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Multiple ncRNA alignment has important applications in homologous ncRNA consensus structure derivation, novel

ncRNA identification, and known ncRNA classification. As many ncRNAs’ functions are determined by both their
sequences and secondary structures, accurate ncRNA alignment algorithms must maximize both sequence and struc-

tural similarity simultaneously, incurring high computational cost. Faster secondary structure modeling and alignment

methods using trees, graphs, probability matrices have thus been developed. Despite promising results from existing
ncRNA alignment tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and

alignment methods.

In this work, we introduce grammar string, a novel ncRNA secondary structure representation that encodes
an ncRNA’s sequence and secondary structure in the parameter space of a context-free grammar (CFG). Being a

string defined on a special alphabet constructed from a CFG, it converts ncRNA alignment into sequence alignment

with O(n2) complexity. We align hundreds of ncRNA families from BraliBase 2.1 using grammar strings and compare
their consensus structure with Murlet using the structures extracted from Rfam as reference. Our experiments have

shown that grammar string based multiple sequence alignment competes favorably in consensus structure quality with

Murlet. Source codes and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

1. INTRODUCTION

Annotating noncoding RNAs (ncRNAs), which are

not translated into protein but function directly as

RNA, is highly important to modern biology. NcR-

NAs play diverse and important roles in many bio-

chemical processes. For example, two typical house

keeping ncRNAs, tRNA and rRNA, are key compo-

nents for protein synthesis. MicroRNAs (miRNAs)

play critical regulatory roles via interactions with

specific target mRNAs in many organisms 20. Short

interfering RNAs (siRNAs) involve in gene silencing

in RNAi process 25.

Comparative ncRNA identification, which

searches for ncRNAs through evidence of evolution-

ary conservation, is the state-of-the-art methodology

for ncRNA finding. The functions of many types of

ncRNA are determined not only by their sequences

but also by their secondary structures, which de-

scribe base pair interactions in ncRNA sequences.

For example, the cloverleaf structure is a promi-

nent feature of tRNAs. Thus, comparative ncRNA

identification must exploit both sequence and struc-

tural conservations. Stochastic context-free gram-

mar (SCFG) 8 provides a powerful way to encode

both the sequence and structural conservations. A

successful application of SCFG is ncRNA classifica-

tion, which classifies query sequences into annotated

ncRNA families such as tRNA, rRNA, riboswitch

families. Other secondary structure modeling rep-

resentations such as base pair probability matri-

ces 17, 39, 36, tree profiles 14, 13, stem graphs 37 etc.

have been used in RNA alignment, an important

step in novel ncRNA detection. These alignment

methods first infer the possible structures of each in-

put sequence and then conduct structural alignment,

whose accuracy and efficiently are highly dependent

on structural representations. Despite promising

output by existing alignment tools, many existing

secondary structure representations are highly com-

plicated, incurring high computational cost during

alignment. Even with various heuristics or pruning

techniques to reduce the time complexity, ncRNA

structural alignment are still more computationally

intensive than pure sequence alignment and scale

poorly with the number and length of input se-

quences. Therefore, it remains important to develop

an efficient and accurate structural modeling and

comparison method.

In this work, we design a novel secondary struc-
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ture representation and show its application in con-

sensus structure derivation through multiple ncRNA

alignment. The two contributions are listed below.

First, we design and implement grammar string,

a novel ncRNA secondary structure representation.

A grammar string is defined on a special alpha-

bet constructed from a carefully chosen context free

grammar (CFG). It encodes how this CFG gener-

ates an ncRNA sequence and its secondary struc-

ture. Compared to other secondary structure rep-

resentations, grammar strings are simple and can

take advantage of well-developed algorithms on se-

quences or strings. For example, grammar strings

can convert ncRNA alignment into sequence align-

ment without losing any structural conservation, ren-

dering highly efficient RNA alignment algorithm.

In addition, supporting theories for sequence align-

ment such as score table design and Karlin-Altual

statistics 21 can be applied to grammar string align-

ment. Beyond alignment, grammar strings have

potential for applications such as ncRNA sequence

database indexing, ncRNA clustering, profile HMM-

based ncRNA classification etc. It is worth men-

tioning that other string-based secondary structure

representations 41, 2, 24 exit. However, those meth-

ods focus on deriving ncRNAs’ similarities without

resorting to alignment and thus cannot be directly

applied for consensus structure derivation from ho-

mologous ncRNAs.

The second contribution is that we develop an

effective method to exclude errors introduced by ab

initio structure prediction. Many ncRNA alignment

programs 14, 13, 17, 39, 36, 37 align predicted struc-

tured output by RNA folding tools. However, op-

timal prediction may not be the native structure 5,

creating a need for choosing plausible structures as

input to multiple alignment. In this work, we pro-

pose an efficient pattern matching method to pre-

select predicted structures that are highly likely to

be the true structure. This pre-screening can be used

to reduce errors introduced by ab initio structure pre-

diction and to remove contaminated sequences that

are not homologous to others.

The remainder of the paper is organized as fol-

lows. Section 2 briefly introduces several representa-

tive secondary structure modeling methods, which

will be compared to grammar strings in several

experiments. Section 3 formally defines grammar

string and illustrates its generation. Sections 4 and

5 present the algorithm and experiments of using

grammar strings for multiple ncRNA alignment. Fi-

nally, we conclude this paper and discuss future di-

rections in Section 6.

2. RELATED WORK

Existing ncRNA alignment methods can be roughly

classified into three basic types. The first type aligns

and folds simultaneously. The most accurate algo-

rithm of this type was developed by Sankoff 32. How-

ever, it is prohibitively expensive with time complex-

ity O(L3N ) and memory complexity O(L2N ), where

L and N are the length and number of input se-

quences, respectively. Variants of the Sankoff al-

gorithm have been proposed to reduce the compu-

tational time of multiple alignment, such as Stem-

loc 18, Consan 7, MARNA 34. The second type

of methods first builds a sequence alignment and

then folds the alignment 16, 31, 38, 38, 23. They in-

fer structures from pre-aligned sequences generated

using MULTIZ 3, ClustalW 35, or other available se-

quence alignment programs. The accuracy of these

tools is largely affected by the alignment quality. In

particular, when homologous ncRNA sequences only

share structural similarity, building a meaningful se-

quence alignment becomes difficult. The third type

of methods folds input sequences and then conducts

structural alignment, yielding higher accuracy. Dif-

ferent tools in this category differ by different sec-

ondary structure modeling methods. Although some

of them used restricted Sankoff algorithm in their im-

plementations, we classify them into “fold and then

align” category because they apply structure predic-

tion in the first step. As our grammar string based

alignment belongs to the third category, we discuss

related “fold and then align” tools below, focusing

on their secondary structure representations.

Several programs encode secondary structure us-

ing base pair probability matrices derived from Mc-

Castkill’s approach 30, 15. NcRNA alignment is then

converted into base pair probability matrix align-

ment. However, base pair probability matrix com-

parison is highly resource demanding. For example,

pmcomp 17 takes O(n4) memory and O(n6) opera-

tions for aligning a pair of sequences with length n.
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More recent implementations such as LocARNA 39

and FOLDALIGNM 36 applied various restrictions

or pruning techniques to reduce the time complex-

ity. But they are still much more expensive than

sequence alignment.
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tRNA_1: GUAAAUAUAGUUUAACCAAAACAUCAGAUUGUGAAUCUGACAACAGAGGCUCACGACCCCUUAUUUACC

(((((((..((((.....)))).(((((.......)))))....((.((.......)).))))))))).

Grammar string

cPPPPPPPUA#caac#aPPPPAACCA|PPPPPUUGUGAA|PPAcPPCUCACGA|

tRNA_2:
ACUUUUAAAGGAUAACAGCCAUCCGUUGGUCUUAGGCCCCAAAAAUUUUGGUGCAACUCCAAAUAAAAGUA

(((((((..((((.......)))).((((.........))))....(((((.......)))))))))))).

Grammar string

aPPPPPPPAA#uaaa#gPPPPAACAGCC|PPPPUCUUAGGCC|PPPPPUGCAACU|

cPPPPPPPUA#aac#aPPPPAAC--CA|PPPPP-UUGUGAA|PPPPPCUCACGA|

aPPPPPPPAA#aaa#gPPPPAACAGCC|PPPPPCUUAGGC-|PPPPPUGCAACU|

******* **** * *******  * ****** **  *  ******  **   *

Pairwise alignment

ACUUUUAAAGGAUAACAGCCAUCCGUUGGUCUUAGGCCCCAAAAAUUUUGGUGCAACUCCAAAUAAAAGUA

(((((((..((((.......)))).((((.........))))....(((((.......)))))))))))).

Grammar string

aPPPPPPPAA#uaaa#gPPPPAACAGCC|PPPPUCUUAGGCC|PPPPPUGCAACU|
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Fig. 1. Two tRNA sequences from the human genome and

the alignment of their grammar strings.The stars below the

alignment denote exact matches.

RNAforester 14, 13 used tree profiles to repre-

sent secondary structures. Algorithms on tree align-

ment are applied for pairwise and multiple alignment

computation. The asymptotic efficiency depends on

the node number of the tree representation and the

maximum degree d of a tree node. For n structures

of average size s, their pairwise algorithm has time

complexity O(s2d2) and space complexity O(s2d).

RNAforester can achieve higher efficiency than base

pair probability matrix comparison. However, it is

reported 39 that they tend to produce many align-

ment columns that contain mostly gap characters in

the multiple alignment mode. Carnac 37 used stem

graphs to represent secondary structures. However,

their program cannot accept more than 15 input se-

quences, limiting its practical usage.

3. APPROACH: GRAMMAR STRING
DESIGN

Inspired by Jaakkola and Haussler’s discriminative

classification method 19, we introduce grammar

string, a representation of an ncRNA sequence in

the parameter space of context-free grammar (CFG).

Specifically, each ncRNA sequence and its secondary

structure are transformed into a string defined on a

new alphabet, where each character corresponds to

a production rule in a CFG. We first introduce an

unambiguous CFG for ncRNA sequence generation.

Using the chosen CFG as an example, we formally

define grammar strings for modeling an ncRNA se-

quence and its secondary structure.

3.1. An unambiguous CFG for ncRNA
generation

NcRNA structures without pseudo-knots can be de-

rived by CFGs 8. A CFG is defined by a set of nonter-

minals, a set of terminals, a start nonterminal, and a

set of production rules of the form V → α. V is a sin-

gle nonterminal symbol, and α is a string of terminals

and/or nonterminals. By recursively replacing non-

terminals on the right hand side of each production

rule, an ncRNA sequence and its secondary struc-

ture can be derived from a CFG. In this work, all our

ncRNA sequences and their structures will be gen-

erated from G4, a light-weight CFG introduced by

Dowell and Eddy 6, using leftmost derivation. Fol-

lowing the general definition of a CFG, G4 has a

finite set of nonterminal symbols V = {S, T }, a fi-

nite set of terminal symbols T = {A,C,G,U, ε}, and

a finite set of production rules defined as below:

• S → aS|T |ε
• T → T a|aSâ|T aSâ

where a ∈ {A,C,G,U} and â ∈ {A,C,G,U}. a and

â form complementary base pairs such as A-U and

G-C. In order to generate the unstructured single

strand ‘C’ at 3’ end and the two outmost base pairs

in sequence tRNA 1 in Figure 1, the following pro-

duction rules from G4 are called: S → T , T → T
C, T → G S C, S → T , T → U S A. Continuing

to replace S by correctly chosen production rules,

we can derive tRNA 1. The sequence of production

rules used for ncRNA structure generation is called
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a derivation.

Using the leftmost derivation, an unambiguous

CFG can guaranteer a unique derivation for a given

ncRNA sequence and its secondary structure. For

example, by using the unambiguous grammar G4, we

have only one choice when choosing a production rule

to derive tRNA 1’s secondary structure in Figure 1.

For a more detailed introduction about unambigu-

ous CFGs, we refer readers to the review by Dowell

and Eddy 6, where several light-weight unambiguous

CFGs including G4 are discussed.

3.2. Grammar string generation
algorithm

Each ncRNA secondary structure has a unique left-

most derivation from an unambiguous CFG, pro-

ducing a one-to-one mapping between a structure

and a production rule sequence. Intuitively, homolo-

gous ncRNAs with similar structures will share sim-

ilar derivations. This motivates us to represent an

ncRNA sequence and its secondary structure in the

parameter space of a CFG. Thus, ncRNA structural

comparison is converted to the comparison of their

derivations.

In order to represent an ncRNA structure using

its derivation, we introduce a new alphabet, where

each character corresponds to a production rule in

a CFG. One example alphabet derived from G4 is

defined below.

• Use upper case character of a to represent

production rule S → aS. For example, use

A to represent S → AS.

• Use | to represent S → ε.

• Use lower case character of a to represent

production rule T → T a. For example, use

c to represent T → T C.

• Use P to represent base pair emission T →
aSâ.

• Use a special character # to indicate branch-

ing T → T aSâ.

• No character is needed for production rule

S → T .

Thus, the new alphabet is A = { A,C,G,U, a, c, g,

u, P, —, # }. If these production rules are used

on DNA sequences, we can simply replace U(u) with

T (t). For brevity, we name a string defined on the

above alphabet a grammar string. As an example,

the derivation for generating the unstructured single

strand ‘C’ at 3’ end and the two outmost base pairs

in sequence tRNA 1 of Figure 1 is: S → T , T → T
C, T → G S C, S → T , T → U S A. Thus, the

corresponding grammar string is “cPP” using the al-

phabet A. Note that we don’t distinguish different

base pairs (i.e. A-U, G-C, and G-U if allowed) in

a grammar string. All base pairs are represented as

’P’ in order to maximize the alignment score between

homologous ncRNAs that share high structural sim-

ilarity but low sequence similarity. Figure 1 shows

the utility of grammar strings in detecting structural

similarity between two tRNA sequences from the hu-

man genome. Because of low sequence similarity,

BLAST 1 fails to align them. However, their struc-

tural similarity yields a meaningful global alignment

between their corresponding grammar strings with

69% identity.

void parse(i, j) 

{ 

if i >= j 

 print '|'; 

 return; 

else if Xi is a single stranded base 

 print uppercase of Xi; 

 i++; 

 parse(i,j); 

else if  Xj is a single stranded base 

 print lowercase of  Xj; 

 j--; 

 parse(i,j); 

else if  Xi and Xj form a base pair 

 print 'P'; 

 i++ and j--; 

 parse(i,j); 

else 

 print '#'; 

 k = the position that forms a base pair with Xj; 

 parse(i,k-1); 

 parse(k,j); 

}  

Fig. 2. Algorithm for generating a grammar string for sub-
string Xi..j .

In theory, our grammar string generation process

consists of two steps. First, write the production rule

sequence for an ncRNA sequence and its secondary

structure. Second, transform the sequence of pro-

duction rules into a grammar string according to the

definition of grammar string alphabet. In practice,

we use an efficient dynamic programming algorithm
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to design a grammar string for an ncRNA structure

directly, skipping the step of parsing an ncRNA se-

quence using a CFG. The algorithm has time com-

plexity O(L2), where L is the length of the ncRNA

sequence.

Let X be an ncRNA sequence with its predicted

or annotated secondary structure. i and j are in-

dexes in X. Xi is the base at position i. Figure 2

sketches the dynamic programming algorithm gen-

erating a grammar string for substring Xi..j . In or-

der to generate the complete grammar string for se-

quence X, one should call parse(1, L).

3.3. Grammar pattern for encoding
stem structures

The number of stems and their relationship largely

define the basic “shape” of a secondary structure.

For example, the cloverleaf structure of a tRNA se-

quence consists of four stems: acceptor stem, D stem,

anticodon stem, and TΨCG stem. The precursor

structure of a miRNA usually contains only one stem.

According to the definition of grammar strings, three

characters P,#, and | encode the number and rela-

tive positions of all stems in an ncRNA secondary

structure. If we simply remove all single stranded

regions (i.e. substrings only consisting of A,C,G,U,

a, c, g, u) from a grammar string, we can use a simpli-

fied grammar string to represent the abstract stem

structure for an ncRNA sequence. For brevity, we

name a simplified grammar string a grammar pat-

tern, which is a string defined on a reduced alpha-

bet {P,#, |}. A grammar string can be converted

into a grammar pattern in two steps: 1) remove all

substrings representing single stranded regions, and

2) reduce every substring consisting of only Ps as

a single P. Thus, the grammar pattern for sequence

tRNA 1 in Figure 1 is P##P |P |P |, where each P

denotes a stem. There are four Ps, denoting four

stems. The end of each stem is marked by |. Num-

ber of # defines the number of bifurcations.

Different distributions of the same number of

stems can yield highly different secondary structures.

Figure 3 shows how grammar patterns can account

for different structures with the same number of

stems. Note that all these grammar patterns are gen-

erated using G4 as the chosen CFG. If other unam-

biguous CFGs are used to generate grammar strings

for the same structures, different sets of grammar

patterns might be produced.

Ignoring all single stranded regions and length of

each stem, grammar patterns only provide a coarse-

grained description of ncRNA secondary structures.

However, because of the high efficiency of pattern

matching, grammar patterns can be used to speed

up grammar string comparison. For example, we do

not expect significant structural similarities between

a tRNA and a miRNA sequence. Instead of using

Needleman-Wunsch 33 like alignment algorithm be-

tween their grammar strings, a constant time gram-

mar pattern matching program can be applied as

a filtration step. This filtration is particularly im-

portant when we aim to derive the consensus struc-

ture of multiple putatively homologous ncRNAs. Al-

though these sequences are expected to be sequenced

from the same gene family, it is possible that some

of the sequences are from other regions. Thus, we

can use the grammar pattern matching technique to

exclude contaminated sequences, ensuring a multi-

ple sequence alignment with good quality. The same

technique can be used to remove possible errors in-

troduced by MFE-based secondary structure predic-

tion tools. We demonstrate the utility of grammar

patterns in Section 4.3.

4. USING GRAMMAR STRINGS FOR
MULTIPLE NCRNA STRUCTURAL
ALIGNMENT

In this work, we show the utility of grammar strings

in deriving consensus structure through multiple

ncRNA alignment, which has wide applications in

both known ncRNA classification and novel ncRNA

search.

4.1. Score table design for grammar
string alignment

Pairwise alignment is a fundamental step to multi-

ple alignment and clustering. Existing alignment al-

gorithms such as Needleman-Wunsch 33 can be di-

rectly applied to grammar strings when a score table

defined on grammar strings’ alphabet is imported.

Following the common practice in score table design,

we use maximum-likelihood ratio to derive the score

between every pair of characters in grammar strings’
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alphabet A. For each pair of characters a, b in A, the

score between a, b is s(a, b) = log Pr(a,b)
Pr0(a,b)

. Pr(a, b) is

the target probability of a, b in a set of true align-

ments and Pr0(a, b) is the background probability

that a and b are aligned. Assuming that a and b

are independent in the background model, we get

Pr0(a, b) = Pr0(a)×Pr0(b). Because ncRNA family

database Rfam 12 provides a large number of anno-

tated ncRNA sequences, their alignments, and their

associated secondary structures, we obtain both the

target and the background probabilities from Rfam.

In summary, we present following steps of designing

a score table for grammar string alignment.

(1) Build an alignment training set by randomly

picking a large number of pairwise ncRNA align-

ment from Rfam 9.1’s seed alignments. Some cri-

teria are applied to select alignments with rea-

sonably high quality. For example, if a pairwise

alignment contains too many gaps, it will not be

included in the training set. After applying the

selection criteria, we had 18487 pairwise align-

ments in the training set.

(2) Transform each pair of ncRNA sequence align-

ment into an alignment between grammar strings

using the given secondary structure annotations

by Rfam.

(3) Compute the target probability Pr(a, b) for each

pair of aligned characters a, b in the above gram-

mar string alignments.

(4) Generate grammar strings for a large number of

ncRNA sequences that are randomly picked from

full families of Rfam 9.1. Compute the back-

ground probabilities Pr0(a) and Pr0(b) from

these grammar strings.

The complete score table for grammar string align-

ment can be found at our websitea. All exact

matches have big positive scores. And bifurcation

starting character # and stem ending character |
can only be aligned with themselves or cause a gap.

This is consistent with our intuition because it is not

meaningful to align a bifurcation character with a

base pair or a single stranded base.

P##P|P|P|

#P#P|P|P|

#P|P#P|P|

###P|P|P|P|

5'

3'

3'

3'

3'

5'

5'

5'

Fig. 3. Four different stem structures and their grammar

patterns. The left column shows the 2D representation of an

ncRNA folding. The right column shows the distributions
of stems along an ncRNA sequence. All grammar patterns

are generated using G4 (our chosen unambiguous context-free

grammar).

Insertions or deletions of ‘P’ or single stranded

characters correspond to insertions or deletions of

a base pair or single stranded bases in the ncRNA

sequence alignment. Empirical experiments are con-

ducted to choose default values for their gap opening

and extension costs. The default gap opening score is

slightly smaller than the lowest number in the gram-

mar string’s score table. The default gap extension

cost is set as 1/10 of the opening cost. We assign big-

ger gap penalties for structural characters # and | in
order to force corresponding stems or single stranded

regions to be aligned together.

4.2. Multiple ncRNA alignment using
grammar strings

Major steps of aligning multiple ncRNA sequences

are sketched below.

(1) Use an ab initio secondary structure prediction

tool to predict both the optimal and sub-optimal

structures of each input sequence.

(2) Generate a grammar string for each predicted

secondary structure. If an ncRNA sequence

has more than one structure predicted, multiple

grammar strings will be generated.

(3) Transform each grammar string into a gram-

mar pattern. Use a voting mechanism to choose

ahttp://www.cse.msu.edu/∼yannisun/grammar-string
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the most popular grammar pattern that mostly

likely represents the native stem structure shared

by the input sequences. All grammar strings

that are not consistent with the chosen grammar

pattern will be discarded.

(4) Apply a progressive multiple sequence alignment

method on remaining grammar strings.

(5) Derive the consensus secondary structure from

multiple grammar string alignment. Transform

grammar string alignment into ncRNA sequence

alignment using the ncRNA sequences and their

predicted structures as references.

4.2.1. Structure prediction

Various tools exist to predict the secondary struc-

tures of a single input sequence. A majority of them

search for structures with the minimum free energy

(MFE) using a large number of experimentally de-

rived energy parameters. The representative imple-

mentations include Mfold 42, RNAstructure 29, 28,

McCaskill’s base pairing probability computation 30,

etc. MFE-based methods can also be combined with

other probabilistic models such as conditional log-

linear models (CLLMs) in ContraFold 4 for struc-

ture prediction. In our experiments, we choose MFE

based tool UNAFold 26, 27 for structure prediction

because of the following reasons. 1) It has a user-

friendly interface for both web-site based and stan-

dalone tools. 2) It can generate both the optimal and

suboptimal structures. It is shown that a suboptimal

prediction rather than the optimal one could be the

“correct” structure 5. Thus, being able to output

suboptimal structure increases the chance of correct

structure prediction for each input sequence. Em-

pirically, we also tested other folding tools such as

ContraFold on our test sequences. However, no clear

advantage was observed.

4.2.2. Multiple grammar string alignment

We apply progressive alignment to multiple gram-

mar strings. In the first stage, a guide tree is built

based on all-against-all pairwise similarities and un-

weighted pair group method with arithmetic mean

(UPGMA). In the second stage, the multiple se-

quence alignment is grown using the guide tree.

Sum-of-pairs score is used to evaluate the similar-

ity between a character and a column in an align-

ment or between two columns from two alignments.

When we build the guide tree, several methods are

used to convert an alignment score to sequence dis-

tance. The first distance definition comes from Feng

and Doolittle 9: D = − ln Sreal(ij)−Srand(ij)
Siden(ij)−Srand(ij)

, where

Sreal is the observed alignment score between se-

quences i and j. Siden is the average of the two

scores of the two sequences comparing with them-

selves. Srand is the alignment score between two ran-

dom sequences with the same length and composition

as i and j. We applied shuffling to sequence i and j

to obtain Srand. Besides the Feng and Doolittle dis-

tance conversion method, we also evaluated several

other simple distance definitions. The “Simple Dis-

tance” model defines D = 1/(Sread(ij)/L), where L

is the alignment length. “No-random FD” model de-

fines D = − ln Sreal(ij)
Siden(ij)

. Our empirical experimental

results show that both “Simple Distance” and “No-

random FD” generate better alignment than more

complicated Feng and Doolittle distance.

4.3. Using grammar patterns to reduce
errors caused by ab initio structure
prediction

In our alignment pipeline, we allow multiple struc-

tures predicted for each input sequence, resulting

in multiple grammar strings for a single ncRNA se-

quence. However, predicted structures for the same

ncRNA sequence can differ significantly. It is im-

portant to align only structures that are likely to be

consistent with the native structure of the homol-

ogous sequences. In this section, we introduce an

algorithm that uses grammar patterns introduced in

Section 3.3 to pre-select grammar strings for multiple

alignment.

UNAFold 26 allows users to control the number

of produced suboptimal structures by specifying a

range of allowed thermodynamic energy values ∆G.

Suboptimal structures can be highly different from

the optimal structure for some ncRNA sequences.

For example, tRNAs, which have functional clover-

leaf structures, can be folded in different ways with

reasonably small ∆Gs. Figure 4 shows four differ-

ent structures output by UNAFold for one tRNA

sequence. Even worse, the true structure may not

always be the optimal prediction with the minimum

8



∆G. Thus, it is not plausible to only keep the opti-

mal prediction as correct structures may come from

the sub-optimal predictions. In this section, a gram-

mar pattern based screening approach is introduced

to remove the contamination of wrong predictions

before alignment.

tRNA:

UCCUCAGUAGCUCAGUGGUAGAGCGGUCGGCUGUUAACUGA

CUGGUCGUAGGUUCAAAUCCUACUUGGGGAG

-23.7

-22.6

-23.3

-23.5

Fig. 4. Four highly different structures predicted by UN-

AFold for the tRNA sequence shown at the bottom. The

numbers beside each structure is their ∆G. The cloverleaf
structure has a bigger ∆G than other predictions.

We conduct the screening step by choosing a rep-

resentative structure favored by a majority of input

sequences. In this step, we only examine the number

of stems and their relative positions to each other.

Insertions, deletions, or substitutions of bases or base

pairs will be handled by alignment program. For

example, if the cloverleaf structure is chosen as the

preferred structure, only grammar strings encoding

the same stem structure will be kept. Following the

definition of grammar pattern in Section 3.3, we first

simplify each grammar string as a grammar pattern,

which encodes the stem structure of each ncRNA se-

quence. Then, we choose a grammar pattern that

is shared by most input sequences and has the min-

imum sum of ∆Gs. The assumption is that with

multiple homologous ncRNA sequences available, the

most popular structure will likely to be the native

structure. Below, we elaborate the choice of the most

popular structure using a voting mechanism.

(1) Convert each grammar string into a grammar

pattern. Assign the computed thermodynamic

energy ∆G of a grammar string to its grammar

pattern. Suppose there are m input ncRNA se-

quences. Ni predictions are output for ncRNA

sequence with index i. The output of this step is

a set of grammar patterns and their associated

∆Gs: {(s11, ∆G1
1), (s21, ∆G2

1),..., (sN1
1 , ∆GN1

1 ),

..., (sNm
m , ∆GNm

m ) }. sji is the grammar pattern

derived from the jth structure prediction for the

ith input sequence. ∆Gj
i is the associated ther-

modynamic energy value for sji .

(2) Choose a grammar pattern that is shared by

most input sequences. For each different gram-

mar pattern s derived from the previous step,

compute function:

f(s) =
∑

i=1..m

min
j=1..Ni

{∆Gj
i |sji == s} (1)

When the set {∆Gj
i |sji == s} is empty, min(∅)

= 0. The grammar pattern s with the smallest

f(s) is the preferred structure of input ncRNA

sequences. Denote this chosen grammar patter

as s∗.

(3) Of multiple grammar strings generated for each

ncRNA sequence, only keep the grammar string

that can be converted to s∗. If more than one

such grammar strings exists, keep the one with

the minimum ∆G.

As tRNAs pose a hard case for MFE-based struc-

ture prediction programs 11, 12, we use a set of tRNA

sequences as an example to illustrate how to choose

the most favored stem structure for tRNAs. We

randomly choose 20 tRNA sequences with average

pairwise identity between 50% and 70% from BRAl-

iBase III ncRNA sequence benchmark data set 10.

UNAFold is applied to each sequence allowing 5%

sub-optimal structures predicted. More than one

structure is predicted for each input sequence. After

applying step 1, we summarize the grammar pat-

terns, their encoded stem structures, and the cor-

responding ∆G for the first three tRNA sequences

in Table 1. Note that we use a pair of symmet-

ric brackets “()” to represent a stem. For exam-

ple, “(()()())” encodes a cloverleaf structure with

9



four stems. There are only three different gram-

mar patterns in Table 1: P##P |P |P |, P#P |P |, and

P . Following the definition of f(s) in Equation 2,

f(P##P |P |P |) is the sum of ∆Gs of grammar pat-

terns denoted with *. Therefore, f(P##P |P |P |) =

-71.3. f(P ) and f(P#P |P |) are much larger than

f(P##P |P |P |). Thus, P##P |P |P | is the consen-

sus stem structure for the three tRNA sequences.

Note that no grammar string is chosen for “seq 3”

because none of them is equal to the consensus stem

structure.

Table 1. Structure predictions for three tRNA
sequences. Multiple structure predictions are
output for each sequence. For each prediction,
column named “stems” displays its stem struc-
ture denoted by brackets. The corresponding
grammar pattern and ∆G are listed in columns
3 and 4, respectively.

ID stems grammar pattern ∆G

seq 1 (()()()) P##P |P |P | -38.7 *
(()()()) P##P |P |P | -37 *

seq 2 (()()()) P##P |P |P | -32.6 *

(()()()) P##P |P |P | -32 *
(()()()) P##P |P |P | -31.6 *

seq 3 () P -23.6

(()()) P#P |P | -23

Applying the same method to 20 tRNA se-

quences, we found the cloverleaf structure with four

stems is the consensus structure shared by a ma-

jority of tRNA sequences. We repeated our experi-

ments using different energy parameters. The dom-

inant structure remains the cloverleaf structure al-

though the second most popular structure alternates

between a long hairpin and a three-stem structure

(i.e. “(()())”). After discarding grammar strings

that are not consistent with the chosen structure,

we align remaining grammar strings using progres-

sive alignment method.

5. EXPERIMENTAL RESULTS

First, we conducted multiple sequence alignment for

20 tRNA sequences, which were used as an exam-

ple of handling errors introduced by structure pre-

diction programs in Section 4.3. Figure 5 shows the

consensus secondary structure derived from aligning

grammar strings of given tRNAs. We also tested

other structural alignment programs including pm-

multi 17, Murlet 22, RNAforester 14, 13, MARNA 34,

and LocARNA 39. Figure 5 shows that the grammar

string alignment and Murlet both generate the best

consensus structure for tRNA sequences.

XXXXXXXUAXXXXAGUUGGUAxxxxRXXXXXYUNANAAxxxxxNGUCXXXXXUUCRAAUxxxxxUxxxxxxxa

(((((((..((((........)))).(((((.......)))))....(((((.......))))).))))))).

Consensus sequence and secondary structure

aPPPPPPPUAu#cugn#rPPPPAGUUGGUA|PPPPPYUNANAA|PPPPPUUCRAAU|

Consensus grammar string using IUPAC code

Grammar

string LocARNA RNAforester

pmmulti
murlet

marna

Fig. 5. The consensus grammar string of tRNA alignment
and the consensus secondary structure derived from the gram-

mar string. X and x represent complementary base pairs.

They can be easily translated into nucleotide bases using input
tRNA sequences. All other structural alignment tools were

tested under their default parameters except MARNA. For

MARNA, using default structure prediction option RNAfold
(from Vienna RNA package) generated no base pair in the con-

sensus structure. Thus we used RNAsubopt, which yielded a

few more base pairs in the consensus structure. The structure
plotted by pmmmulti was generated from their consensus se-

quence and structure, which only included a very small num-
ber of base pairs. However, their multiple alignment seemed

to contain more base pairs. RNAforester detected less number

of complementary mutations and included several inconsistent
base pairs such as U-U. LocARNA missed one base pair in one

stem. Murlet generated the same structure as our grammar

string alignment method.

Second, we use grammar strings to generate mul-

tiple ncRNA alignments for 452 families that are

randomly chosen from BRAliBase 2.1, an enhanced

RNA alignment benchmark 40. This data set con-

tains a diverse set of ncRNA families with differ-

ent average sequence identity, length, and structural

conservation. Each family contains 15 ncRNA se-

quences. Suboptimal structures with minimum-free

energy values at most 10% higher than the optimal

structure are predicted using UNAFold 26, 27 on over

6700 sequences from these 452 families. The average

10



number of suboptimal structure for each sequence

is 20. For longer ncRNA sequences (length around

300), the number of suboptimal structures is close to

50. For short ones (length < 50), there are only a

couple of suboptimal structures predicted. And, the

average time to fold 15 sequences in each family is 7

seconds on a Core 2 Duo 1.7GHz laptop. The aver-

age time to align 15 grammar strings is 3 seconds.
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Fig. 6. The differences of the reference structures (from
Rfam) and the predicted consensus structures from gram-

mar string and Murlet alignments are plotted and compared.

Lower numbers indicate higher similarity between the pre-
dicted structure and the reference structure.

As Murlet 22, a Sankoff-based algorithm com-

petes favorably in consensus structure quality with

other ncRNA alignment tools, we compare the ac-

curacy of consensus structures predicted from gram-

mar string alignments and Murlet alignments. Since

BRAliBase 2.1 only provides the alignments for each

family of ncRNA sequences, but not their secondary

structures, we extracted their reference structures

from Rfam 9.1. In order to extract the consensus

structure from a grammar string alignment, a con-

sensus grammar string is first generated from the

alignment (one example consensus grammar string is

shown in Figure 5). And then this consensus gram-

mar string is translated into a secondary structure

using a reversed protocol to the one described in

Figure 2. Murlet outputs the consensus structure

along with each alignment. We compare the pre-

dicted secondary structures with the reference struc-

tures using RNAdistance from Vienna RNA package.

Small distance indicates high similarity. The differ-

ence between predicted structures and the reference

structures for both grammar string and Murlet align-

ments are summarized in Figure 6. Of 452 families,

grammar string-based alignment produces consensus

structures closer to the reference structures in 216

families and Murlet produces more accurate struc-

ture in 206 families. They generate the same con-

sensus structures for 30 families. Some families pose

hard cases for both methods, such as IRES HCV and

IRES Picorna.
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Fig. 7. Consensus structures are derived for multiple fami-

lies of each type of ncRNA, resulting a RNAdistance output
vector. For each type of ncRNA, the average RNAdistance

output for Murlet and grammar string alignment is compared.

In order to analyze how grammar string and

Murlet perform on each type of ncRNA, Figure 7

compares the average RNAdistance output for 25

types of ncRNAs, each of which contains multiple

families in BRAliBase 2.1. The figure shows that

grammar string-based methods produces more accu-

rate consensus structures than Murlet for 13 types

of ncRNAs: 5S rRNA, Entero OriR, gcvT, Hammer-

head 3, HCV SLIV, HepC CRE, Intron gpII, S box,

SECIS, SPR bact, THI, tRNA, and yybP-ykoY.

Murlet performs better for 10 types of ncRNAs:

Entero 5 CRE, Entero CRE, HCV SLVII, HIV FE,

HIV— GSL3, HIV PBS, IRES HCV, IRES Picorna,

Retroviral psi, and U2. Thus, grammar string per-

forms slightly better than Murlet in consensus struc-

ture derivation.

The major cause for the high structural differ-

ence for some families is the inaccuracy of the ab

initio structure prediction program. Our alignment

quality relies on the accuracy of structure prediction

program. The prescreening algorithm can choose

structures with the same number of stems and bi-

furcations. However, some predicted structures of

homologous ncRNAs contain highly different num-

bers of base pairs for a pair of homologous sequences,

causing low similarity between the derived grammar

11



strings. Instead of using pure ab initio structure pre-

diction tools, we plan to use variants of Sankoff al-

gorithm to generate consensus structures between a

pair of sequences and then use these structures to

derive grammar strings.

6. CONCLUSION AND FUTURE
WORK

We have described the grammar string, a novel

and simple ncRNA secondary structure representa-

tion. By encoding secondary structures in grammar

strings, ncRNA structural alignment is transformed

into sequence alignment. When there is no struc-

tural information available for ncRNA sequences, ab

initio or other structure prediction tools are used

to derive secondary structure information, which is

needed for grammar string generation. Thus, gram-

mar string alignment quality relies on the accuracy

of structure prediction. When the structure predic-

tion is reasonably accurate, grammar string align-

ment can be highly accurate and efficient for homol-

ogous ncRNA consensus structure derivation. Be-

sides building ncRNA structural alignment, gram-

mar string can be used to encode characterized

ncRNA structures, comparing different structures,

and searching for common structural motifs.

In the current grammar string generation algo-

rithm, we don’t distinguish different base pairs (G-

C, A-U, and U-G if allowed) in order to maximize

alignment score of homologous ncRNA sequences

that share strong structural similarity rather than

sequence similarity. However, it is worth testing

whether an expanded alphabet can increase align-

ment accuracy. Thus we plan to : 1) distinguish

different base pairs in an expanded grammar string

alphabet, and 2) use a set of high quality pairwise

ncRNA alignments to train the new substitution

score table for the new alphabet. In addition, we will

evaluate how different alignment methods (such as

interactive vs. progressive) and different gap penal-

ties in stems and single stranded regions affect the

final alignment quality.
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13. M. Höchsmann, B. Voss, and R. Giegerich. Pure mul-
tiple RNA secondary structure alignments: a pro-
gressive profile approach. IEEE/ACM Trans Com-
put Biol Bioinform, 1(1):53–62, 2004.
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