TP

2TP + FP + FN
(6)

where TP stands for True Positive, TN for True

Negative, FP for False Positive and FN for False Neg-

ative. When TP=FP=FN=0, we made F1 measure

to equal to 1 as the classifier has correctly classified

all the examples as negative examples 11. The com-

parison between HML-Boosting algorithm and the

Flat method is based on the “per-class” F1 measure

that is obtained by averaging the F-measure for all

the classes in the FunCat hierarchy for each dataset.

In other words, an overall F1 measure is obtained by

computing F1 measure for each class separately and

then averaging F1 measure across all the classes.
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Table 2. The characteristics of four bio-molecular datasets used in our experiments

Dataset Description Samples Features classes

Gene-Expr Gene expression data 4532 250 230

PPI-BG PPI data from BioGRID 4531 5367 232

Pfam-1 Protein domain binary data 3529 4950 211

PPI-VM PPI data from Von Mering experiments 2338 2559 177
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Fig. 3. Overall per-class F1 measure comparison between flat method, HML-Boosting top-down and HML-Boosting bottom-up.

4.3. Results and Discussion

Consistent with most of the other works in the litera-

ture, in the hierarchical multi-label classification set-

ting, precision, recall and F1 measure are used as ap-

propriate evaluation metrics for comparing the per-

formance. The performance of the flat method, the

HML-Boosting algorithm using the top-down and

the HML-Boosting algorithm using the bottom-up

class prediction strategies were compared using per-

class F1 measure; then, we analyzed the performance

of the HML-Boosting at each level of FunCat hier-

archy. We also studied the influence of changing the

number of boosting iterations on the performance.

Figure 3 shows the F1 measure for each dataset

using the HML-Boosting with the top-down class

prediction strategy during the testing phase, the

HML-Boosting with the bottom-up class prediction

strategy during the testing phase and the flat clas-

sification methods with different boosting iterations.

In our experimental setting, five values of boosting

iterations: 5, 10, 20, 50 and 100 have been examined.

Each barplot group refers to the results of applying

the flat method and the HML-Boosting algorithm

(with the top-down and the bottom-up strategies)

on a particular dataset. The difference between the

HML-boosting and the flat classification is signifi-

cant in most of the cases. We noticed that as the

number of boosting iterations (s) is increased, HML-

Boosting significantly outperforms the flat classifica-

tion method on all the datasets. In other words,

21



0 5 10 20 50 100
0

0.1

0.2

0.3

0.4

0.5

Number of boosting iterations

P
re

ci
si

on

 

 

Flat
HB Top−Down
HB Bottom−Up

(a) Gene-Expr

0 5 10 20 50 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of boosting iterations

P
re

ci
si

on

 

 

Flat
HB Top−Down
HB Bottom−Up

(b) PPI-BG

0 5 10 20 50 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of boosting iterations

P
re

ci
si

on

 

 

Flat
HB Top−Down
HB Bottom−Up

(c) Pfam-1

0 5 10 20 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of boosting iterations

P
re

ci
si

on

 

 

Flat
HB Top−Down
HB Bottom−Up

(d) PPI-VM

Fig. 4. The overall Precision for each dataset using the flat method, HML-Boosting top-down and HML-Boosting bottom-up
algorithms.

the improvements become much higher as we in-

crease the number of boosting iterations. Addition-

ally, in most of the cases, the HML-Boosting with

the top-down class prediction strategy during the

testing phase outperforms its counterpart, the HML-

Boosting with the bottom-up class prediction strat-

egy.

Figure 4 and Figure 5 show the overall “per-

class” precision and the overall “per-class” recall, as

a function of boosting iterations, for each dataset

using the HML-Boosting with the top-down class

prediction strategy, the HML-Boosting with the

bottom-up class prediction strategy and the flat

method. We observed that the HML-Boosting with

the top-down class prediction strategy tends to have

the best results with respect to precision and F1 mea-

sure while the flat method tends to achieve better

results with respect to recall. In fact, both of the

class-membership inconsistency correction have sim-

ilar behavior in terms of the recall.

To get more insights into the performance of the

HML-Boosting algorithm with the different testing

strategies, we performed a level-wise analysis of the

precision, recall, F1 measure and accuracy on the

four datasets. In measuring the level-wise perfor-

mance, level 1 reflects the root nodes while all other

classes are at depth i, where 2 ≤ i ≤ 5. We show

the results for the top four levels in the hierarchy.

Moreover, we show the performance of the HML-

Boosting algorithm when the number of boosting it-

erations is varied. In general, the results improve as

we increase the number of iterations. Tables 3, 4,

5 and 6 show the results of per-level evaluation for

Gene-Expr, PPI-BG, Pfam-1 and PPI-VM datasets,

respectively. The most significant measures for each

level are highlighted.

It should be noted that the accuracy of the HML-

Boosting using the top-down class prediction strat-

egy in the testing phase reduces as we go down in the

tree, from the higher levels to the lower levels. The

main reason for this performance reduction is related

to the testing mechanism followed by the algorithm.

A classifier will be able to test any example only if

that example was predicted to be a positive exam-

ple by the parent of the corresponding class. There-

fore, if a classifier at a particular class misclassifies

a positive example, this example will be considered

as a negative example by all the descendant classes

of that class. Hence, the accuracy of the lower levels

will be affected by the behavior of the classifiers at

the higher levels. For the same reason, less number

of examples will be propagated to the classifiers in

the lower levels.

5. Conclusion and Future Work

The functional classification of genes is an important

and challenging problem in the area of functional ge-

nomics. In this paper, we developed HML-Boosting
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Fig. 5. The overall recall for each dataset using the flat method, HML-Boosting top-down and HML-Boosting bottom-up
algorithms.

Table 3. Per-level precision, recall, F1 measure and accuracy for Gene-Expr dataset using HML-Boosting with top-down
class prediction and HML-Boosting with bottom-up class prediction algorithms for the different choice of boosting iterations.

Level Measurement
HML-Boosting top-down HML-Boosting bottom-up

5 10 20 50 100 5 10 20 50 100

iter iter iter iter iter iter iter iter iter iter

Level 1

Precision 0.5405 0.4776 0.4895 0.4719 0.4425 0.1573 0.1620 0.1662 0.1673 0.1679

Recall 0.0527 0.1020 0.1245 0.1606 0.1809 0.8337 0.8889 0.9058 0.9290 0.9351

F1 0.0960 0.1681 0.1986 0.2396 0.2568 0.2646 0.2740 0.2808 0.2836 0.2847
Accuracy 0.8627 0.8602 0.8608 0.8589 0.8550 0.3479 0.3371 0.3471 0.3393 0.3388

Level 2

Precision 0.4385 0.3448 0.3524 0.3308 0.3050 0.0814 0.0809 0.0815 0.0805 0.0793

Recall 0.5238 0.4904 0.5345 0.5529 0.5485 0.6322 0.6723 0.6963 0.7260 0.7333

F1 0.4774 0.4049 0.4248 0.4139 0.3921 0.1442 0.1444 0.1460 0.1449 0.1431
Accuracy 0.8370 0.8151 0.8150 0.8095 0.8025 0.6512 0.6298 0.6214 0.6019 0.5918

Level 3

Precision 0.3780 0.2908 0.2739 0.2743 0.2557 0.0446 0.0436 0.0440 0.0425 0.0424

Recall 0.7619 0.6547 0.6165 0.6291 0.6402 0.5629 0.5972 0.6141 0.6216 0.6283

F1 0.5053 0.4028 0.3793 0.3820 0.3654 0.0827 0.0812 0.0821 0.0795 0.0794
Accuracy 0.7981 0.8299 0.8058 0.8152 0.8215 0.7336 0.7118 0.7071 0.6931 0.6894

Level 4

Precision 0.18990 0.2083 0.2000 0.1905 0.1929 0.0309 0.0308 0.0311 0.0304 0.0309

Recall 0.7143 0.7576 0.7750 0.6496 0.7154 0.6192 0.6277 0.6433 0.6449 0.6651

F1 0.3000 0.3268 0.3179 0.2946 0.3039 0.0588 0.0588 0.0594 0.0580 0.0591
Accuracy 0.6889 0.6460 0.6518 0.6353 0.6365 0.6487 0.6434 0.6387 0.6283 0.6246

algorithm and applied it to the gene function pre-

diction problem. HML-Boosting algorithm leverages

the hierarchical structure of the classes. Hence, the

classifiers that are built tend to be more efficient

and effective compared to flat classification methods.

The integration of the classes hierarchical structure

improves the performance of the prediction. In ad-

dition, HML-Boosting is compared with flat classi-

fication and the results of experiments on four bio-

molecular datasets showed that HML-Boosting sig-

nificantly outperforms flat classification. In addition,

the performance of the HML-Boosting algorithm us-

ing the top-down and the bottom-up class prediction

strategies is evaluated.

For future work, we plan to generalize the pro-

posed approach to general graph structures. We will

adapt the HML-Boosting method for the GO tax-

onomy. Since GO is represented as a DAG, more

efforts need to be done to handle the complex rela-

tionship between the classes. We also plan to develop

a mechanism that enables the children of any node

to correct the classification done by the parent node.
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Table 4. Per-level precision, recall, F1 measure and accuracy for PPI-BG dataset using HML-Boosting with top-down

class prediction and HML-Boosting with bottom-up class prediction algorithms for the different choice of boosting iterations.

Level Measurement
HML-Boosting top-down HML-Boosting bottom-up

5 10 20 50 100 5 10 20 50 100

iter iter iter iter iter iter iter iter iter iter

Level 1

Precision 0.7127 0.7177 0.7319 0.7447 0.7526 0.1572 0.1606 0.1637 0.1681 0.1675

Recall 0.0708 0.0747 0.0848 0.1086 0.1405 0.7285 0.7102 0.7362 0.7780 0.8182
F1 0.1288 0.1354 0.1520 0.1895 0.2368 0.2586 0.2619 0.2678 0.2764 0.2780

Accuracy 0.8667 0.8671 0.8683 0.8707 0.8739 0.4121 0.4366 0.4335 0.4268 0.4019

Level 2

Precision 0.5911 0.5914 0.6337 0.6487 0.6287 0.0955 0.0966 0.0983 0.0959 0.0926

Recall 0.8304 0.8506 0.8600 0.8252 0.8348 0.5758 0.5797 0.6060 0.6488 0.6804
F1 0.6906 0.6977 0.7297 0.7264 0.7447 0.1638 0.1657 0.1692 0.1671 0.1630

Accuracy 0.8223 0.8210 0.8404 0.8481 0.8574 0.7268 0.7286 0.7235 0.6995 0.6754

Level 3

Precision 0.5625 0.5413 0.6077 0.6143 0.6722 0.0531 0.0541 0.0556 0.0554 0.0538

Recall 0.7246 0.7170 0.7645 0.7798 0.7871 0.5410 0.5501 0.5771 0.6254 0.6559
F1 0.6333 0.6169 0.6771 0.6872 0.6990 0.0967 0.0985 0.1014 0.1018 0.0994

Accuracy 0.8667 0.8520 0.8661 0.8712 0.8711 0.7879 0.7886 0.7852 0.7682 0.7504

Level 4

Precision 0.6078 0.5139 0.6133 0.6226 0.6163 0.0353 0.0326 0.0349 0.0358 0.0358

Recall 0.6940 0.7115 0.7500 0.8075 0.8328 0.6352 0.6584 0.6793 0.7002 0.7235
F1 0.6481 0.5968 0.6748 0.7031 0.7084 0.0669 0.0621 0.0664 0.0681 0.0683

Accuracy 0.7918 0.7331 0.7837 0.7770 0.7789 0.6846 0.6456 0.6598 0.6587 0.6482

Table 5. Per-level precision, recall, F1 measure and accuracy for Pfam-1 dataset using HML-Boosting with top-down
class prediction and HML-Boosting with bottom-up class prediction algorithms for the different choice of boosting iterations.

Level Measurement
HML-Boosting top-down HML-Boosting bottom-up

5 10 20 50 100 5 10 20 50 100

iter iter iter iter iter iter iter iter iter iter

Level 1

Precision 0.9065 0.9065 0.9128 0.8817 0.8842 0.1584 0.1585 0.1584 0.1529 0.1541

Recall 0.0433 0.0433 0.0468 0.0564 0.0578 0.7018 0.7001 0.6994 0.7312 0.7417

F1 0.0827 0.0827 0.0890 0.1060 0.1085 0.2584 0.2585 0.2583 0.2529 0.2552
Accuracy 0.9240 0.8515 0.8520 0.8530 0.8532 0.3678 0.3695 0.3695 0.3217 0.3205

Level 2

Precision 0.8521 0.8898 0.8994 0.8398 0.8178 0.0977 0.0979 0.0984 0.0981 0.0993

Recall 0.8345 0.7793 0.8512 0.8782 0.9154 0.5764 0.5767 0.5804 0.6098 0.6221

F1 0.8432 0.8309 0.8746 0.8586 0.8638 0.1670 0.1674 0.1683 0.1690 0.1713
Accuracy 0.8515 0.9223 0.9341 0.9231 0.9230 0.7000 0.7007 0.7007 0.6870 0.6860

Level 3

Precision 0.7500 0.7857 0.8000 0.7500 0.7143 0.0544 0.0546 0.0551 0.0570 0.0561

Recall 0.8438 0.8750 0.8421 0.8298 0.8224 0.5209 0.5235 0.5286 0.5497 0.5726

F1 0.7941 0.8280 0.8205 0.7879 0.7645 0.0985 0.0990 0.0999 0.1032 0.1022
Accuracy 0.9288 0.9340 0.9351 0.9186 0.9136 0.7662 0.7664 0.7665 0.7659 0.7534

Level 4

Precision 0.7714 0.8636 0.8636 0.7736 0.7368 0.0363 0.0349 0.0373 0.0382 0.0366

Recall 0.7297 0.5135 0.5135 0.6949 0.7000 0.6079 0.6221 0.6239 0.6390 0.6513

F1 0.7500 0.6441 0.6441 0.7321 0.7179 0.0685 0.0660 0.0704 0.0720 0.0692
Accuracy 0.8571 0.8108 0.8108 0.8113 0.8146 0.6448 0.6219 0.6463 0.6462 0.6238

More specifically, we are interested in minimizing the

misclassified instances that propagate down the tree.
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