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Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon
in a gene. Compared with gene expression profiling technologies like 3’ array, exon expression profiling technologies

could detect alterations in both transcription and alternative splicing, therefore are expected to be more sensitive

in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant
correlation among features. Ignoring the correlation structure among exons of a gene, popular classification method

like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation,

we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons
and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm,

including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM

can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can
select features group-wisely, force features in a subgroup to take equal weights and exclude the features that contradict

the majority in the subgroup. Experimental results suggest that on exon expression profile Lex-SVM is more accurate
than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-

validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a

gene as possible, lending itself easier for further interpretation.

1. INTRODUCTION

Variable transcripts from a single gene are produced

combinatorially through the selection of exons in al-

ternative splicing (AS) 4. AS is one of the most im-

portant sources of protein diversity in vertebrates.

Recent bioinformatics analysis suggests that almost

70% of human genes are alternatively spliced 13. AS

is not only involved in normal development, but is

also associated with human diseases including can-

cer 16, 3. In order to detect alternative splicing, sev-

eral platforms have been developed, e.g., Affymetrix

exon arrays, and more recently, RNA-Seq. By mea-

suring the abundance of exons in a variety of tissues,

these platforms could test those diseases caused by

aberration in transcription and alternative splicing,

therefore are expected to be more sensitive in diag-

nosis than gene expression profiling technologies like

3’ array.

On traditional 3’ array data, SVM and its vari-

ants have demonstrated superior performance in

classification and biomarker selection 7, 30. Suppose

we have n training samples (xi, yi) indexed by i.

xi ∈ Rm contains all probeset measurements in ar-

ray i, and yi ∈ {1,−1} defines the class of xi. SVM

searches for a hyperplane f(X) = wTx + w0 that

maximizes the margin between the training samples

in class 1 and class -1. Formally, the standard SVM

can be described as follows:

max
w,w0

1

‖w‖2
s.t. yi(x

T
i w + w0) ≥ 1− ξi

n∑

i=1

ξi ≤ c, ξi ≥ 0

, where ξi are slack variables and c is a tuning pa-

rameter. This standard SVM has an equivalent hinge

loss + penalty formulation:

min
w,w0

n∑

i=1

[1− yi(xTi w + w0)]+ + λ‖w‖22 (1)

, where the subscript ‘+’ denotes the positive part,

i.e. z+ = max{z, 0}. The 2-norm penalty helps con-
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trol the model complexity to prevent over-fitting on

training data.

The difficulty in microarray data analysis is char-

acterized by its ‘high dimension but small sample

size’. Therefore, robust and accurate feature selec-

tion methods are required to identify the features

differentially expressed across different samples, e.g.,

between cancerous and normal cells. The benefits of

feature selection are two-fold: to provide a better un-

derstanding of the underlying biological system and

to improve the classification performance. However,

the standard SVM utilizes all the variables without

discrimination, leading to its inability to conduct fea-

ture selection.

To accomplish the goal of automatic feature se-

lection, L1-SVM 30 was proposed by replacing the

2-norm penalty with the lasso penalty 22. It can be

formulated as

min
w,w0

n∑

i=1

[1− yi(xTi w + w0)]+ + λ‖w‖1 (2)

Following this framework, a variety of penalty

functions were proposed for specific applications: To

account for group-wise feature selection, Yuan and

Lin 27 proposed the so-called group lasso in linear

regression, and Zou and Yuan 31 later proposed max-

imum norm in F-∞ SVM for higher computational

efficiency. In order to capture the correlation be-

tween successive variables, variable fusion penalty

function was proposed to force successive variables

of the classifier to have similar weights 14, 23. This

technique has been successfully used in arrayCGH

data analysis 19.

Compared with gene expression profile, exon ex-

pression profile raises several new challenges to the

above supervised classification techniques: i) the

number of features has increased dozens of times

from gene to exon expression profile. This exacer-

bates the ‘high dimension but small sample size’ dif-

ficulty in microarray analysis. ii) the expression of a

gene’s exons are highly correlated unless alternative

splicing exists.

If applied on exon expression profile, the above

methods have to either treat all the exons of a gene as

though they belonged to the same single transcript,

effectively averaging, or treat all the exons as inde-

pendent entities with no correlation structure. The

first approach will not be able to diagnose diseases for

which the expression level of some alternative exon(s)

is a key indicator, but the average expression over all

exons in the gene is not. The second approach fails

to pool data from exons that are always expressed to-

gether, decreasing the sample size for estimation of

transcript abundance and hence potentially increas-

ing sampling error. To deal with this problem, we

developed a new variant of SVM – Lex-SVM to in-

corporate known splicing patterns into classification.

2. METHODS

In this section, we first elaborate the exon expression

correlation structure contained in sequence data, and

then incorporate this correlation structure to gener-

ate a new variant of SVM – Lex-SVM. Finally we an-

alyze the properties of Lex-SVM, and conclude with

an efficient implementation.

2.1. Exon expression correlation
structure

We use the concepts grouping and subgrouping to de-

scribe the correlation structure. A rough idea about

exon grouping is that exons of a gene are transcribed

together, therefore their expressions are correlated

and should be considered as a group. However, their

correlation might be interrupted by alternative splic-

ing. For more detailed and reliable exon expression

correlation structure, we need to take splicing pat-

terns of the genes into consideration. As indicated by

Fig. 1, for one gene with multiple splicing forms, the

exons could be divided into subgroups according to

whether they are always present and absent together.

Expression of exons in a subgroup are expected to be

always correlated.

T1

T2

T3

E1 E3E2 E6E4 E5

Fig. 1. A gene with 6 exons (labeled as E1, E2, E3, E4, E5,

E6), and its 3 transcripts (labeled as T1, T2, T3). The exons
can be divided into 4 subgroups according to whether they

are always present and absent together: S1 = {E1, E3}, S2 =

{E2, E6}, S3 = {E4}, S4 = {E5}. Subgroups are marked by
different colors.
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Such splicing patterns can be obtained from se-

quence databases like Ensembl 12, which have rapidly

accumulated huge amount of transcripts. When this

paper is written, sequences of 23,621 protein-coding

genes have been deposited in Ensembl. Among them,

11,254 genes have multiple spliced isoforms (total

37,099 transcripts, 3.3 transcripts for each gene).

2.2. Lex-SVM

To incorporate previously described prior knowledge

of exon grouping and subgrouping, we propose a

novel penalty function in the form of

Ωex(w) =
∑

g∈G
max
Cg∈Sg

{ max
i,j∈Cg,i6=j

{|wi|, |wi − wj |, |wj |}}

(3)

, where G is the set of genes measured, i and j are the

indexes of exons in a gene, Sg is the set of exon sub-

groups gene g has, and Cg corresponds to an exon

subgroup such that Cg ∈ Sg. The design of this

penalty is greatly inspired by the fusion penalty used

in fused lasso14, 23 and maximum norm in F-∞ SVM
31.

Lemma 2.1. Ωex(w) is a norm.

Proof of this lemma can be found in Appendix.

Combining this penalty function with hinge loss in

standard SVM, we have

min
w,w0

n∑

i=1

[1−yi(
∑

g∈G
xTi,(g)w(g) +w0)]+ +λΩex(w) (4)

, where λ is a tuning parameter. We call the penalty

function Ωex(w) ex-norm (denoted as ‖w‖ex) and

the above algorithm Lex-SVM. Note that it can be

viewed as the Lagrange formulation of the following

constrained optimization problem:

min
w,w0

n∑

i=1

[1− yi(
∑

g∈G
xTi,(g)w(g) + w0)]+

s.t. Ωex(w) ≤ µ
, where µ is a pre-defined parameter.

Several properties of Lex-SVM are noteworthy.

First, Lex-SVM still enjoys the so-called margin

maximizing property, which is shown formally in the

following theorem:

Theorem 2.1. Suppose the input data (xi, yi), i =

1, ..., n are separable. Let ŵ(λ) be the solution to

problem (4), we have:

(a) limλ→0 mini yix
T
i ŵ(λ) = 1.

(b) Any convergence point of the normalized

solutions ŵ(λ)
‖ŵ(λ)‖ex to problem (4) as λ → 0 is an

ex-norm margin maximizing separating hyper-plane.

Consequently, if this hyper-plane is unique, then the

solutions converge to it:

lim
λ→0

ŵ(λ)

‖ŵ(λ)‖ex
= arg max‖w‖ex=1min

i
yix

T
i w

The proof of this theorem is similar to that of Ros-

set et al. 21 and Zou and Yuan 31 (see Appendix).

The difference to the margin maximized in standard

SVM is that the margin here is measured using ex-

norm rather than 2-norm. Note that the following

inequalities always hold:

‖w‖∞ ≤ ‖w‖2 ≤ ‖w‖1; ‖w‖∞ ≤ ‖w‖ex ≤ ‖w‖1

Therefore oftentimes the margin Lex-SVM maxi-

mizes is closer to that of standard SVM than both

L1-SVM and F-∞ SVM.

Fig. 2. Equal contours of penalty functions: a) L2, b) Lasso,

c) Group Lasso, and d) ex-norm. In this simple problem, the

data consists of only three features: x, y and z. In panel c),
feature x and y are in the same group, while in panel d), fea-

tures x and y are in the same subgroup. Panel e) provides a
top view of panel d), exposing xy plane.

Second, owing to the singular nature of func-

tion max, Lex-SVM is able to simultaneously elim-

inate a group of features. With a proper choice

of λ, maxCg∈Sg
{maxi,j∈Cg,i6=j{|wi|, |wi − wj |, |wj |}}
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will be exactly zero, thus all exons of the gene are

excluded.

Third, it enforces consensus among exons within

a subgroup. We display the feasible solution space of

ex-norm and several representative penalty functions

in Fig.2. As pointed out in previous studies 5, 29, one

can get a good intuition on how penalty functions

operate by looking at the singularity of these sets.

From Fig.2, we see that L2 penalty has no singular

points, thus does not favor sparsity. Lasso’s singular

points lie on the edges of a regular octahedron, thus

it selects all variables individually. Group lasso’s sin-

gular points lie on the two poles of a bicone and L2

unit sphere in the xy plane, therefore, it could select

features group-wisely but does not prompt similarity

within a group.

In contrast, ex-norm has two types of singular

points: i) singularity at wi = wj . Therefore, ex-

norm favors wi = wj when measurements of exon i

and j agree with each other. ii) singularity at wi = 0.

This would eliminate exons contradicting the major-

ity within a subgroup or unrelated to the disease.

These two attributes are referred as consensus prop-

erty, and are formally presented in the following the-

orem. Proof can be found in Appendix.

Theorem 2.2. Given data (xi, yi), i = 1, ..., n,

where the x are standardized. One subgroup con-

tains two features: j and j′. Let ŵ(λ) be the so-

lution to (4), and w̃ be the solution to the hinge loss

minw,w0

∑n
i=1[1− yi(

∑
g∈G x

T
i,(g)w(g) + w0)]+.

(a) if w̃jw̃j′ > 0, then ∃µ > 0 such that, ∀λ > µ,

ŵj(λ) = ŵj′(λ).

(b) if w̃jw̃j′ < 0, then ∃µ > 0 such that, ∀λ > µ,

ŵj(λ)ŵj′(λ) = 0.

Overall, ex-norm penalization is thus expected

to provide solutions with few active groups, encour-

age features within a subgroup to take equal weights,

and exclude features that contradict the majority in

the subgroup. In fact, L1-SVM is a particular case of

Lex-SVM, where each group only contains one fea-

ture. If each subgroup contains only one feature, it

can be seen that F-∞ SVM 31 is also a particular

case of Lex-SVM.

2.3. Implementation

Introducing slack variables, the problem described

in (4) can be solved using linear programming tech-

nique:

min
w,w0

n∑

i=1

ξi + λ
∑

g∈G
mg

s.t.

∀i = 1, ..., n ξi ≥ 0

ξi ≥ 1− yi(xTi w + w0)

∀Cg ∈ Sg,∀i ∈ Cg wi ≤ mg

wi ≥ −mg

∀i, j ∈ Cg wi − wj ≤ mg

wi − wj ≥ −mg

∀g ∈ G mg ≥ 0

As usual, let ŵ and ŵ0 be the solution, the fitted

classifier can be written as f̂(x) = xŵ+ ŵ0, and the

decision rule is sign(f̂(x)).

The time complexity of a linear programming

problem is determined by the number of variables

and the number of constraints. Lex-SVM uses the

same number (n + |G|) of variables as F-∞ SVM,

but much fewer than L1-SVM as one auxiliary vari-

able has to be defined for each wi in L1-SVM. The

major complexity raised in Lex-SVM is the new con-

straints added between each two exons in a subgroup.

Luckily, the size of a subgroup can be bounded by

a constant (e.g. 100) and Megiddo 17 proved that

linear programming problem can be solved in lin-

ear time when the dimension is fixed, therefore Lex-

SVM share the same time complexity as L1-SVM

and F-∞ SVM. However, in practice as the linear

programming is usually solved using the simplex or

prime-dual method, the actual time costs may vary

depending on the property of constraint matriex.

3. RESULTS

Roughly speaking, exon expression profile contains

two types of information, namely, gene expression

information and alternative splicing information. Al-

though the association between splicing and disease

is frequently reported 26, to what extent this asso-

ciation help disease classification is still unclear. To

investigate that, we first used L1-SVM and SVM-

RFE 10 to classify gene expression profile, splicing
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profile (containing only splicing information, see be-

low), and exon expression profile, where gene abun-

dance and splicing information are coupled together.

Then, we used Lex-SVM on exon expression pro-

files and compared it with L1-SVM and SVM-RFE.

Before listing the test results, it is worth mention-

ing that SVM-RFE is another popular feature se-

lection method. Quite different from regularization

approaches like L1-SVM, SVM-RFE performs fea-

ture selection outside the training process. It trains

a SVM classifier iteratively with the current set of

features and ranks the features according to their

weights in the trained SVM. In each iteration, one

or several features that rank lowest in cross valida-

tion are removed.

3.1. Data set

In our experiments, we used four Affymetrix exon

array datasets representing different kinds of appli-

cations, different sample sizes and different sample

preparation methods. The first one is a publicly

available human colon cancer data including 10 tu-

mor/normal paired specimens 8. The second one

is a human gastric caner dataset containing 50 tu-

mor/normal paired specimens (GEO Accession #:

GSE13195). The third one is a brain cancer data in-

cluding 26 glioblastomas and 23 oligodendrogliomas

brain samples (GEO Accession #: GSE9385) 6. The

last one is a human cancer datasets containing 84

breast tumor and 43 lung cancer samples (GEO Ac-

cession #: GSE16534) 15. On the first two datasets,

the objective is to distinguish cancerous tissues from

normal ones; while on the last two datasets, the ob-

jective is to distinguish different types of cancers.

These exon array datasets were preprocessed as

follows: First, probeset signals were estimated us-

ing PLIER (with GC-normalization option) to gen-

erate exon expression profile 1. For each sample, an-

other two derivative profiles have been constructed

for comparison: i) gene expression profile. We sum-

marized the intensity of each gene’s meta-probe set

using PLIER. ii) splice profile. To evaluate the con-

tribution of alternative splicing alone to classifica-

tion, we calculated a splice profile through log2
E
G ,

where E is the exon signal and G is the correspond-

ing gene signal. This normalized intensity has been

widely used in other studies to quantify splicing 2, 8.

Second, for efficiency of the algorithms, we required

the genes to be significantly expressed in at least

one of the comparison groups, leaving 2,579 En-

sembl genes (38,156 exon probesets) in colon cancer

dataset, 3,248 genes (59,236 exon probesets) in gas-

tric cancer dataset, 2,922 genes (47,967 exon probe-

sets) in brain tumor dataset, and 3,759 genes (62,453

exon probesets) in breast/lung cancer dataset. Fi-

nally, all features (exon signal, gene signal or splicing

intensity) are scaled across training and testing sam-

ples to zero mean and unit variance. The objective is

to avoid features in greater numeric ranges dominate

those in smaller numeric ranges.

3.2. Splicing information improves
classification

As far as we know, till now there is no report on using

exon array profile for disease classification. To esti-

mate the contribution of splicing information to dis-

ease classification, we first used L1-SVM and SVM-

RFE to classify gene expression profile, splicing pro-

file and exon expression profile, respectively. For

each dataset, we performed 10-fold cross-validation

(CV) to select the best parameters and evaluate the

algorithms’ performance. For L1-SVM, we trained

it for wide-ranging values of the parameter λ. For

SVM-RFE 10, at step n bottom 1
min{n+1,10} of the

remaining features were removed to expedite the se-

lection procedure. The minimum CV errors are ad-

justed for bias according to Tibshirani and Tibshi-

rani 25, and are listed in Table 1.

The results show that using splicing information

alone could achieve comparable classification power

as gene abundance. The underlying reason might

be the reciprocal cause-effect relationship between

aberrations in alternative splicing and aberrations

in transcription 26. Compared with gene expression

profile, exon expression profile gives rise to an im-

provement of ∼ 5% in predictive power. This find-

ing is consistent with the previous observation by

Zhang et al. 28. They used SVM-RFE to compare

the classification power of isoform and gene expres-

sion profiles, and also found an increase of ∼ 5%. Of-

tentimes, SVM-RFE is more accurate than L1-SVM,

but it also requires ∼30 more features (see Table 1).

On exon expression profile, we observed that

with few exceptions L1-SVM selected only one exon
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Table 1. Error rates of L1-SVM and SVM-RFE in 10-fold CV. The numbers in bracket are the avarage sizes of features selected

in CV.

Colon Gastric Brain Breast/lung

L1 RFE L1 RFE L1 RFE L1 RFE

Gene profile 0.35 (13) 0.30 (37) 0.11 (32) 0.10 (65) 0.20 (29) 0.22 (41) 0.02 (31) 0.02 (46)
Splice profile 0.35 (14) 0.35 (56) 0.14 (36) 0.10 (75) 0.30 (34) 0.25 (72) 0.04 (35) 0.02 (55)

Exon profile 0.30 (15) 0.25 (47) 0.10 (38) 0.06 (75) 0.15 (31) 0.15 (54) 0.02 (35) 0 (49)

in a gene. For instance, under optimal value of pa-

rameter λ we observed that 16 exons were selected

from 16 different genes on colon cancer dataset, and

32 exons were selected from 31 different genes on

brain tumor dataset. This might cause two prob-

lems: first, signals of a single exon are likely to be

influenced by noise, limiting the accuracy of L1-SVM

in 10-fold CV; second, one exon does not tell us much

about which isoform of the gene is associated with

the disease. See Fig. 1 for illustration, if only exon

E5 is selected, we could not discriminate isoforms T1
and T2, unless exon E4 is also selected. Due to these

problems, the increase in classification power from

gene to exon expression profile might be underesti-

mated. In subsequent subsection, we investigated the

performance of Lex-SVM, where prior knowledge of

exon expression correlation structure is incorporated

to tackle these problems.

3.3. Performance of Lex-SVM

We tested Lex-SVM on the four exon expression pro-

files under a wide range values of parameter λ. Be-

sides L1-SVM and SVM-RFE, fused SVM 23, 19 has

also been tested for comparison. In fused SVM, the

fusion penalty was applied on the exons of a gene se-

quentially. When all four methods are under their

optimal parameter settings, Lex-SVM is over 5%

more accurate than L1-SVM on all four datasets,

about 5% more accurate than SVM-RFE on gastric

and brain datasets, and over 2% more accurate than

fused SVM on three datasets (Table 2). Lex-SVM is

also more accurate than the other three methods un-

der most non-optimal parameter settings (data not

shown).

Here, we consider a gene selected if it has at

least one exon with non-zero weight. Under op-

timal value of parameter λ, ∼ 12 genes were se-

lected by Lex-SVM on colon cancer dataset, ∼ 20

genes on brain tumor dataset, ∼ 25 on gastric

cancer dataset, and ∼ 27 on breast/lung cancer

dataset. The frequently-selected genes (over 8 times

in 10-fold CV) in colon cancer data are PRKDC,

PRPF8, ITGB4, and VWF. Among them ITGB8

has been validated by RT-PCR to be differentially

spliced in the comparison groups 8. In brain tumor

data the genes are VWF, PRKDC, LRP1, PREX1,

MACF1, PDZD2, CHL1, and ATP2B4. Among

them, ATP2B4 has been validated by RT-PCR to

be differentially spliced 6. All of them were previ-

ously reported in these diseases (Table 3). Limited

by the space, the genes frequently selected in gastric

and breast/lung cancer datasets will not be listed.
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Fig. 3. The weights of the exons selected by Lex-SVM

on brain tumor dataset when log2λ = 0 (top panel) and
log2λ = −40 (bottom panel). Each unit on x axis represents

one gene, and the weights of its exons are drawn within this
unit sequentially. Points with weight6=0 are exons selected by

Lex-SVM.

According to the design of Lex-SVM, exons of

the selected genes would be assigned equal weights

when parameter λ is large enough. The weights of

exons in the selected genes are shown in Fig. 3. It

185



Table 2. Performance of Lex-SVM, L1-SVM, fused SVM and SVM-RFE in 10-fold CV. The first row shows the error rate in CV,

the second row shows the average number of genes selected in each round of CV, and the last row shows the number of genes selected

over five times in CV.

Colon Gastric Brain Breast/lung
Lex L1 fused RFE Lex L1 fused RFE Lex L1 fused RFE Lex L1 fused RFE

0.25 0.30 0.25 0.25 0.02 0.1 0.16 0.06 0.08 0.15 0.1 0.15 0 0.02 0.02 0

12 15 14 47 25 38 32 75 20 31 25 54 27 35 35 50
10 6 9 - 20 21 22 - 19 27 23 - 26 16 26 -

can be seen that when log2λ = 0 (optimal value of

λ), Lex-SVM forces most of the exons in a selected

gene to take equal weight (forming a series of hor-

izontal lines in Fig. 3), meanwhile excluds the rest

exons that contradict the majority in their subgroups

or unrelated to the disease (scattering points along

weight = 0 in Fig. 3). When log2λ = −40 (less-than

optimum), Lex-SVM only selects several exons from

a gene. This confirms the statements in Theorem

2.2 that a large-enough λ is required to guarantee

the consensus property.

In Table 2, we compared the number of genes se-

lected by Lex-SVM, L1-SVM, fused SVM and SVM-

RFE. It can be seen that Lex-SVM is able to gen-

erate a more compact model (less genes) than L1-

SVM, SVM-RFE and fused SVM does. More im-

portantly, Lex-SVM selects genes more consistently

than L1-SVM and fused SVM from round to round

in 10-fold CV. Among those genes selected by Lex-

SVM, over 80% were selected more than five times in

10-fold CV, while the proportion in L1-SVM is less

than 50% and in fused SVM about 70%. It should

be noted that in each step SVM-RFE only eliminates

one or several features from last subset, therefore the

genes it selects will not change much from round to

round in CV.

Unlike L1-SVM selecting only one exon from a

gene, Lex-SVM assigns equal weights to as many ex-

ons of a gene as possible, therefore facilitating further

determination of which isoform is associated with the

disease. According to the exons selected, we can nar-

row the plenty of transcripts recorded in Ensembl

down to 1 ∼ 3 candidates for each gene. Limited

by the space, in Table 3 we only listed the genes

selected for colon cancer and brain tumor dataset.

For example, RT-PCR found that ITGB4 tends to

skip exon 35 in colon cancer tissues 8. In our exper-

iments, Lex-SVM also excluded this exon and the

corresponding transcript ENST00000200181 can be

determined from the exons selected.

4. DISCUSSION

The usage of exon expression profiles, which con-

tains both transcription and splicing information,

gave popular classification methods like L1-SVM and

SVM-RFE only a modest increase (5%) in accuracy.

The underlying reasons of this limited increase might

be: i) On our testing datasets, using gene abundance

alone can reach a disease classification accuracy of

80%, leaving an improvement space of only 20%. For

diseases that are caused by aberrations in splicing,

simply using gene abundance might not achieve such

high accuracy as in our experiments, then the im-

portance of introducing splicing information will be

more apparent.

ii) Existing approaches like L1-SVM and SVM-

RFE cannot fully utilize the abundant information

embedded in exon expression profiles due to one com-

mon shortage: neglecting the intrinsic correlation

structure in exon expression profile. Feature selec-

tion approaches for SVM fall into three categories 9:

filter (e.g. t-test), wrapper (e.g. SVM-RFE) and em-

bedded methods (e.g. L1-SVM). Several algorithms

in the last category such as group lasso 27 and fused

lasso 23 have considered feature correlation structure

in the selection process, but it is unclear how feature

correlation structure can be addressed in filter and

wrapper approaches.

Lex-SVM is also an embedded method. It uses a

particular regularization term (ex-norm) to translate

our prior knowledge on exon expression correlation

into constraints on the classifier. Lex-SVM is able to

select a restricted number of genes and assign equal

weights to as many exons of a gene as possible. The

sample size of exon expression profiles currently de-

posited in GEO ranges from a few to dozens. Tests

on such small size datasets demonstrate that Lex-

SVM generally performs better than classical tech-
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Table 3. Details of the genes selected over 8 times.

Colon cancer

Gene #Transcriptsa Narrowed transcriptsb PMIDc

PRKDC 2 ENST00000314191 7624361

PRPF8 1 ENST00000304992 15078890
ITGB4 5 ENST00000200181 17192196

VWF 3 ENST00000453974, ENST00000321023, ENST00000261405 15810086, 16254106

Brain tumor

Gene #Transcriptsa Narrowed transcriptsb PMIDc

VWF 3 ENST00000453974, ENST00000321023, ENST00000261405 2245394

PRKDC 2 ENST00000314191 10629611, 19435898

LRP1 3 ENST00000393833, ENST00000338962, ENST00000243077 9879460, 9205092
PREX1 5 ENST00000371941 15273287

MACF1 17 ENST00000404645, ENST00000361689 15803373
PDZD2 4 ENST00000282493 11519051

CHL1 16 ENST00000397491, ENST00000256509 10103075

ATP2B4 9 ENST00000357681, ENST00000341360 17575129

a the number of transcripts recorded in Ensembl.
b related transcripts determined from selected exons. Multiple transcripts will be listed if the selected exons can not

discriminate them.
c PubMed ID of the supporting literatures.

niques that do not take into account the specificities

of exon expression profile.

Our method is closely related to F-∞ SVM and

fused SVM 19, 24. These two techniques have ac-

complished groupwise feature selection and local con-

stancy of the coefficient profile respectively. However

if directly applied to exon expression profile, F-∞
SVM could not garantee that the exons in a selected

group have similar weights. The constancy property

of fused lasso used in fused SVM is limited on a local

region (adjacent features), therefore could not en-

force two exons that are always expressed together

but not adjacent in sequence to have similar weights.

Also due to different genes have various numbers of

exons, direct summation of fusion penalty as in fused

SVM can cause higher penalty on genes with more

exons. Our major contribution is embedding fused

lasso in a maximum norm penalty to meet the spe-

cial requirements of exon expression profile classi-

fication. This modification extends the local con-

stancy of fused lasso to groupwise constancy, and

treats genes with different numbers of exons equally.

There is one pitfall in our model: the splicing

patterns in Ensembl are not either complete or spe-

cially deposited for the disease under study. If the

disease involves new alternative splicing events that

are not recorded in Ensembl, our regularization ap-

proach might unfavorably encourage two differen-

tially spliced exon to have similar weights. To avoid

such pitfall, the users can first run alternative splic-

ing detecting methods to see whether novel splicing

event exists, or simply divides the exons of the gene

each in different subgroups.

Lex-SVM can also be used to process RNA-Seq

data. Exon expression profile from RNA-Seq data

can be generated through calculating RPKM, i.e.,

normalizing the counts of reads mapped to an exon

against the exon length and million mapped reads

to the transcriptome 18. Simply due to the unavail-

ability of such public dataset, we could not report

Lex-SVM’s performance on RNA-Seq data in this

paper.

An interesting observation from Fig. 3 is that

as tuning parameter λ diminishes to less-than opti-

mal value and ex-norm gradually loses its consensus

property, the number of genes selected first decreases

and then increases rather than increase directly. To

deeply understand this phenomena, the whole solu-

tion path (changes of the solution with λ) of Lex-

SVM is needed. Luckily, Lex-SVM is piecewise lin-

ear, therefore theoretically we can generate the whole

regularized path simply by calculating the ‘step sizes’

between each two consecutive ‘joints’ 20, 11. Devel-

oping an efficient algorithm to calculate the whole

solution path would be our future work.
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Appendix

Proof of lemma 2.1

Proof. Positive homogeneity holds trivially; thus, it

suffices to prove the positive definiteness and triangle

inequality properties.

—positive definiteness: Note that Ωex(w) ≥∑
g∈G maxi∈Eg

{|wi|}, where Eg are the exons gene g

contains. If Ωex(w) = 0, we have maxi∈Eg
{|wi|} = 0

for any g, meaning w = 0. Conversely, we have

Ωex(w) = 0 when w = 0. Therefore, Ωex(w) is posi-

tive definite.

—triangle inequality: Considering two weight

vectors w and w′, we have ∀i, |wi +w′i| ≤ |wi|+ |w′i|,
and ∀i, j, |wi−wj +w′i−w′j | ≤ |wi−wj |+ |w′i−w′j |;
thus, Ωex(w + w′) ≤ Ωex(w) + Ωex(w′).

In fact, Ωex(w) can be viewed as L∞ of an ex-

panded vector w̃. Besides the elements of w, w̃ also

contains absolute difference between some elements

in w.

Proof of theorem 2.1

Proof. Part (a) We first show that

lim infλ→0{mini yix
T
i ŵ(λ)} ≥ 1. Assume the con-

trary: there is a decreasing sequence of {λk} → 0 and

some ε > 0 such that, for all k, mini yix
T
i ŵ(λk) ≤

1 − ε. Then L(ŵ(λk), λk) ≥ [1 − (1 − ε)]+ = ε.

Let m0 = mini yix
T
i w0 > 0 and w′ = w0

m0
. As

ŵ(λk) = arg minw L(w, λk), we have L(w′, λk) ≥
L(ŵ(λk), λk) ≥ ε. However, note that mini yix

T
i w
′ =

1, therefore L(w′, λk) = λk
∑
g∈G Ωex(w′) → 0 as

λk → 0. This contradicts with L(w′, λk) ≥ ε.
To show lim supλ→0{mini yix

T
i ŵ(λ)} ≤ 1, sim-

ilarly we assume the contrary: there is a decreas-

ing sequence of {λk} → 0 and some ε > 0 such

that, for all k, mini yix
T
i ŵ(λk) ≥ 1 + ε. Then,

L(ŵ(λk), λk) = λkΩex(ŵ(λk)), and L( ŵ(λk)
1+ε , λk) =

λk

1+εΩex(ŵ(λk)). So L( ŵ(λk)
1+ε , λk) < L(ŵ(λk), λk),

which contradicts the definition of ŵ(λk). In con-

clusion, limλ→0 mini yix
T
i ŵ(λ) = 1.

Part (b) Suppose a subsequence of ŵ(λk)
‖ŵ(λk)‖ex

converges to w∗ as λk → 0. Then ‖w∗‖ex = 1.

Denote mini yix
T
i w by m(w). We need to show

that m(w∗) = max‖w‖ex=1m(w). Assume the con-

trary: there is some w′ such that ‖w′‖ex = 1 and

m(w′) > m(w∗). From part(a), we have

lim
λk→0

m(w∗)‖ŵ(λk)‖ex

= lim
λk→0

min
i
yix

T
i

ŵ(λk)

‖ŵ(λk)‖ex
‖ŵ(λk)‖ex

= 1

. On the other hand, we have

L(
w′

m(w′)
, λk) = λk‖

w′

m(w′)
‖ex =

λk
m(w′)

L(ŵ(λk), λk) ≥ λk‖ŵ(λk)‖ex
Thus,

L(
w′

m(w′)
, λk)

L(ŵ(λk), λk)
≤ m(w∗)
m(w′)

1

m(w∗)‖ŵ(λk)‖ex

lim
λk→0

sup

L(
w′

m(w′)
, λk)

 L(ŵ(λk), λk)
≤ m(w∗)
m(w′)

< 1

which contradicts the definition of ŵ(λk). There-

fore, w∗ is an ex-norm margin maximizing separating

hyper-plane.

Proof of theorem 2.2

Proof. Part (a) If w̃jw̃j′ > 0, then ŵj(λ)ŵj′(λ) ≥
0 because opposite sign increases not only hinge loss

but also ex-norm penalty. To show that ŵj = ŵj′ ,

assume the contrary: ŵj 6= ŵj′ . If |ŵj | > |ŵj′ |, con-

sider w∗ as follows:

w∗k =

{
ŵk if k 6= j and k 6= j′

1
2 (ŵj + ŵj′) if k = j or k = j′

Thus,

L(ŵ, λ)− L(w∗, λ)

=
∑

i

{[1− yi(
∑

g∈G
xTi,(g)ŵ(g) + ŵ0)]+

− [1− yi(
∑

g∈G
xTi,(g)w

∗
(g) + w∗0)]+}+ λ{Ω(ŵ)− Ω(w∗)}

≥ −
∑

i

|xi,jŵj + xi,j′ŵj′ −
1

2
(xi,j + xi,j′)(ŵj + ŵj′)|

+
λ

2
|ŵj − ŵj′ |

For any λ > 2
|ŵj−ŵj′ |

∑
i |xi,jŵj + xi,j′ŵj′ − 1

2 (xi,j +

xi,j′)(ŵj + ŵj′)|, we have L(ŵ, λ) − L(w∗, λ) > 0.

This contradicts with the definition of ŵ. Therefore,

∃µ > 0 such that, ∀λ > µ, ŵj(λ) = ŵj′(λ).

188



Part (b) To show that ŵjŵj′ = 0, assume the

contrary: ŵjŵj′ 6= 0. If |ŵj | > |ŵj′ |, consider w∗ as

follows:

w∗k =

{
ŵk if k 6= j and k 6= j′

1
2 (ŵj − ŵj′) if k = j or k = j′

Thus,

L(ŵ, λ)− L(w∗, λ)

=
∑

i

{[1− yi(
∑

g∈G
xTi,(g)ŵ(g) + ŵ0)]+

− [1− yi(
∑

g∈G
xTi,(g)w

∗
(g) + w∗0)]+}+ λ{Ω(ŵ)− Ω(w∗)}

≥ −
∑

i

|xi,jŵj + xi,j′ŵj′ −
1

2
(xi,j + xi,j′)(ŵj − ŵj′)|

+
λ

2
(|ŵj |+ |ŵj′ |)

For any λ > 2
|ŵj |+|ŵj′ |

∑
i |xi,jŵj +xi,j′ŵj′− 1

2 (xi,j +

xi,j′)(ŵj − ŵj′)|, we have L(ŵ, λ) − L(w∗, λ) > 0.

This contradicts with the definition of ŵ. Therefore,

∃µ > 0 such that, ∀λ > µ, ŵj(λ)ŵj′(λ) = 0.
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